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ABSTRACT. We introduce d-characters of Drinfeld modules, which are function-
field analogues of Buium'’s §-characters of p-adic elliptic curves and of Manin’s
differential characters of elliptic curves in differential algebra. We determine
the structure of the group of d-characters. This shows the existence of a family
of interesting §-modular functions on the moduli of Drinfeld modules. It also
leads to a canonical subspace inside the de Rham cohomology of a Drinfeld
module over a d-base. This subspace has a canonical semi-linear Frobenius
operator on it.

1. INTRODUCTION

The aim of this paper is to study the group of §-characters of Drinfeld modules.
The d-characters are analogues of the Manin maps associated to elliptic curves in
the sense of differential algebra and, even more closely, of Buium’s J-characters of
p-adic elliptic curves. As a consequence of understanding these J-characters, we
produce an interesting short exact sequence of finite rank modules which maps to
the Hodge sequence of the Drinfeld module. If we look at the image inside the de
Rham cohomology group, then this image also has a natural semi-linear operator
on it.

One of the reasons for studying Drinfeld modules, indeed the original reason, is
that progress there comes easier than over number fields, yet remarkably often it can
be translated back to the number field setting. In our case too, the theorems that
we prove can also be reproved for elliptic curves over local fields of characteristic
0. However, we will not do so in this paper as it will require us to develop tools
different from the ones required in the case of Drinfeld modules. But we do note
that all the fundamental principles that go into studying Drinfeld modules also
work for elliptic curves and we will look into it that aspect in a subsequent paper.

Fix ¢ = p" where p is a prime and h > 1. Let X be a projective, geometrically
connected, smooth curve over F,. Fix an F,-rational point co on X. Consider the
Dedekind domain A = O(X \ {oo}). Fix a maximal ideal p of A, and let A denote
the p-adic completion of A. Denote by p the maximal ideal of the complete, local
ring A and ¢ : A < A the natural inclusion. Let m € A be such that () generates
the maximal ideal p in A. Since ¢ is an injection, by abuse of notation, we will
consider 7 as an element of A as well. Let k := A/p = A/(r) and ¢ = |k|.

Let R be an A—algebra which is also m-adically complete and flat, or equivalently
m-torsion free. Thus the structure map 6 : A — R is injective and hence one can

Date: March 26, 2017.



2 JAMES BORGER AND ARNAB SAHA

say that 0 is of generic characteristic. Fix a lift of the g-power Frobenius ¢ on R
which when restricted to A is identity. Do note here that the identity map on A
indeed lifts the g-power Frobenius on A/ p. Then one can consider the operator on

R given by dx = M

. It is called the w-derivation associated to ¢.

A p-formal A-module scheme over S = Spf R is by definition a pair (E, ),
where F is a commutative group object in the category of formal S-schemes and
¢ : A — End(E/S) is a ring map. Then the tangent space ToE at the identity
has two A-modules structures: one coming by restriction of the usual R-module
structure to A, and the other coming from differentiating ¢. We will say that
(E,p) is strict if these two A-module structures coincide, and admissible if it is
both strict and isomorphic to G, as a group scheme. The group scheme Ga plays
a second role here in that it admits an A-module structure ¢g, given by the usual

scalar multiplication ®g. (a)x = ax. This role will be especially important for us,
as our d-characters have (G, ¢g.) it as their target.

In analogy with Buium’s arithmetic jet space [Bui2], we define the n-th jet space
J"E of the Drinfeld module E to be the (m-adic) formal scheme over R with functor
of points

(J"E)(C) = E(Wn(C)),

where W, is the function-field analogue of the usual Witt vector functor, which we
recall in section 3. It has relative dimension n + 1 over Spf R. One might also call
it the function-field Greenberg transform. Since E is an A-module formal scheme,
J"E has a natural A-module structure (J"E, ¢ ng). However, we would like to
remark here that for all n > 1, the J"E are not Anderson modules.

We then define the group X, (E) of §-characters to be the group of morphisms
of A-module schemes over Spf(R) from (J"E,png) to (Ga,go(@a). Since G, has
an R-linear structure as well, X,,(E) is naturally an R-module for all n > 0. Let
X (E) be the limit of X,,(F) over n. Now for all n > 0, there is a canonical
A-linear Frobenius morphism ¢ : J**'E — J"E lying over the endomorphism ¢
of Spf(R). Hence pulling back morphisms via ¢ as © — ¢*0, endows X (E)
with an action of ¢* and hence makes X (F) into a left module over the twisted
polynomial ring R{¢*} with commutation law ¢*r = ¢(r)o*.

We say E splits at m if X,,,(F) # {0} but X;(F) = {0} forall 0 <i <m — 1.
Then we show that m satisfies 1 < m < r, where r is the rank of FE, and X,,(E)
is a free R-module with basis element ©,, € X,,(E) depending only on a chosen
coordinate on E. In the case when the rank r is 2, the splitting condition coincides
with the notion of canonical lifts on F, that is, m = 1 if and only if E admits a lift
of Frobenius compatible with the A-module structure on F, otherwise, m = 2.

The structure of X, (E) was first studied by Buium [Bui2] in the case of elliptic
curves over p-adic rings R. He showed that X, (E) ® g K is generated by a single
element as a K{¢*}-module, where K = R[}%]. In this paper, by using different
methods, one of our results is to show the stronger result that X (E) is generated
by a single element as an R{¢*}-module:

Theorem 1.1. Let E be a Drinfeld module that splits at m. Then the R-module
X (E) is free of rank 1, and it freely generates Xoo (E) as an R{¢*}-module in the
sense that the canonical map R{¢p*} @r X (F) = Xo(E) is an isomorphism.
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Let u : J"E — E be the A-linear projection map and N = keru. Then N" is a
strict A-module of relative dimension n over Spf R, and we have the exact sequence

(1.1) 0= N"5J"ES E—0

of A-module 7-formal schemes. We show in theorem 9.1 that Homyu(E,G,) =

{0}. Then if we apply the contravariant functor Hom4(—, G,) of A-module scheme
morphisms to (G,, @Ga), we obtain

(1.2) 0= X, (E) 5 Homa(N", G,) 2 Exta(E, G,)

By [Gel], we have Ext 4 (E,G,) ~ R™!, where r is the rank of E.

For each n > 1, we show in proposition 8.2 that there is a lift of Frobenius
§f: N™*1 — N™ making the system {/N"} into a prolongation sequence with respect
the obvious projection map u : N"t' — N". We call | the lateral Frobenius.
However, f is not compatible with i and ¢ : J**'E — J"E in the obvious way,
that is, it is not true that ¢ o7 = 7 o f holds. In fact, we can not expect it to be
true because that would induce an A-linear lift of Frobenius on (F, ¢g) which is
not the case to start with. Instead we have

$Poi=poiof
As a result, if f* denotes the pullback via f, we obtain the following commutative

diagram for all n > m

0 —— X,i1(E) 2% Homu (N"2,6,)

wT Tf*

00— Xn(E) W HOmA(Nn+1,Ga)

Then we define H,(E) = % The projection map u : N**1 — N7

induces u* : Hom4 (N™, G&) — Hom 4 (N"HL, @d) It will then follow easily that u*
induces maps v* : H,(E) — H,1(E). Define H(E) = lim_, H, (E).

Similarly f: N**! — N™ will induce maps
f* : Homa (N",G,) — Homa(N"!, G,)
and f* : H,(F) — H,+1(F). Hence we have a semi-linear endomorphism §* :

Let I,(E) = image & C Ext(E,G,) as in 1.1 and let I(E) := limL,(E). Then
we will show in section 10.2 that I(E) and H(FE) are free R-modules of finite rank
and satisfy the short exact sequence of free R-modules

(1.3) 0—X,(FE)—=HE)=IE)—0

where X,,(E) is a free R-module of rank 1.
Recall from [Gel, Ge2] that the elements in Ext*(E, G,) are pairs (C,s) where

O%Ga%C%EHO
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is an extension of A-module schemes and s is a splitting of the extension of tangent
spaces

0 — Lie(G,) — Lie(C) — Lie(E) —0

S

The groups Ext(E, G,) and Ext!(E,G,) also fit in a Hodge sequence
0 — Lie(E)* — Ext*(E,G,) — Ext(E,G,) — 0.

Of course, the de Rham cohomology for Drinfeld modules is, in fact, defined to
be Ext*(E,G,) in [Gel]. Now given a ¥ € Hom(N",G,), one can consider the
push-out of exact sequence (1.1) by ¥ to obtain

(1.4) 05Ga—=Ey—=E—0

which is represented by the class as (V) € Ext 4 (E, G,). In section 8, we will show
a way of attaching a canonical splitting of Lie algebras as follows

0 — Lie(G,) — Lie(E}) — Lie(E) —= 0
SWitt

In other words, for all n > 1, we can define ® : HomA(N”,(Ga) — Extﬁ(E,@a)
given by ®(¥) := (9(¥), switt). We will show that the map ® in fact descends to a
map ¢ : H(E) — Ex‘cﬂ(E7 Ga) and leads to the following map between short exact
sequences which is our next result

Theorem 1.2. We have the following map between exact sequences
0——X,,(F) ——H(E) I(E) 0

Tl l

0 — Lie(E)* — Hyp(E) — Ext(E,G,) —=0

Moreover, the operator f* on H(E) descends to its image under .

Even though we show the above results for Drinfeld modules, our methods work
for elliptic curves over p-adic fields as well. However, that will be discussed in a
subsequent paper. Whether for elliptic curves or Drinfeld modules, the de Rham
cohomology has a Frobenius operator obtained by identifying it with the crystalline
cohomology. The comparison with our Frobenius operator on H(FE) is a natural
open question.

2. NOTATION

Let us fix some notation which will hold throughout the paper. Let ¢ = p* where
p is a prime and A > 1. Let X be a projective, geometrically connected, smooth
curve over F,. Fix an [, -rational point oo on X. Let A denote the Dedekind
domain O(X \ {oo}). Let p be a maximal ideal of A, and let A denote the p-adic
completion of A. Let t be an element of p \ p2, and let 7 denote its image in A.
Then 7 generates the maximal ideal p of A. Let k denote the residue field Alp,
and let ¢ denote its cardinality. Note that the quotient map A = k has a unique
section. Thus A is not just an I -algebra but also canonically a k-algebra.
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Now let R be an fl—algebra which is p-adically complete and flat, or equivalently
m-torsion free. Thus the composition § : A — A = Ris injective (assuming
R # {0}) and hence one says that 6 is of generic characteristic. Let us also fix an
A-algebra endomorphism ¢ : R — R which lifts the ¢-power Frobenius modulo pR:

¢(z) = 2’ mod pR.
Do note that the identity map on A does indeed lift the -power Frobenius on A /.

Also note that not all rings R admit such a Frobenius lift; so the existence
of ¢ does place a restriction on R. For our main results, R will in the end be a
discrete valuation ring, most importantly the completion of the maximal unramified
extension of A. So the reader may assume this from the start. But some form of
our results should hold in general, and with essentially the same proofs. This is of
some interest, for instance when R is the coordinate ring of the moduli space of
Drinfeld modules of a given rank. With an eye to the future, we have not assumed
that R is a discrete valuation ring where it is easily avoided, in sections 3-8.

Let K denote R[1/w], and for any R-module M write Mg = K ®p M. Finally,
let S denote Spf R.

3. FUNCTION-FIELD WITT VECTORS

Witt vectors over Dedekind domains with finite residue fields were introduced
in [Bol]. We will only work over A, which is the ring of integers of a local field of
characteristic p, and here they were introduced earlier in [D76]. The basic results
can be developed exactly as in any of the usual developments of the p-typical Witt
vectors. The only difference is that in all formulas any p in a coefficient is replaced
with a 7 and any p in an exponent is replaced with a

3.1. Frobenius lifts and w-derivations. Let B be an R-algebra, and let C' be
a B-algebra with structure map v : B — C. In this paper, a ring homomorphism
¥ : B — C will be called a lift of Frobenius (relative to ) if it satisfies the following:

(1) The reduction mod 7 of ¢ is the ¢-power Frobenius relative to u, that is,
¥(z) = u(x)? mod 7C.
(2) The restriction of ¥ to R coincides with the fixed ¢ on R, that is, the
following diagram commutes
C

B
R——R
@

P

—_—

A m-derivation 6 from B to C' means a set-theoretic map ¢ : B — C satisfying the
following for all z,y € B

S(x+y) = 6(x)+6y)
6(zy) = u(x)'6(y) +(x)uly)’ +md(x)é(y)
such that for all » € R, we have
sy ) =7
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When C' = B and u is the identity map, we will call this simply a w-derivation on
B.

It follows that the map ¢ : B — C defined as
o(x) :=u(x)! + 7d(x)

is a lift of Frobenius in the sense above. On the other hand, for any flat R-algebra
B with a lift of Frobenius ¢, one can define the m-derivation §(z) = 2@=’ for all

T
r € B.

Note that this definition depends on the choice of uniformizer 7, but in a trans-
parent way: if 7’ is another uniformizer, then §(x)7 /7’ is a n’-derivation. This cor-
respondence induces a bijection between m-derivations B — C' and 7’-derivations
B—C.

3.2. Witt vectors. We will present three different points of view on function-field
Witt vectors, all parallel to the mixed characteristic case. But there is perhaps
one unfamiliar element below, which is that we will work relative to our general
base R, and it already has a lift of Frobenius. The consequence is that we need to
pay attention to certain twists of the scalars by Frobenius, which are invisible over
the absolute base R = A. However this unfamiliar element has nothing to do with
the difference between mixed and equal characteristic and only with the difference
between the relative and the absolute setting.

Let B be an R-algebra with structure map v : R — B.

(1) The ring W(B) of m-typical Witt vectors can be defined as the unique (up
to unique isomorphism) R-algebra W (B) with a m-derivtion 6 on W(B) and an
R-algebra homomorphism W(B) — B such that, given any R-algebra C with a 7-
derivation ¢ on it and an R-algebra map f : C' — B, there exists a unique R-algebra
homomorphism ¢ : C'— W(B) such that the diagram

| N

B<~—C

commutes and god = § o g. Thus W is the right adjoint of the forgetful functor
from R-algebras with m-derivation to R-algebras. For details, see section 1 of [Bol].
This approach follows that of [Jo] to the usual p-typical Witt vectors.

(2) If we restrict to flat R-algebras B, then we can ignore the concept of 7-
derivation and define W (B) simply by expressing the universal property above in
terms of Frobenius lifts, as follows. Given a flat R-algebra B, the ring W (B) is the
unique (up to unique isomorphism) flat R-algebra W (B) with a lift of Frobenius (in
the sense above) F': W(B) — W(B) and an R-algbebra homomorphism W (B) —
B such that for any flat R-algebra C with a lift of Frobenius ¢ on it and an R-algebra
map f : C — B, there exists a unique R-algebra homomorphism g : C — W(B)

such that the diagram
)
X
f

-1 ¢

W(B

;
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commutes and go ¢ = F o g.
(3) Finally, one can also define Witt vectors in terms of the Witt polynomials. For

each n > 0 let us define B®" to be the R-algebra with structure map R ﬂ R4 B
and define the ghost rings to be the product R-algebras [T} B = B x B x - - x B?"
and HFB = B x B® x --.. Then for all n > 1 there exists a restriction, or
truncation, map Ty, : I} B — Hg_lB given by T, (wo, -+ ,wp) = (wg, ++ ,Wp—1).
We also have the left shift Frobenius operators F, : gB — Hg_lB given by
Fy(wo, ..., w,) = (w1,...,wy,). Note that T, is an R-algebra morphism, but F,
lies over the Frobenius endomorphism ¢ of R.

Now as sets define
(3.1) W,(B) = B"*",
and define the set map w : Wy, (B) — Iy B by w(wo, ..., zs) = (wo, ..., w,) where

i—1

(3.2) w; = xoi + mcll ool

are the Witt polynomials. The map w is known as the ghost map. (Do note
that under the traditional indexing our W, would be denoted W, 11.) We can
then define the ring W, (B), the ring of truncated m-typical Witt vectors, by the
following theorem as in the p-typical case [HO5]:

Theorem 3.1. For eachn > 0, there exists a unique functorial R-algebra structure
on W, (B) such that w becomes a natural transformation of functors of R-algebras.

Note that, unlike with the usual Witt vectors in mixed characteristic, addition for
function-field Witt vectors is performed componentwise. This is because the Witt
polynomials (3.2) are additive. This might appear to defeat the whole point of
Witt vectors and arithmetic jet spaces. But this is not so. The reason is that while
the additive structure is the componentwise one, the A-module structure is not.
So the difference is only that, unlike in mixed characteristic where A = Z, a group
structure is weaker than A-module structure. In fact, because the Witt polynomials
are k-linear, the k-vector space structure on W,,(B) is the componentwise one. This
is just like with the p-typical Witt vectors, where multiplication by roots of 2P — x
can be performed componentwise.

3.3. Operations on Witt vectors. Now we recall some important operators on
the Witt vectors. There are the restriction, or truncation, maps T : W,(B) —
Wp—1(B) given by T'(zo, ..., xn) = (€0, .., Tn-1). Note that W(B) = lim,. W, (B).
There is also the Frobenius ring homomorphism F : W,,(B) — W,,_1(B), which can
be described in terms of the ghost map. It is the unique map which is functorial in
B and makes the following diagram commutative

(3.3) W, (B) ——— 11} B
Fl iFw
W, 1(B) —— 11, 7' B"

As with the ghost components, T is an R-algebra map but F' lies over the Frobenius
endomorphism ¢ of R.
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Next we have the VerschiebungV : W,,_1(B) — Wy, (B) given by V(xo,...,Tn-1) =
(0,20, .., @Tpn_1). Let V, : Hz_lB — I} B be the additive map given by Vi (wo, coywp—1) =

(0, Twg, . .., mwp—1). Then the Verschiebung V makes the following diagram com-
mute:
(3.4) W, 1(B) ——=1I;"'B

vi lv

Wy (B) —— 1} B
For all n > 0 the Frobenius and the Verschiebung satisfy the identity
(3.5) FV(x) = mz.
The Verschiebung is not a ring homomorphism, but it is k-linear.

Finally, we have the multiplicative Teichmiiller map [ ] : B — W,,(B) given by
x> [z] = (2,0,0,...). Here in the function-field setting, [ ] is additive and even a
homomorphism of k-algebras.

3.4. Computing the universal map to Witt vectors. Given an R-algebra C
with a w-derivation § and an R-algebra map f : C — B, we will now describe the
universal lift g : C' — W(B). The explicit description of g leads us to proposition
3.2 which is used in section 11 in computations for Drinfeld modules of rank 2. The
reader may skip this subsection without breaking continuity till then.

It is enough to work in the case where both B and C' are flat over R. Then the
ghost map w : W(B) — II3° B is injective. Consider the map [¢] : C' — II3°C given
by @+ (z,¢(x), *(x),...). Then we have the following commutative diagram:

g C
ol¢

|

W(B) —“> X B <L TxC

iF iﬂ“ iﬂ"

W(B) —“> X B <L —TxC
Thus the map fo[¢] : C — 113" B factors through W(B) as our universal map

g:C — W(B).

Let us now give an inductive description of the map g. Write

g9(z) = (zg, 21, -+ ) € W(B).

Then from the above diagram w o g = f o [¢]. Therefore the vector (zg,z1,...) is
the unique solution to the system of equations

n n—1
(3.6) g +7r] e+ ma, = f(9"(2)),

for n > 0. For example, we have xg = f(x) and 1 = f(§(z)).

Now consider the case where B itself has a m-derivation, C = B, and f = 1. For
any € B, let us write (™) := §"(z), or simply 2’ = §(x), 2" = 6%(x) and so on.

Proposition 3.2. We have 2o = x, 1 = 2’ and xo = 2" + 7772 (a’)".
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Proof. As stated above, equalities 2o = x and 21 = 2’ follow immediately from (3.6).
For n = 2, we have

9302 +rx! + 7z, = ¢*(x)
= ¢z’ +7a’)
= ¢(z)" +mo(2')
e+ (") + () + 72’

And therefore we have zo = 2" + 777 2(z')". O

4. A-MODULE SCHEMES, JET SPACES AND PRELIMINERIES

An A-module scheme over S = Spf R is by definition a pair (F, ¢g), where E is
a commutative group object in the category of S-schemes and ¢ : A — End(E/S)
is a ring map. (Here and below, by a scheme over the formal scheme S, we mean
a formal scheme formed from a compatible family of schemes over the schemes
Spec R/p™R.) Then the tangent space ToE at the identity has two A-modules
structures: one coming by restriction of the usual R-module structure to A, and
the other coming from differentiating ¢ . We will say that (E, ¢g) is strict if these
two A-module structures coincide, and admissible if it is both strict and isomorphic
to the additive group Ga = Ga /s as a group scheme. (Note that it is best practice to
require only the isomorphism with G, to exist locally on S. So below, our Drinfeld
modules would more properly be called coordinatized Drinfeld modules.)

A Drinfeld module (E, pg) of rank r is an admissible A-module scheme over S
such that for each non-zero a € A, the group scheme ker(¢g(a)) is finite of degree
la|” = ¢~ 7ord=(@) over S.

Proposition 4.1. If f is an endomorphism of the F,-module scheme Ga/s over S,
then it is of the form

0 .
flz) = Z a;z?,
i=0
where f is a restricted power series, meaning a; — 0 w-adically as i — oo.

Proof. Let f € Hom(@a, Ga) be an additive endomorphism of Ga. Then f is given
a restricted power series ) b;z’ such that b; — 0 as i — oco. Since f is additive,
we have b; = 0 unless ¢ is a power of p. Second, because f is F,-linear, we have
> i bpi (cx)P' =c > by 2P forall c € F,. Considering the case where c is a generator
of F,*, we see this implies b,; = 0 unless p' is a power of ¢. a

Let R{7}" be the subring of R{{7}} consisting of (twisted) restricted power
series. Then by proposition 4.1, the F,-linear morphisms between two admissible
A-module schemes F; and Fy over Spf R are given in coordinates by elements in
R{7}" where 7 acts as 7(x) = x%:

(4.1) Homg, (Ey, By) = R{7}".
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4.1. Prolongation sequences and jet spaces. Let X and Y be schemes over

. . ,0 .
S = Spf R. We say a pair (u, ) is a prolongation, and write ¥’ (u—>) X, ifu:Y - X
is a map of schemes over § and § : Ox — u,Oy is a m-derivation making the
following diagram commute:

R—— u,0y
6T Té
R—— 0x
Following [Bui3], a prolongation sequence is a sequence of prolongations

u,0 u,0 u,0
Spt R0 o 08 gy

where each T is a scheme over S. We will often use the notation T* or {7}, },,>0.
Note that if the T™ are flat over Spf R then having a m-derivation § is equivalent
to having lifts of Frobenius ¢ : 7"t — T™,

Prolongation sequences form a category Cg«, where a morphism f : T* — U*
is a family of morphisms f™ : T™ — U™ commuting with both the v and §, in the
evident sense. This category has a final object S* given by S™ = Spf R for all n,
where each w is the identity and each ¢ is the given m-derivation on R.

For any scheme Y over S, for all n > 0 we define the n-th jet space J"X (relative

to S) as

J"X(Y) := Homg(W3(Y), X)
where W*(Y) is defined as in [Bo2]. We will not define W;*(Y") in full generality
here. Instead, we will define Homg(W;5(Y), X) in the affine case, and that will
be sufficient for the purposes of this paper. Write X = Spf A and Y = Spf B.
Then W}(Y) = Spt W,,(B) and Homg(W;*Y, X) is Hompg (A, W, (B)), the set of
R-algebra homomorphisms A — W, (B).

Then J*X := {J"X},,>0 forms a prolongation sequence and is called the canon-
ical prolongation sequence [Bui3]. By [Bui3], [Bo2], J*X satisfies the following
universal property—for any 7% € Cg- and X a scheme over S = S°, we have Best
universal property? Replace S* with any prolongation sequence, or just remove?

Hom(S%, X) = Home,, (5%, J*X)

Let X be a scheme over S = Spf R. Define X¢" by X¢"(B) := X(B?") for any
R-algebra B. In other words, X¢" is X x 5,6 S, the pull-back of X under the map
¢" . S — S. Next define

IM}X =X xg X% xg+ xg X9

Then for any R-algebra B we have X(II} B) = X(B) xg -+ Xg X?"(B). Thus the
ghost map w in theorem 3.1 defines a map of S-schemes

w: J"X 5 I X.

Note that w is injective when evaluated on points with coordinates in any flat
R-algebra.
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The operators F and F, in (3.3) induce maps ¢ and ¢, as follows
(4.2) "X YT X

i Jo

JX —T7X
where ¢,, is the left-shift operator given by
bw(Wo, ..., wy) = (ds(w1),..., ds(wn)),
and where ¢g : X ¢ 5 X9 is the composition given in the following diagram:

i

~ Xd)i—l ><S7¢S quifl

]

§S——— 8.

@

(4.3) X

Now let E be an A-module scheme over S with action map A ¥ Endg(E). Then
the functor it represents takes values in A-modules, and hence so does the functor
B — E(W,(B)). In this way, for each n > 0, the S-scheme J"FE comes with an
A-module structure. We denote it by pmp : A — Endg(J"E). Similarly, ¢g
induces an A-linear structure @pen on each E¢”". In this case, it is easy to describe
explicitly. It is the componentwise one:

ey p(wo, -, wa) = (PE(wo), - -, Ppen (Wn)).

The ghost map w : J"E — HgE and the truncation map v : J*E — J"'E
homomorphisms of A-module schemes over S. This is because they are given by
applying the A-module scheme E to the R-algebra maps w : W, (B) — 1B and
T : W,,(B) = W,_1(B). On the other hand, the Frobenius map ¢ : J"E — J"~'E
is a homomorphisms of A-module schemes lying over the Frobenius endomorphism
¢ of S. In other words, the induced map J"E — (J""1E)? is a homomorphism of
A-module schemes over S.

4.2. Coordinates on jet spaces. Given an isomorphism of S-schemes E — Ga,
we can identify (J"E)(B) with W,(B) and hence, using (3.1), with B"*!. In
particular, given a coordinate x on an admissible A-module scheme F, this identi-
fication provides a canonical system of coordinates (zg,...,2,) on J"E. We will
use these Witt coordinates without further comment. We emphasize once again
that there are other canonical systems of coordinates on J"E, for instance the
Buium~Joyal coordinates denoted z,z’,z”,.... They are related by the formulas
of proposition 3.2. Each has their own advantages.

4.3. Character groups. Given a prolongation sequence T* we can define its shift
T*+ by (T*T") := T for all j [Bui3].

Spf R (WD) pr () prtr

We define a §-morphism of order n from X toY to be a morphism J*"X — J*Y of

prolongation sequences. We define a character of order n, © : (E, o) — (Ga, ¢g_)

to be a §-morphism of order n from FE to G, which is also a homomorphism of
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A-module objects. By the universal property of jet schemes [Bui3], an order n
character is equivalent to a homomorphism © : J"FE — G, of A-module schemes
over S. We denote the group of characters of order n by X,,(E). So we have

X, (E) = Homa(J"E, G,),

which one could take as an alternative definition. Note that X, (E) comes with
an R-module structure since G, is an R-module scheme over S. Also the inverse
system J"T'E % J"E defines a directed system

X (B) " Xy (B) % -
via pull back. Each morphism u* is injective because each u has a section (typically
not A-linear). We then define X, (E) to be the direct limit lim,, X,,(E).

Similarly, pre-composing with the Frobenius map ¢ : J**'E — J"E induces a
Frobenius operator ¢ : X"(E) — X"*1(E). However since ¢ : J"T'E — J"E is
not a morphism over Spf R but instead lies over the Frobenius endomorphism ¢ of
Spf R, some care is required. Consider the relative Frobenius morphism ¢g, defined
to be the unique morphism making the following diagram commute:

Jn+lE

e
J"E X (Spf R),¢ Spr —J"FE

l

Spr—¢> Spf R

Then ¢p is a morphism of A-module formal schemes over Spf R. Now given a
0-character © : J"E — G,, define ¢*O to be the composition

(44)  JELS TUE X(spe ry.o SPFR 23 Ga X (spt 5y SPER—2 G,

where ¢ is the isomorphism of A-module schemes over S coming from the fact that
G, descends to A as an A-module scheme. For any R-algebra B, the induced
morphism on B-points is

P
E(W,a(B) "5 B(W,.(B)*) 7% B* " B.

Note that this composition E(W,,4+1(B)) — B is indeed a morphism of A-modules
because identity map B? — B is A-linear, which is true because ¢ restricted to A
is the identity.

Thus we have an additive map X, (E) — X,,11(F) given by © — ¢*0. Note
that this map is not R-linear. However, the map

" X, (E) — X, 1(E)?, 0~ ¢*0
is R-linear, where X,,;1(FE)? denotes the abelian group X,,11(E) with R-module
structure defined by the law r - © := ¢(r)©. Taking direct limits in n, we obtain
an R-linear map
Xoo(E) — Xoo(E)?, O ¢*0.
In this way, X (E) is a left module over the twisted polynomial ring R{¢*} with
commutation law ¢*r = ¢(r)d*.
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5. A-LINEARITY AND INTEGRAL EXTENSIONS

The purpose of this section is to prove the corollary 5.2 below.

Theorem 5.1. Let B be a sub-F,-algebra of A which is a Dedekind domain over
which the prime p C A is unramified. Let (E, ) be a admissible B-module. Then
@ extends to an admissible A-module structure on E in at most one way.

We make a few remarks. First, this theorem is true without the assumption that
p is unramified. But because the unramified case is all we need and its proof is
much shorter; so we will consider only it. Also note that if E is a Drinfeld module,
this theorem follows immediately from basic facts in [D76], section 2. Indeed,
Endp(FE, ¢) is an order in a finite extension of the fraction field of A, which implies
that the tangent-space map Endp(E,») — R must be injective; therefore the
characteristic map 6 : A — R can factor through Endg(F, ) in at most one way.
However, we will need to apply the theorem to kernels of the projections J'E — E,
which are admissible A-modules but not Drinfeld modules.

Observe that by transport of structure we have the following:
Corollary 5.2. Let B and A be as above. Then any B-linear isomorphism between

admissible A-modules is in fact A-linear.

Let us begin by letting G* denote the formal completion of G, along the identity
section Spf R — G,. Thus we have G = Spf R[[z]], where R[[z]] has the (r,x)-
adic topology. We want to extend the A-action on G to an action of A:

(5.1) A — Endg, (GP/9).

Recall that Endp, (GPT) agrees with the non-commutative power-series ring R{{7}},
with commutation law 76 = b9 for b € R. Therefore for any a € A, we can write

pla) = Z%‘Tj

where o; € R. Fach o; can be thought of as a function of a € A. To construct
(5.1) it is enough to prove that these functions are p-adically continuous, which also
implies that such an extension to a continuous A-action is unique.

Proposition 5.3. Ifa € p", then o € p" 7 R.
Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose

a € p"t! and write a = wb, where b € p™. Let ¢(b) = > B0 and p(m) = >, wTh.
Then we have

Yoyl = p(a) = p(m)p(b) = Y > BT =Y sl I
J k J

k.j
. k .
and hence a; = > "7 _, YkB]_,- So to show a; € p"T1=IR, it suffices to show
k .
Wy €p"TTIR, for 0<k<j<n+1

By induction we have 8;_ € p"~U~=F) R and hence Wkﬂ;]ik € p(”_(j_k))qk R. Since

we have (n — (j — k))¢* > n—j+ 1 for k > 1, we then have ’Ykﬁjik € pn TR,
For k = 0, because ¢ is a strict module structure, we have 7y = 7 and hence
70Bj € mp" IR =p iR, 0
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We now consider a local analogue of the setting of theorem 5.1. Let B denote a
sub-F,-algebra of A which is a complete discrete valuation ring with maximal ideal
q = p N B and such that the extension A/B is finite and unramified. (Despite the
notation, B is not yet the completion of any global object B.)

Theorem 5.4. Let (E, @) be a admissible B-module. Then ¢ extends to an admis-
sible A-module structure on E in at most one way.

Proof. Let ¢’ be an extension of ¢ to an admissible A-module structure. Since A/ B
is unramified we can write A = B[(], where ¢ € A satisfies (/"> = 1. So to show
that ¢’ is uniquely determined, it is enough to show ¢’(¢) is uniquely determined.

Since ¢’ extends ¢, we know that ¢’ is a morphism of B-module schemes. In
particular, it is a morphism of F,-module schemes, and so we have ¢'(¢) € R{{7}},
where 7 = z9. Further, since (F,¢’) is admissible, we can write ¢'({) = ( + b,
where b= >, b;7" € R{{7}}7 and by = 0.

To prove that ¢’ is uniquely determined, we will show that necessarily b = 0. By
induction, it is enough to show b, = 0 assuming b; = 0 for ¢ < r — 1. Then we have

(+b=¢(()=¢ (") =¢"(Q)" = (C+D)
Now expand (¢ + b)? modulo terms of degree r + 1 and higher:

-1
(CHbr) = ¢4 ¢TI b

-1
= b (YT
j=0

and hence
-1
b =b, ¢ty Y.
=0

Now sum the geometric series on the right side. If ¢¢"~' = 1, then it sums to 0,
and hence we can conclude b, = 0, as intended. Otherwise, we have

¢
b_bclci_l

which implies b, = 0 in this case as well. (]

= bT'Cila

Proof. (theorem 5.1) It is enough to show that if ¢, ¢’ : A — End(G,/R) are two
A-module structures that agree when restricted to B, then we have p = .

Let B denote the completion of B with respect to B N p. Then we have the
following diagram:

for

3 N i
. > A== End(G"*/R)
rfor

@

o

%

|

End(G./R).
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/for

By assumption, we have p o j = ¢’ o j and hence ¢ o j = ¢ 0 j. The equality
for

pfor = o then follows from theorem 5.4. Finally since i is injective, we have
o= O

6. KERNEL OF u: J'E —» E

Let (E,¢r) be an admissible A-module scheme over S = Spf R. By equa-
tion (4.1), we can write

(6.1) o(t) =Y a;T

with a; € R, a; — 0, and a9 = 7. Let N™ denote the kernel of the projection

u: J"E — E. Thus we have a short exact sequence of A-module schemes over S:
0=+ N"—J'ESFE—0

We will show in this section that, when ¢ > 3, there is an isomorphism (N*!, on1) —
(Ga, @@a) of A-module schemes, where G, denotes the tautological A-module with
the A-action is given by the usual multiplication of scalars: chm(a) =arC.

This result has some interest on its own, but our primary interest in it will come
in the next section, where we will use it to understand the group Hom4 (N1, G,) of
A-module homomorphisms from N to G,.

Lemma 6.1. The R-module map R — HomA((@a,Ga) defined by b — b70 is an
isomorphism.

Proof. Let W € Homu(G,,G,). Write W = 3°° b7 with b; € R. Then we will
show b; = 0 for ¢ > 1.

For all a € A, we have
Vopa) = la)ow
Z bt 00(a)® = 6(a)r’o Z bt
S 0@ bt = Y 0(a)bir

So we have 6(a)? b; = 6(a)b; for all i. For a = m, this means that b; is (7 — 71')-
torsion element of R. But R is 7-torsion free and 1 — 7% ~! is a unit, for i >

1
Therefore b; = 0 for 7 > 1. ([

Lemma 6.2. If >3, thenq' —¢" 7 —j—1>0 forall j=1,...,i.

Proof. Consider f(x) = ¢ — ¢ ® —x — 1, for 1 < 2 < i. Then f(1) > 0 since
q>3. Now f'(z) = ¢ ®Ing—1. Since Ing > 1 for ¢ > 3, we have f’(z) > 0 for all
1 <z <iand hence f(z) >0 for all 1 <z <4 and we are done. O

Consider the subset ST C R{7}" defined by

(6.2) ST={> bir" € R{r}" | v(b;) > i, for all i and by € R*}.
i>0

Here, and below, we write v(b) > i to mean simply b € p'R.

Proposition 6.3. ST is a group under composition.
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Proof. The fact that ST is a submonoid of R{7}" under composition follows im-
mediately from the law br' o crd = be? 79 and linearity. Indeed if v(b) > i and
v(c) > j, then v(be?') > i+ j.

Now let us show that any element f = > ;7" € ST has an inverse under
composition. Let g = ZZO:O cn ™", where ¢g = by 1 and we define inductively

Cn = —baqn (cobn+c1b! |+ -+cn,1b<lln71). Then it is easy to check that go f = 1.
Take n > 1 and assume v(c¢;) > ¢ for all t=0,...,n—1. Then it is enough to show

v(cy) > n. We have v(c,) > min{v(cib;ii) |i=0,...,n—1}. Now
vebl_) = v(es) +'v(bas)

i+ q'(n — 1)

> i+ (n—i)=n.

Therefore the left inverse g of f lies in ST.
Now consider ¢’ = >°°° (d, ™ € R{{r}}, where dy = b,"' and we inductively

define d, = —bal(b1df;,1 + bzdfj,Q + -+ b,dl"). Then as above, one can easily
check that f o g’ =1 and hence it is a right inverse of f in R{{7}}. But using the
associativity property of R{{7}} we get ¢ = (go f)og' =go(fog') = g and hence
g is both a left and right inverse of f in ST. O

Theorem 6.4. Suppose ¢ > 3 and v(a;) > ¢* — 1, for all i > 1. Then there
erists a unique A-linear homomorphism f : E — Ga, written f =Y 0, bt in
coordinates, such that v(b;) > i and by = 1. Moreover, f is an isomorphism of
A-module schemes over S.

Proof. Consider B :=TF,[t] C A. Then A is unramified over B at p. So by corollary
5.2, it is sufficient to construct a B-linear isomorphism f : E — G,. In other words,
without loss of generality, we may assume A = F,[t].

Define f = Z;‘io b;7!, b; € R, where by = 1 and inductively

i i .
(6.3) bi=a (1 - TS bijal
j=1

Then it is easy to see that the map f satisfies ¢(t) o f = f o (), which implies
o) o f = fop(b) for all b € B. It is also the unique A-linear map E — G, with
constant term 1.

It remains to show v(b;) > 4. For ¢ = 0, it is clear. For ¢ > 1, we may
assume by induction that v(b;) > j for all j = 1,...,i — 1. By (6.3), we have
v(b;) > min{v(bi,ja?zﬂ) —1]j=1,...,i}. Now

i i—j

vbimgal ) =1 = w(bg) +o(al ) -1
> i—j4+q (¢ -1) -1
= i—j+¢—¢7 -1
> i, by lemma 6.2.

Therefore we have v(b;) > .



DIFFERENTIAL CHARACTERS OF DRINFELD MODULES 17

In particular f is a restricted power series and hence defines a map between
p-formal schemes f : E — G, which is A-linear. By proposition 6.3, there exists a
linear map g : G, — E such that fog=gof =1. Then g is also A-linear for formal
reasons. Indeed, for any a € A, we have f(g(¢(a)z)) = p(a)x = f(p(a)g(z)). Since
f is injective, we must have g(p(a)z) = ¢(a)g(z) which shows the A-linearity g
and we are done. O

Corollary 6.5. The derivative map Homa(E, Ga) — R, gwen in coordinates by
> bt = by, is injective. In particular, if R is a discrete valuation ring, then
Homy (E, G,) is free of rank 0 or 1.

Proof. If f € Hom4(E,G,) and f = 3222 b7, it is sufficient to show that for all
i > 1, the elements b; are uniquely determined by by. But a morphism f : F — Ga
satisfies p(t) o f = f o ¢(t) if and only if equation (6.3) is satisfied. In particular,
any such morphism is determined by the value of bg. (I

7. CHARACTERS OF N"—UPPER BOUNDS

We continue to let E denote the admissible A-module scheme over S of (6.1).
Lemma 7.1. For all n > 0, ¢"(z) = 7"z™ + O(n — 1), where O(n — 1) are
elements of order less than equal to n — 1.

Proof. For n =0, it is clear. For n > 1, we have by induction
¢"(z) = ¢(x" 12"V + O(n - 2))
=" oz V) + 0(n—1)
= 7" 115 (™) + (") 4+ O(n — 1)
=7"z™ + O(n —1).
O

Theorem 7.2. Assume q > 3. For any n > 0, let H™ denote the kernel of
the projection u : J'"TYE — J"E. Then there is a unique A-linear isomorphism
Op: H" — G, of the form 9, (x) = x + bia? + ngq2 + -+ in coordinates such that
v(b;) >4 for alli > 1.

Proof. First observe that we have
eu(t)o" (z) = ¢"(pr(t))
= ¢"(m)¢" (x) + ¢ (a1)d" (@) + - + 6" (ar) " (x) ",

Second, the subscheme H™ is defined by setting the z, 2/, ..., 2"~ coordinates to
0. Combining these two observations and lemma 7.1, we obtain

ﬂnQPE(t)x(n) = prna™ 4 ¢n(a1)(ﬂnx(n))q NS ¢n(ar)(7rnx(n))(f
and hence

@E(t)m(") = rz(™ 4 ¢n(a1)ﬁn(qfl)(x(n))q NI ¢n(ar)7rn(q”1)(x(n))qr_

But then by theorem 6.4, there is a unique isomorphism (H", @pn) — (G,, @@a) of
the kind desired.
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Using ¥,,, we can identify the short exact sequence
0—H" 3 N"— N1 50
with a short exact sequence
(7.1) 0—G,— N"— N1 0.
Now consider the corresponding long exact sequence
0— HomA(N”*I, Ga) — Hom 4 (N", Ga) — HomA(Ga,Ga) — e

By lemma 6.1, Hom A(Ga, Ga) is canonically a sub-R-module of R. Therefore we
have a filtration of R-modules

Hom (N", G,) 2 Homa(N"",G,) 2 -~ 2 Homa(N°, G,) =0,

and each associated graded module is canonically a submodule of R.

In particular, we have the following:

Proposition 7.3. If R is a discrete valuation ring, then HomA(N”,Ga) is a free
R-module of rank at most n.

8. THE LATERAL FROBENIUS AND CHARACTERS OF N"

Now we will construct a family of important operators which we call the lateral
Frobenius operators. That is, for all n, we will construct maps f : N**1 — N7
which are lifts of Frobenius relative to the projections u : N**' — N™ and hence
make the system {N"}>2 , into a prolongation sequence. Do note that a priori the
A-modules N™ do not form a prolongation sequence to start with.

Let N> denote the inverse limit the projection maps u : N*t' — N™. Then the
maps f induce a lift of Frobenius on N°°. Similarly on J*°FE = lim,, J"FE, the maps
¢ induce a lift of Frobenius. Now for all n > 1, the inclusion N — J"FE is a closed
immersion and hence induces a closed immersion of schemes N°° — J*°FE. But § is
not obtained by restricting ¢ to N°°. In fact, ¢ does not even preserve N*>°. So § is
an interesting operator which is distinct from ¢, although it does satisfy a certain
relation with ¢ which we will explain below.

Here we would also like to remark that the lateral Frobenius can also be con-
structed in the mixed-characteristic setting of p-jet spaces of arbitrary schemes. But
it is much more involved than for Drinfeld modules, and the authors will present
that theory in a subsequent note.

Let F : W, = W,_1 and V : W,,_1 — W,, denote the Frobenius and Ver-
schiebung maps of 3.3. Let us arrange them in the following diagram, although it
does not commute.

\%
Wy ——— Wy

Fl |r

anl L> Wn

Wn—l
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Rather the following is true

(8.1) FFV = FVF.

Indeed, the operator F'V is multiplication by 7 = 6(t), and F is a morphism of
A-algebras.

We can re-express this in terms of jet spaces using the natural identifications
J'E ~ W, and N® ~ W, _4. For jet spaces, let us switch to the notation ¢ :=V,
¢ := F for the right column, and f := F' for the left column. Then the diagram
above becomes the following:

NnJrl i 5 Jn+1E

| Jo

Nt o R

|+

JVLE

Note again that it is not commutative. However rewriting (8.1) in the above nota-
tion, we do have

(8.2) ¢°2o0i=¢oiof.

We emphasize that when we use the notation N”, the A-module structure will
always be understood to be the one that makes ¢ an A-linear morphism. It should
not be confused with the A-module structure coming by transport of structure from
the isomorphism N” ~ W,,_; = J*" ' E of group schemes.

We also emphasize that while ¢ is a morphism of S-schemes, the vertical arrows

¢ and f in the diagram above lie over the Frobenius endomorphism ¢ of S, rather
than the identity morphism.

Lemma 8.1. For any torsion-free R-algebra B, the map FV : W,,(B) — W, (B)
1s injective.

Proof. Since B is torsion free, the ghost map W, (B) — B x - - - x B is injective, and
hence W,,(B) is torsion free. The result then follows because FV is multiplication
by =. O

Proposition 8.2. The morphism f: N* — N1 is A-linear.

Proof. Since both ¢ and i are A-linear morphisms, so are ¢i and ¢%i. Therefore for
all a € A, we have

¢i(f(az)) = ¢*i(az) = ag®i(x) = asi(f(z)) = i(af(x))

Thus the two morphisms N"*! — N given by z — af(z) and by = +— f(ax),
become equal after application of ¢i. We can interpret the morphisms as two
elements of N"(B), where B is the algebra representing the functor N"*!, which
become equal after applying ¢i. But since B is torsion free, lemma 8.1 implies these
two elements must be equal. [
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For 0 <i < k — 1, let us abusively write §°¢ for the following composition
i-times
foi - N fo _) Oanfi £> ank.
Then for all 1 <7 < n, we define ¥; € HomA(N”,Ga) as
(83) \I’i = ’191 o f0i71

where 91 is as in theorem 7.2. Clearly, the maps ¥, are A-linear since each one of
the maps above is. Finally, given a character ¥ € Hom4(N""1,G,), we will write
f*U =Wof.

The points of J"E contained in N™ are those with Witt coordinates of the form

(0,21,x2,...,2,). We will use the abbreviated coordinates (z1,...,z,) on N"
instead.
Lemma 8.3. Foralli=1,...,n, we have
i—1
U;(z1,...,2,) =2{ mod .

Proof. Since f is identified with the Frobenius map F' : W,, — W,,_1, it reduces
modulo 7 to the ¢-th power of the projection map. Therefore, we have

Uiy, ... xp) =01 00 V(2. 2,) = ﬁl(xliil) mod 7,

i—1
and hence is equivalent to 2;  modulo 7, by the defining property of ¥; in theo-
rem 7.2. ([l

Proposition 8.4. If R is a discrete valuation ring, then the elements Vq,... ¥,
form an R-basis for Hom 4 (N™,G,), if ¢ > 3.

Proof. By proposition 7.3, the R-module Hom 4 (N ”,@a) is free of rank at most
n. So to show the elements ¥q,..., ¥, form a basis, it is enough by Nakayama’s
lemma to show they are linearly independent modulo 7. But by lemma 8.3, we
have ¥; = :cl%l mod 7, and so the ¥; map to linearly independent elements of
R/mR®pr O(N™). Thus they are linearly independent in R/7R &z Homu(N™, G,).
improve this? O

Remark. Another interpretation of the main results of this section is as follows.
First, there is a canonical isomorphism N™ — J7~1 (Ga) of A-module schemes. Sec-
ond, any A-module homomorphism J "’1((@3) — G, factors uniquely through the
ghost map J"1(G,) — G”. Tt then follows that the character group Hom 4 (N, G,)
is canonically identified with R™.

9. Xoo(E)

We now assume further that R is a discrete valuation ring and E is a Drinfeld
module over Spf R. Let r denote the rank of E. We continue to write pg(t) =
agr’ + a7 + -+ a, 7", where ap = 7, a; € R for all i, and a, € R*.

Given such a Drinfeld module, one of the important d-arithmetic objects that
one can attach to it is the group of all d-characters of E to G,, denoted X (E).
In the case of elliptic curves, Buium has shown that this group contains important
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arithmetic data as analogues of Manin maps in differential algebra and has found
diophantine applications on Heegner points on modular curves [BP2].

In this section and the next, we will determine the structure of X (E). In the
case of elliptic curves, it falls in two distinct cases as to when the elliptic curve
admits a canonical lift and when not. A similar story happens in our case when
F is a Drinfeld module of rank 2, which one might consider the closest analogue
of an elliptic curve. However, when the rank exceeds 2, the behavior of X, (E)
offers much more interesting cases which leads us to introduce the concept of the
splitting order m of a Drinfeld module E. This natural number is always less than
or equal to the rank of E and when the rank equals 2, the notion coincides with
the canonical lift property of Drinfeld modules.

We would like to point out here that our structure result for X (F) is is an
integral version of that of [Bui2]. Buium shows that X, (F) ® g K is generated by
a single element as a K {¢*}-module where K = R[%]. But here we show that the
module X, (F) itself is generated by a single element as a R{¢*}-module. Although
our result is for Drinfeld modules over function rings in positive characteristic, our
methods work in the elliptic curves over p-adic rings setting and hence this stronger

result can be achieved in that case too.

The following theorem should be viewed as an analogue of the fact that an elliptic
curve has no non-zero homomorphism of Z-module schemes to G,. In our case,
we show that no Drinfeld module admits a non-zero homomorphism of A-module
schemes to (Ga

Theorem 9.1. We have Xo(E) = {0}.

Proof. Any character f =Y",.,b;7" € Xo(E) satisfies the following chain of equal-
ities: B

pe,(t)of = foeg()
0(t)7% o Z bt = Z bit' o Z a7
i>0 i>0 J
Ze(t)bﬂ'z = Z (Zbi,ja;?i_j)Ti
>0 i>0 =0

Comparing the coefficients of 7¢ for i > r, we have
—r+1

(9.1) bi(1—0()" " D0(t) = a? by + a0l bipe1+-o+al by
Suppose f is nonzero. There there exists an N such that by_, # 0 and v(by_,) <
v(b;) for all i > N —r + 1. Then the valuation of the right-hand side of equation
(9.1) for i = N becomes v(al  by_,) = v(by_,), since v(a,) = 0. But then taking
the valuation of both sides of (9.1), we have

’U(bN) = v(bN_r) -1< U(bN_',')

and N > N —r+ 1, which is a contradiction to the hypothesis above. Therefore f
must be 0. O

As a consequence the short exact sequence of A-module schemes over S

(9.2) 0= N"5 J'E— E—0,
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induces an exact sequence

(9.3) 0 — X, (E) 5 Homa(N", Ga) 2 Exta(E, G),
which we will use repeatedly.
The following result is the analogue of Buium’s in the mixed-characteristic set-
ting.
Theorem 9.2. Let (E, pg) be a Drinfeld module of rank r.

(1) X, (E) is nonzero.
(2) We have

| R, if E has a lift of Frobenius,
X1(E) _{ {0}, otherwise.

Proof. (1): Consider the exact sequence (9.3). By proposition 8.4, the R-module
Homy (N, G,) is free of rank n. But also Ext(E,G,) is free of rank r — 1, by
[Gel]. Therefore when n = r, the kernel X,,(E) is nonzero.

(2) Now consider X;(E). It is contained in Hom4(N',G,), which is free of rank
1, and the quotient is contained in Ext 4 (E,(Ga), which is torsion free. Therefore
X, (E) is either {0} or all of Hom4 (N, G,) ~ R.

Let 1 denote the identity map in Homa(G.,G,). Then its image d(1) in
Ext4(E,G,) is the class of the extension (9.2). Therefore we have the equiva-
lences X1(F) ~ R <= 4* is an isomorphism <= 9(1) =0 <= (9.2) is split
<= F has a lift of Frobenius. O

Define the splitting order of the Drinfeld module E to be the integer m such that
Xm(E) # {0} and X,,,—1(F) = {0}. We also say that E splits at order m. By the
theorems above, we have 1 < m < r and additionally m = 1 if and only if F is a
canonical lift.

9.1. Splitting of J"(FE). The exact sequence (9.3) is split by the Teichmiiller
section v : £ — J"E, as defined in section 3. We emphasize that v is only a
morphism of F,-modules schemes and is not a morphism of A-module schemes.
Nevertheless, it induces an isomorphism

J"(E)—E x N"

of F,-module schemes. Therefore for any character © € X,,(F), we can write
O=gdVor

(9.4) O(zg,...,xn) = g(xo) + ¥(z1,...,24,),

where ¥ = i*O ¢ HomA(N",Ga) and g = v*O. Note that because v is only F,-
linear, g is also only IF-linear. But it can still be expressed an additive restricted
power series.

Lemma 9.3. For any R-algebra B, consider the exact sequence for alln > 1

0= Wo1(B) SW,uB)5 B -0
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Then there exists a map g : B — W, (B) such that

™

W,.(B) ——=B
FVVFl
W, (B)
commutes. It is of the form g(x) = (wx, 1z, cox 2, ...), for some elements c; € R.

Proof. For any y € W,,_1(B), we have
(FV-VE)(Vy)=FVVy—-VFVy=xaVy—V(ry) =0.
So such a function g exists.

To conclude that g(z) is of the given form, we use a homogeneity argument.
Let (2o, 21, ...) denote the ghost components of (zg,x1,...). If interpret each x;
as an indeterminate of degree 7, then each z; is a homogenous polynomial in the

xo, ..., x; of degree J and with coefficients in A: z; = 2! 4+ 721, and so on. Solving
for z; in terms of zp,...,z;, we see that x; is a homogenous polynomial in the
20, ..., 2; with coefficients in A[1/~].

Now let (yo,y1,...) denote (FV — VF)(xg,x1,...), where y; € R[xo,...,z;].
Then the ghost components of (yo,y1,...) are (729,0,0,...) = (720,0,0,...). It
follows that yo = mxo. Further, by the above, y; is an element of R[zo, ..., z;] but
also a homogeneous polynomial in 7z of degree ¢4 and with coefficients in A[1/7].

Therefore it is of the form cjacoj for some ¢; € R. O

Proposition 9.4. Let © be a character in X,,(F).
(1) We have
i'¢"O =§7(i"0) + ¥,
where v = wg'(0) and where ¢'(xg) denotes the usual derivative of the poly-

nomial g(zo) € R[zo] of equation (9.4).
(2) Formn > 1, we have

Z*(¢on)*® — (fn_l)*z*(b*@

Proof. (1): By lemma 9.3, we have

2
(poi—iof)(x1,...,Tnt1) = (M1, 127, C22] ,...),

where ¢; € R. Therefore we have

((¢" = §71")0) (21, ..., Tng1) = O(m21, C127, ... )

9.5
( ) :g(ﬂ'l‘l)‘i‘\y(clx a"‘)’

where g and U are as in equation (9.4). In particular, the character (i*¢* — {*i*)©
depends only on x7. Therefore it is of the form ¥, for some v € R. Further since
by theorem 7.2 we have ¥} (0) = 1, the coefficient + is simply the linear coefficient
of (i*¢* — §4*)©, which by (9.5) is w¢'(0).

(2): This is another way of expressing ¢°" oi = ¢oiof°(»=1 which follows from
(8.2) by induction. O



24 JAMES BORGER AND ARNAB SAHA

9.2. Frobenius and the filtration by order. We would like to fix a notational
convention here. Let u : J"E — J™ E denote the canonical projection map for any
n' < n, given in Witt coordinates by u(zxo, ..., z,) = (zo,.-.,Tn/)-

Consider the following morphism of exact sequences of A-modules

0 Nt SR o F 0
0— >Nl ‘o gm-lp ™ g

Since X (E) = {0} by theorem 9.1, applying Hom 4(—, G,) to the above, we obtain
the following morphism of exact sequences of R-modules

00— X, (E) Homa(N",G,) —2— Ext4(E, G,)

q ]

00— X, 1(E) ——= Homu (N" !, G,) -2 Ext4(E, G,)

Proposition 9.5. For any n > 0, the diagram
o
Xn(E)/Xn—l(E)C

-

7

Xn+1(E)/Xn(E)

Homa(N", G,)/Homa(N" 1, G,) ——> Homa(N", G,)/Homa(N", G,)
is commutative. The morphisms i* and ¢* are injective, and {* is bijective.

In fact, we will show in corollary 10.9 that all the morphisms in the diagram of
proposition 9.5 are isomorphisms.

Proof. For n > 1, commutativity of the diagram follows from proposition 9.4; for
n = 0, it follows from theorem 9.1.

The maps i* are injective because the projections J"E — J"'E and N" —
N"~1 have the same kernel, and f* is an isomorphism by proposition 8.4. It follows
that ¢* is an injection. ([

9.3. The character O,,. Recall the exact sequence (9.3)

0 — X, (E) S Homa(N", Go) 3 Exta(E,G,)
Let m denote the splitting order of E. Then for all n < m, the map
0: HomA(N”,Ga) — ExtA(E,@a)

is injective since X, (E) = {0}. But at n = m, we have X,,(F) # {0}, and
so there is a nonzero character ¥ & HomA(N m Ga) in the kernel of 9. Write

U = /\0 —)\1 m—1—" _/\m 1\P1,Where)\ ERforalli:O,...,m—l. Then
we necessarlly have Ag # 0 since X,;,—1 = {0}. Therefore we have
(9.6) Oy = MOW 1 + -+ Ap_100 € Bxta(E,G,)x

where \,,,_; = mei/j\o foralli =1,...,m — 1. This implies that the character
\I/m - )\1\Ijm—1 - )\m—l\Ill
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is in ker(d) and hence by the main exact sequence (9.3), there exists a unique
O € X, (E) i such that

(9.7) O =Wy — A Upy_q — - — A1y

It then follows immediately that ©,, is a K-linear basis for X,,,(E)k, say by propo-
sitions 8.4 and 9.5. (We will show in corollary 10.9 that ©,, actually lies in the
group X,,(F) of integral characters, and is in fact an integral basis for it.)

Proposition 9.6. Let m denote the splitting order of E. Then for any j > 0,
the character i*(¢*)7©,, agrees with W, ; modulo rational characters of lower

order, and the elements ©,,, $* Oy, -, ¢" "™ O,, are a basis of the K -vector space
X (E) k.

Proof. By 9.5, each element ¢**©,, lies in X,,,;;(F) but not in X,,;_1(E). There-
fore such elements are linearly independent. At the same time, by the diagram
above, each X, 1;(E)/X+i—1(E) has rank at most 1. Thus the rank of X,,(F) is
at most m — m + 1, and so the elements in question form a spanning set. ([l

Do note that this result will be improved to an integral version in theorem 10.10.

10. EXT GROUPS AND DE RHAM COHOMOLOGY

We will prove theorem 1.1 in this section. We continue with the notation from
the previous section. In particular, R is a discrete valuation ring.

We will briefly describe our strategy in the next few lines. Recall from (9.7) the

equality

'O =V — MUy 1 — - — A1y
where \; € K. A priori, the elements A\; need not belong to R, but we prove in the-
orem 10.8 that they actually do. This will imply that i*©,,, lies in Hom 4 (N™, @a)
and ker(0), and hence by the exact sequence (9.3), we have ©,, € X,,(E)—that is,
the character ©,, is integral. From there, it is an easy consequence that X,,(E) is
generated by ©,,,...,0% " as an R-module.

So the key result to prove is theorem 10.8. But it will require some prepara-
tion before we can present the proof. For all n > 1, we will define maps from
HomA(N”,Ga) to Extu(E,Ga) which is also interpreted as the de Rham coho-
mology from associated to the Drinfeld module E. These maps are obtained by
push-outs of J"E by ¥ € Hom4(N™, Ga) To give an idea, do note that, for every
n > 1, there are canonical elements E}, € Exta(E, Ga) group where the Ej, is a
push-out of J"FE by ¥ as follows

0 Nt ‘s g = s | 0
0 G. E3, E 0

as B} € Exta(E, Ga) It leads to a very interesting theory of d-modular forms over
the moduli space of Drinfeld modules and will be studied in a subsequent paper.
And similar to previous cases, the main principles carry over to the case of elliptic
curves or abelian schemes as well.
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Now we introduce the theory of extensions of A-module group schemes. Given
an extension ¢ € Ext(G,T) and f : T — T’ where G, T and T” are A-modules and
f is an A-linear map we have the following diagram of the push-forward extension

1.C.

0 T C G 0
|
0 T f:C G 0

The class of f.C' is obtained as follows—the class of 7¢ is represented by a linear
(not necessarily A-linear) function nc : G — T. Then 7y, ¢ is represented by the
class ny,c = [f onc] € Ext(E,T"). In terms of the action of ¢t € A, pc(t) is given

by < pa(t) 0

nc or(t)

va(t) 0
(10.1) ( fne) 1 (1) )

Now consider the exact sequence

> where ¢ : G — T. Then ¢y, c(t) is given by

(10.2) 0=+ N"5J'ES E—0
Given a ¥ € Hom4(N™,G,) consider the push out

0 Nt s T > | 0
0 Ga —— E}, E 0

where Ef, = ZEE and T(N") = {(i(2), ¥(2))| = € N"} C J"E x N" and
gu(x) = [z,0] € E}.
The Teichmiiller section v : E — J"(E) is an F,-linear splitting of the sequence
(10.2). The induced retraction
p=1l—vorm:J"E)— N"

is given in coordinates simply by p: (xo,...,2Zn) — (21,...,2,). Let us denote by
switt the morphism on Lie algebras induced by p. Thus we have the following split
exact sequence of R-modules

0 — Lie N —2%> Lie J*"E —2%> Lie(E) — 0
—

SWitt

Let sg denote the induced splitting of the push out extension

0 Lie G,

- Lie(E},) — Lie(E) ——0

It is given explicitly by sy : Lie J*E x Lie G, — LieG,
Sw(z,y) = D¥(swir(z)) +y
and .
_ LieJ"E x LieG,

sy : Lie(Fy) = Tl (V™) — LieG,
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This induces the following morphism of exact sequences

(10.3) 0 —— X, (F) — Homu(N",G,) — Ext(E,G,) —0

| o)

0 — Lie(E)* — Ext*(E,G,) Ext(E,G,) —= 0

Proposition 10.1. Let © be a character in X,,(E), and put ¥ = i*© € Hom s (N",G,)
and g =v*0 : E — G,, as in equation (9.4).
(1) The map X, (E) — Lie(E)* of (10.3) sends © to —Dg.
(2) Let © = ¢*0, and put ¥ =i*© and g = v*O. Then we have §(x) = g(z")
and U (y) = ¥ (p(¢(i(y)))) + g(my1).

Proof. (1): Let us recall in explicit terms how the map is given. For the split
extension E x G,, the retractions Lie(E) x LieG, = Lie(E x G,) — LieG, are
in bijection with maps Lie(E) — Lie Ga, a retraction s corresponding to map
x + s(x,0). Therefore to determine the image of ©, we need to identify E} with
a split extension and then apply this map to sy.

A trivialization of the extension Ej, is given by the map

defined by [a,b] — (7(a),6(a) +b). The inverse isomorphism H is then given by
the expression

H(z,y) = [v(x),y — O(v())],

and so the composition E — E x G, — £y — G, is simply —0© o v = —g, which
induces the map —Dg on the Lie algebras.
(2): We have
O(z) = O(¢

= (W(p(¢(t) + g(mwz1)) + g(=)).

In other words, we have W(p(z)) = ¥ (p(¢(x)) + g(mz1) and §(zo) = g(x). Setting
x = i(y), we obtain the desired result. (]

Proposition 10.2. If ¥ € i*¢* (X, (E)), then the class (EL, sy) € Ext*(E, G,) is
zero.

Proof. We know from diagram (10.3) that E}, is a trivial extension since ¥ lies in
i*X,+1(E). Now as in part (2) of proposition 10.1, we have, in the notation of
that proposition, g(zo) = g(x) and hence Dg = 0. Therefore by part (1) of that
proposition, the class in Extﬁ(E, Ga) is zero. O
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10.1. The crystal H(E). The ¢-linear map ¢* : X,,_1(E) — X, (E) induces a
linear map X,,_1(E)? — X,,(E), which we will abusively also denote ¢*. We then
define

Homy (N™, Ga)

*¢*(Xn-1(E)?)

Then u : N™*1 — N” induces u* : Homy(N",G,) — Homa(N"t!, G,). And
since u*i*¢* (X, (F)) = i*u*¢*(Xn(F)) = i*¢*u* (X, (E)) C i*¢*(Xng1(F)), it
also induces a map u* : H,(F) = H,,11(F). Define H(E) = lim_, H,,(E).
Similarly, f : N**1 — N™ induces §* : HomA(N",Ga) — HomA(N""'l,Ga),
which descends to a ¢-linear morphism of R-modules

Hn(E) =

f*: Hn(E) = Hpa(E)

because we have {*i*¢*(X,_1(F)) = i*¢*¢*(Xp_1(E) C i*¢*X,(F). This then
induces a ¢-linear endomorphism §* : H(E) — H(E). Finally, let I,(E) denote
the image of 8 : Hom(N™, G,) — Ext(E,G.). So Hom(N", G,)/X,(E) ~ I,(E).
Then « induces maps u* : I,(E) — I,41(E), and we put I(EF) = lim_, I,(E).

Proposition 10.3. The morphism
v H,(EY® K > H,1(F) K

is injective. For n > m, it is an isomorphism.

Proof. Consider the following diagram of exact sequences:

The cokernels of the two maps u* are of the displayed form by propositions 8.4
and 9.6. If n < m, the expression K((bo("_m)*@) is understood to be zero. The
map i*¢* : K(gbo("’m)*@}‘f’ — K{(¥,,41) is injective, by proposition 9.5. Therefore
the map u* : H,(E)x — H,4+1(E)k is also injective. It is an isomorphism if
n > m, because K (¢°"~™7@) is 1-dimensional and hence the map

6" K(g°"m 0)? — K (W 11)

is an isomorphism. [
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Corollary 10.4. We have

] K(Yyq,...,0,), ifn<m
Ha(B) & K = { K(Wy,... U, ifn>m

Do note that we will promote this to an integral result in (10.7). But before we
get there, we will need some preparation.

Proposition 10.5. We have

L KWy, W), ifn<m—1

I.(E)® K ~ { K(Uy, .. Uy, ifn>m—1

Proof. The case n < m — 1 is clear. So suppose n > m — 1. Then Hom 4 (N7, Ga) ®
K has basis Uy,...,¥;, and X,,(E) ® K has basis ©,,,...,(¢" ")*O,,. Since

each (¢7)*©,, equals U,,; plus lower order terms, K(¥1,...,¥,, 1) is a com-
plement to the subspace X, (E) of Homa(N",G,). Therefore the map 0 from
K(¥q,...,9,,_1) to the quotient I,,(F) is an isomorphism. O

Finally the morphism Hom4(N"™,G,) — Ext?(E,G,) of diagram (10.3) vanishes
on ¢*(X,—1(F)), by proposition 10.2, and hence induces a morphism of exact
sequences

X (E)
KA () Ho(B) ——— Lu(B) ——0

| o

0 —— Lie(F)* — Ext*(E,G,) — Ext(E,G,) —= 0

(104) 0

where as in the introduction, I, (E) denotes the image of J : Hom(N™,G,) —
EXtA(E7Ga).

Proposition 10.6. The map ® : H,(E) @ K — Ext*(E,G.) @ K is injective if
and only if v #£ 0.

Proof. 1t is enough to show that Y is injective if and only if v # 0. By proposi-
tion 9.6, the class of ©,,, is a K-linear basis for M;;%%)‘ﬂ ® K, and so it is enough
to show @ is injective if and only if T(0,,) # 0. As in (9.4), write ©,, = ¥ + g.
Then by proposition 10.1, it is enough to show ¢’(0) # 0 if and only if v # 0. But
this holds because by proposition 9.4, we have v = mg’(0). O

Lemma 10.7. Consider the ¢-linear endomorphism F of K™ with matrix

0 0 ... 0 pm
1 0 0 Hm—1
O 1 0 Mm—2
0 0 1 M1

for some given p1,...,pum € K. If K™ admits an R-lattice which is stable under
F, then we have py, ..., um € R.
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Proof. We use Dieudonné-Manin theory. Without loss of generality, we may
assume that R/mR is algebraically closed. Let P denote the polynomial F™ —
pr Fm=l — . — p,, in the twisted polynomial ring K{F}. Then by (B.1.5) of [Lau]
(page 257), there exists an integer © > 1 and elements i, ..., Bm € K(7/") such
that we have

P=(F ) (F~fn)

in the ring K (7'/"){F} with commutation law Fr'/" = 7'/"F. (Note that the
results of [Lau] are stated under the assumption that the residue field of R is
an algebraic closure of F,, but they hold if it is any algebraically closed field
of characteristic p.) Since R = K N R[r'/"], it is enough to show u; € R[r/"].
Therefore, by replacing R[z'/"] with R, it is enough to assume that P factors as
above where in addition all §; lie in K.

Now fix i, and let us show §; € R. Assume (§; # 0, the case 8; = 0 being
immediate. Because the (left) K{F}-module K™ has an F-stable integral lattice
M, every quotient of K™ also has a F-stable integral lattice, namely the image of
M. By (B.1.9) of [Lau] (page 260), for each ¢, the K{F'}-module K™ has a quotient
(in fact, a summand) isomorphic to N = K{F}/K{F}(F — n¥%)). Therefore N
also has a F-stable integral lattice. But this can happen only if v(5;) > 0, because
F sends the basis element 1 € N to 7¥(%) € N. (]

Theorem 10.8. If E splits at m, then we have A1 ..., \p_1 € R.

Proof. We will prove the cases when v = 0 and ~ # 0 separately.
Case v =0 When v = 0 we have {*i* = i*¢*, and hence for all n > 1, this

induces a ¢-linear map §: I,_1(F) — I,(E) as follows

00— X, (E) —— Homu (N",G,) — 21, (E) —=0

j j j

*

0—> X, 1(E) ——= Homa(N""!,G,) —2> 1, 1(E) —=0

Let I(E) = lim_, I,(E) C Ext(E,G,). Then by proposition 10.5, the vector space
I(E)k has a K-basis 0Uy,...,0V,,_1, and with respect to this basis, the ¢-linear
endomorphism f has matrix

0 0 0 Am—1

1 0 0 Amc

0 1 0 Amc
I'y =

0 0 1 X\

Since I(E) is contained in Ext(E, G,), it is a finitely generated free R-module and
hence an integral lattice in I(E) k. But then lemma 10.7 implies A1,..., A\p—1 € R.

Case v # 0 Let H(E) = lim_, H,(E). Let us consider the matrix I" of the ¢-
linear endomorphism § of H(E) ¢ with respect to the K-basis ¥q,...,¥,, given by
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corollary 10.4. Let v € R be as in proposition 9.4. Then we have
PO, =10, + 7P,
= (W =MW1 — - = A1 W) + 99
= (¥m) = 0(A) ¥ — -+ = ¢(Am—1) P2 + 7.
Therefore we have

F*(U) = 0(A) W0 + -+ -+ d(Am_1) T2 — v¥; mod i*¢* (X2)

and hence
0 0 ... 0 —v
10 0 ¢(Am-1)
0 1 0 ¢(Am—2)
I'= .
00 0 (o)
0 0 1 ¢(\)

We will now apply lemma 10.7 to the operator §* on H(E)g, but to do this we
need to produce an integral lattice M. Consider the commutative square

H(E) —2 > Ext!(E,G,)

| lj

H(E)x —% Ext*(E, Ga) k.

Let M denote the image of H(E) in H(E) k. It is clearly stable under f*. But also
the maps ®x and j are injective, by proposition 10.6 and because Extﬁ(E,Ga) ~
R"; so M agrees with the image of H(E) in Ext*(E,G,) and is therefore finitely
generated.

We can then apply lemma 10.7 and deduce ¢(Ap—1), ..., @(A1) € R. This implies
Am—1,---,A1 € R, since R/mR is a field and hence the Frobenius map on it is
injective. ([l

Corollary 10.9. (1) The element ©,, € X, (E)k lies in X, (E).
(2) Forn >m, all the maps in the diagram

o

X (E)/Xp-1(E) Xnt1(E)/Xn(E)

|- |-

Homa(N", G,)/Homa(N", G,) — > Homa(N"+, G,)/Homa(N", G,)

are isomorphisms.

Proof. (1): BAy theorem 10.8, the element i*©,,, of Hom 4 (N™, Ga)K actually lies in
Homyu (N™, G,), and therefore by the exact sequence (9.3) we have ©,, € X,,,(E).
(2): By proposition 9.5, we know f* is an isomorphism.
By proposition 9.5, the maps i* are injective for all n > m. So to show they are

isomorphisms, it is enough to show they are surjective. The R-linear generator ¥,,
of Hom4(N"™, G,)/Homa(N""1 G,) is the image of ©,,, which by part (1), lies in
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X (E). Therefore i* is surjective for n = m. Then because f* is an isomorphism,
it follows by induction that ¢* is surjective for all n > m.

Finally, ¢* is an isomorphism because all the other morphisms in the diagram
are. (I

We knew before that i*(¢7)*©,, agrees with V.45 plus lower order rational
characters, but the corollary above implies that these lower order characters are in
fact integral.

Theorem 10.10. Let E be a Drinfeld module that splits at m.
(1) For any n > m, the composition
(10.5) X, (E) — Hom4 (N"™, G,) — Hom 4 (N™,G,)/Homs (N™ 1, G,)
is an isomorphism of R-modules.

(2) X, (E) is freely generated as an R-module by O, ..., (¢*)" "0,

Proof. (i): By corollary 10.9, the induced morphism on each graded piece is an
isomorphism. It follows that the map in question is also an isomorphism.

(ii): This follows formally from (i) and the fact, which follows from 10.9, that
the map (10.5) sends any (¢*)70,,, to ¥, ; plus lower order terms. O

10.2. H(F) and de Rham cohomology. Collecting the results above, we have
isomorphisms

R(Wy, ..., ¥ 1) =Homuy(N™ 1 G,) “51,,(E)
R(Uy,...,0,.) = Homa(N™,G,) — H, (E)
for n > m, and hence in the limit
(10.6) R(Uy,..., ¥, 1) ——1I(E)
(10.7) R(Uy,...,¥,,) S H(E)

And so the K-linear bases of KQI(E) and K @ H(FE)—the ones respect to which the
action of {* is described by the matrices I'g and I' in the proof of theorem 10.8—are
in fact R-linear bases of I(F) and H(E).

We also have isomorphisms for n > m
R<9m> = Xm(E) %Xn(E)/(b*(anl(E)qﬁ)

Combining these, we have the following map between exact sequences of R-modules,
as in (10.4):

00— X, (E) H(E) I(E) 0

| X |

0 — Lie(E)* — Ext*(E,G,) — Ext(E,G,) — 0

where T sends O, to v/7 (in coordinates). It follows that ® is injective if and only
ify#0.
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11. COMPUTATION OF A; AND 7y IN THE RANK 2 CASE

Theorem 11.1. Let A = TF,[t] with ¢ > 3, let # € A be an irreducible polynomial
of degree £, and let E be a Drinfeld module over R of the form

(11.1) vrt)(z) =7z +a1z? + agz? .

Then we have
e—1, £ _ '
a (a==1) £—1 £—1 ey gt =1
M= (D (T—dw?  +ahw? T mod T,
where w = a1a2_1, and
v =m\/a; mod 7.

Observe that when ¢z (t)(z) is of the form 72 + az? + 27", which is always true
after changing the coordinate x (perhaps passing to a cover of S), we have the
simplified forms

A1l 1

it
(11.2) M= (—1D)fa 1 : (1- aa” 1)] ' mod ,
(11.3) v =7\ /a mod 7%

Proof. Let 91 : N! — Ga be the isomorphism defined in theorem 6.4. Then ¥, =
70 mod 7. Also ¥; induces the isomorphism (¢), : Ext(E, N') — Ext(E,G,). In
order to determine the action of A on J'E and J?E we need to determine how ¢
acts on the coordinates ' and z’’. Now we note that J"E ~ W,, can be endowed

with the d-coordinates (denoted [z,2’,2”,...]) or the Witt coordinates (denoted
(20,21, 22, - - )) and they are related by the following in J2E by proposition 3.2
(11.4) [2,2,2"] = (2,2, 2" + 7172(2")?)

Taking m-derivatives of both sides of equation (11.1) using the formula

§(ax‘7j) =a/z’ + Qﬁ(a)wqi*l(x’)qi,

we obtain

(11.5) p(t)(z') = 7'z" + a2’ + aha” 2 |
+ '+ plan)n? (@) + dlaz)m” (')

and

(11.6) () (@) = 7"2" + /2?7 + azT "

+ {terms with 2’ and z"}

Then the A-action p 15 : A — End(J'E) is given in Witt coordinates by the 2 x 2

matrix
_( ¢E(t) 0
pon(t) = < nine SONl(t) >

where 01y = 'z’ + d{x? + alz??. And by (11.6) and (11.4), the A-action
A — End(J?E) is given by the (1 +2) x (1 + 2) block matrix

_( »e(t) 0O
erep(t) = < 7IJE?E on2(t) )



34 JAMES BORGER AND ARNAB SAHA
where (using 11.4) 72 is the column vector

'z’ + ala?l + aha?
2 =
2B =AM + Alay)z® + Alag)z? 7

and where A(y) = y" + /72 (y")".

Now we will consider two cases—

(1): Consider 0y, (j1g) € Ext(E,G,) which is the image of ¥; under the con-
necting morphism HomA(@a,Ga) LA Ext(E,@a) and ¥; : N' — G, is the iso-
mé)rp};lism defined in theorem 6.4 and satisfies ¥; = 91 0 °° = 70 mod 7 where
0= 1.

0 Nt J'E E 0

L

0——>Gy— fo(J'E) —=E ——>0
where njip = [1'z? + afz?? + ayz? ] € Ext(E, N') Hence
N, (1 E) =[m'z" + ajz? + a'quz | € Ext(E,G.,)

(W) =[x’ + d}a?’ + aba? ) mod .

(2): Now consider 0y, (s2p) € Ext(E, G.) obtained as

0 N2 J°E E 0

L

0——>Gy— f.(J?E) —=E——>0

Now we have

Nizg = EEXt(E,NZ)

7'z’ + ahat? + ahat
A(m)z et A(ap)z? et A(ag)x‘72 ’

Let Z(y) = (v')? + 7A(y). Then applying Uy = 1 o f and §(z1, 22) = 2] + w22, we
have
2 2 2 -2 A,
8(\112) = T’\Ilg*(JQE) = ﬂl(E(W)I’ —+ E(al):z:q —+ E(ag)xq )] S EXt(E, Ga)
2 2 2 -2
E(m)z” + Z(a1)z?" + E(az)x? ] mod 7

() z” + () 2" + (ab) 27" mod
2+ (a}) 27 + () 2”7 mod .

Recall that the map R{7} — Ext(E,G,) given by n — [1] is surjective and the
kernel consists of the inner derivations, which is to say all i of the form

o — oo pg(t),
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1 .2

for some o € R{7}. Let us now work out these relations explicitly for a« = 70, 71, 72.
If @« =77, with j > 0, we get the relation

) = 73 (710 + a1t + agr?)

Ii+2

rit2 =

= a;qj [(m — 7rqj)7j - afl’jTjH]

—(a1aq 1)‘7j7'j+1 mod 7

and hence we have by induction the relations

(11.7)

gt —1

= (—1)'w =1 7 mod 7

where w = alagl, for all ¢ > 0.

Therefore writing ¢ = ¢¢, we have

2
— ! C
(W) =z’ + ajx? + ahz®?

L 41
— / /
=z + alxq + anq

and

42

7t a) T a2

(1)1

£—1 —1 £
(1—aw?  +abw? T7)rt

(V,y) = 2 4 (a’l)’fﬂc‘”2 + (a’z)‘/av’f’f2

and hence

=7+ ()" 7

(71)22+1w1+_“+qu—2 (1 B (all)qeque—1 i (alg)qéwqu_lJrqu)Tl

(_1)2e+1w1+m+q“*2 (

q ’1+~~~+(12£72(

2041 4 (alz)qz7_2£+2

- gt ! 7°
1—dw’ " +ayuw? T+ )t

Tt ) -1 mod 7

1—dw’ " +dw”

£

-1 -1 -1, e\ q'—1
= (—1)lt (At J(1—ajw? +adhw? ) mod 7

"7l
w1

£—1 4
(1-adlw’  +adyw

_ 4
a 1+‘1€)q ! mod 7

Now we determine . Write g = ", a;7". Then from proposition 9.4, we know
v = map. Now we will compute «g. Let (20, 21, 22) := @ j25(t)(z,0,0). Then

O2(ps2r(t)(2,0,0)) = Wa(z1,22) — AM1Wi(z1) + g(20)

= 01(2] + mz2) — M1 (z1) + g(20)
=z — Az1 + g(20) mod 7

where 2o = 7z + a1x? + agxq2 and z; = 7'z? + af 2?7 + aéxqz’/. On the other hand
from the A-linearity of ©®5 we have

O2(ps2p(t)(2,0,0

) =g

(H)©2(z,0,0) = mO2(z,0,0) = 0 mod

and hence z] — A\121 + g(20) = 0 mod 7. Substituting zy and z; in, we obtain

0= (72" + ajx?" + abx

rf“v/)// _

2
— !/ ( li (
= (ZL"/ + alx(“ + (1,21'q /)'/ —

M (72! + dja? + dya? ) + g(mx + a1z + azx?)
A (z? + ajx?? + anq N+ glarz? + agfcq )
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Now substitute g(z) = 3,5, O[jl'qj into this and consider the coefficient of z9. If
( = q, we obtain \; = aga; and hence

v = may = ™A1 /a; mod 7.

If § # g, we obtain aga; = 0 and hence v = 0 mod 72. (]
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12. A-LINEARITY AND INTEGRAL EXTENSIONS

The purpose of this section is to prove the corollary 12.2 below.

Theorem 12.1. Let B be a subring of A which is a finitely generated Dedekind domain. hy-
potheses clear? Let (E, ) be a admissible B-module. Then ¢ extends to an admissible A-module
structure on E in at most one way.

We note that if £ is a Drinfeld module, this theorem follows immediately from basic facts
in [D76], section 2. Indeed, Endpg(F, ) is an order in a finite extension of the fraction field of
A, which implies that the tangent-space map Endp(E, ») — R must be injective; therefore the
characteristic map 6 : A — R can factor through Endg(F, ) in at most one way. However,
we will need to apply the theorem to kernels of the projections J'E — E, which are admissible
A-modules but not Drinfeld modules.

Observe that by transport of structure we have the following:

Corollary 12.2. Let B and A be as above. Then any B-linear isomorphim between admissible
A-modules is in fact A-linear.

We emphasize that we will apply this only in the proof of theorem 6.4, where A will be
unramified over B at p; and with this restriction, the proofs below simplify considerably.
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Let Gg"r denote the formal completion of Ga along the identity section Spf R — Ga. Thus we
have G = Spf R[[z]], where R[[z]] has the (,x)-adic topology. We want to extend the A-action
to a map

(12.1) A — End(Gm).

Recall that End(Gfr) agrees with the non-commutative power-series ring R{{7}}, with commu-
tation law 7b = b927 for b € R. Therefore for any a € A, we can write

pla) =) a7’
J

where a; € R. Each a; can be thought of as a function of a € A. To construct (12.1) it is enough
to prove that these functions are p-adically continuous, which also implies that such an extension
to a continuous A-action is unique.

Proposition 12.3. Ifa € p”, then a; € pn*jR.

Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose a € pn+!
and write a = 7b, where b € p™. Let ¢(b) = 3=, B;77 and ¢(m) = 32, ~&7®. Then we have

(@) = p(m)p(®) = S et S Br0 = ST BB it = S oy
k J J

k,j
where a; =377 'ykﬁgik. So to show a; € pnt1=JR, it suffices to show
% )
B2, €p"TTTIR when 0 <k <j<n+1.

. k )
By induction we have §; € p"~7R. Thus for £ > 1, we have ’Ykﬁ?ik S p("_(J_k))qQkR -
p?~IHLR. If k = 0, then because ¢ is a strict module structure, we have 79 = 7 and hence
Y0Bj € mp" IR =plt IR, O

We now consider a local analogue of the setting of theorem 12.1. Let B denote a subring of
A which is a complete discrete valuation ring with maximal ideal ¢ = p N B and such that the
extension A/B is finite. (Despite the notation, B is not yet the completion of any global object
B.)

Theorem 12.4. Let (E, ) be a admissible B-module. Then @ extends to an admissible A-module
structure on E in at most one way.

The proof, given below, will consider the case where A is of the form Blz]/(f) where f(z) =
2" +dp_12" L dix+do € B[z] is a monic irreducible polynomial of various types. Thus we
are led to consider the universal extension of the B-module structure to a B[:p}—module structure:
@ : Blz] — End(Gfr /R[)]), where R[] denotes the polynomial ring R[Ag, A1, . ..] and & is defined
by @(z) = - A\;77. The proof will then go by showing that there is at most one specialization

(12.2) t: RN — R
with the property that the induced action B[z] — End(GfT/R) factors through the quotient map
s: Blz] — A, thereby inducing an A-module structure ¢ : A — End(G"/R):

— > End(Gfr/R)

7 :P
§

] P

@

(12.3)

If
Blz] —— End(Gfr/R[\])
j

— > End(Gfr/R)
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Lemma 12.5. Let f(z) be a polynomial in Blz]. Then for any i > 0, the coefficient of T
in the power series @(f(x)) is of the form C;(f(z))Ni + Di(f(x)), where Ci(f(z)) € R[Xo] and
D;(f(xz)) € R[Xo, ..., Ai—1]. More precisely, if f(x) = >, dmna™, then C;(f(x)) is given by the

formula
m—1

Ci(f(z)) = Z e(dm))\g2i(m—l—1)+z.

=

Proof. Since the morphism sending f(z) to the coefficient of 7% in @(f(z)) is a B-linear, it is enough
to consider polynomials f(z) of the form ™, for m > 0. Then we have ¢(z™) = (3_; AT If
we expand the product on the right-hand side, the term of degree i will be the sum of all terms

Jj1ti2

. . J1 .
Mg 7)o (g ™) = (A ATSATS )T
for j1 + -+ + jm = i. If all the ji are less than 4, then the coefficient of the right-hand side is
a monomial in Ag,...,A;—1. On the other hand, if say jj41 equals 4, then all the other j; are 0;
and so the coefficient is ) )
Alﬂ)\i()\gzz)(m—(l-&-l)) _ )\821(m—l—1)+l)\i.
Therefore the sum of these coefficients over all choices ji1, ..., jm will be of the form Ci(f(z)Ni +
D;(f(z)), where C;(f(x)) = 27;61 )\gzl(milil)ﬂ and D;(f(x)) € R[Xo,...,Xi—1], as required.

O

Proposition 12.6. Suppose t : R[\] — R is a morphism such that t(\o) = 7. Let f(z) € Blz]
be an FEisenstein polynomial of degree n, and assume qA C p™. Then for every i, there is a unit
u € R* such that t(C;(f(z))) = un™ 1.

Proof. Write f(z) = 2™ + dp—12" "1 + -+ + do. From proposition 12.5, we have

n—1 . n
Ci(f@) = S A& I LN 0, ) Ci(e )
=0 Jj=1
and hence )
HCi(f(@) = 3 7 DR LS 0(d, (O (@),
=0 j=1

Since 0(d;) € qR, we have 3% _, 0(dy,,—;)Ci(z"~7) € qR C 7™ R. Therefore we can write
n—1 .
HCi(f(x))) = D 7@ (P IDH o any
=0
for some v € R. Now in the sum Z?:_OI 7rQ2i(”_l_1)+l, the valuation of the I-th term is strictly
decreasing as a function of [. Thus the minimum is attained at [ = n — 1, and so we have

t(Ci(f(2))) = 7" "1 + 7w

for some w € R. We can now take our element u to be 1 4+ ww, which is invertible because R is
m-adically complete. O

Proof. (theorem 12.4) Let K/L denote the extension of fraction fields induced by the inclusion
B — A. This is a finite extension of local fields and hence can be written as a tower of extensions
of two types: (i) separable and unramified and (ii) totally ramified (and possibly inseparable).
need reference or proof Therefore it is enough to assume K/L is one of these two types.

(i): K/L is separable and unramified

Write A = B[C], where (9271 = 1. To show ¢€ is uniquely determined by ¢, it is enough to
show ¢¢({) is uniquely determined by ¢. Since (E, ¢¢) is admissible, we can write ¢¢(¢) = ¢ + b,
where b € A[[7]]7. Since we have 7¢ = (927 = (7, the element ¢ lies in the center of the ring
End(Gfr). Therefore we have

CHb=(0) = 9°(C?) = ¢F(Q)% = (C+b)™ = (%2 + 5% = (+b%

and hence b = b92. Since b € TA[[r]], this is possible only if b = 0. This implies ¢°(¢) = ¢ and in
particular that ¢¢(¢) is uniquely determined. Therefore so is ¢©.
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(ii): K/L is totally ramified

Then we have A ~ B[z]/(f), where f is an Eisenstein need reference! polynomial such that 7
corresponds to the coset of z. So it is sufficient to show that ¢© o s(z) is uniquely determined in
End(G*/R). Since we have

90 os(x)—to(p ZA T])—Zt()\j)Tj,

it is sufficient to show that the elements t(\;) € R are uniquely determined.

We do this by induction on j. For j = 0, it is true because t(A\g) = s o 0(z) = =, since
(E,¢°) is an admissible A-module. For j > 1, we may assume t(\;) is uniquely determined for
j=0,...,i—1. Then by lemma 12.5, the element ¢()\;) satisfies

t(Ci(f (@)))t(Ni) + t(Di(f())) = 0.
By proposition 12.6, we know that ¢(C;(f(x))) is of the form ur™~1, where u € R*. Since R
is flat, 7 is not a zero divisor and hence neither is un™~1! = ¢(C;(f(x))). Therefore t()\;) is the
unique solution in R to the equation above. O

Proof. (theorem 12.1) It is enough to show that if ¢, ¢’ : A — End(Ga/R) are two A-module
structures that agree when restricted to B, then we have ¢ = ¢’.

Let B denote the completion of B with respect to BN p. Then we have the following diagram:

By assumption, we have ¢ o0 j = ¢’ o j and hence t,pfor 0j = p'for o j. The equality pfor = ¢
then follows from theorem 12.4. Finally since 7 is injective, we have ¢ = ¢'. O

43 End(Gfr/R)

— 7 A
1 /fm
A= End(G./R).
/for

13. COMPUTATION OF A1 AND 7y IN THE RANK 2 CASE

Theorem 13.1. Let A = Fy,[t] with g2 > 3, and let E be the Drinfeld module over R of the
form

(13.1) pp(t)(z) = e+ a1z +a2xQ22.

Let g = v*O2, and write ag = ¢g’(0). Then we have

_“2_1(1 - aﬁ(alag_l) + a'g(a1a2_1)q2+1)‘”_1 mod 7

@
AM =ajag mod

v =mag mod 72,

Observe that when ¢ g (t)(z) is of the form 7z +ax92 +93’I22, which is always true after changing
the coordinate z (perhaps passing to a cover of S), we have the simplified forms

(13.2) ap=—(1—ad)”? ! mod
(13.3) A = —a(l—ad)2™! modx
(13.4) v=—m(1—aad)?"t mod 72

Proof. Let 91 : N! — (f}a be the isomorphism defined in theorem 6.4. Then ¥; = 7° mod 7. Also
¥ induces the isomorphism (1)« : Ext(E, N') — Ext(E,G,). In order to determine the action
of Aon J'E and J2E we need to determine how ¢ acts on the coordinates z’ and 2. Now we
note that J"E ~ W,, can be endowed with the -coordinates (denoted [z, 2’,2",...]) or the Witt
coordinates (denoted (zo, 21, 22, . .. )) and they are related by the following in J2E by proposition
3.2
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(13.5) [2,2/,2"] = (2,2, 2" + m272(2')92)
By taking m-derivatives on both sides of equation (13.1) we get
o(t)(x') = 7'2% + ale” 4 aha®” 4 w2 + $lar)m? T (@) + Plaz)we T (o)1=
(13.6) () (2") = 2’ 4 a’lla:q?3 + agxq24 + {terms with 2z’ and 2/}

Then the A-action ¢ ;15 : A — End(J!E) is given by the 2 x 2 matrix
ep(t) 0 )
t) =
2oell) ( npg  eni(t)

where 015 = ©'T+a} 7% +ab73. And by (13.6) and (13.5), the A-action A — End(J2E) is given
by the (1 + 2) x (1 + 2) block matrix

ep(t) 0 )
t) =
2r2p(l) ( nypzp  en2(t)
where
w2 + a’lxq22 + a’2x‘5’23
Nj2E = 2 3 4
A(m)xz?2” 4+ Aar)z?2” 4+ A(az)z92
and where A(z) = 2/ + 19272(2")22,

Given an extension n¢ € Ext(G,T) and f: T — T’ where G, T and T’ are A-modules and f
is an A-linear map we have the following diagram of the push-out extension f.C'.

0 T c G 0
0 T’ f.C G 0

The class of f.C is obtained as follows- the class of n¢ is represented by a linear (not necessarily A-
linear) function ¢ : G — T'. Then ny, ¢ is represented by the class n¢, o = [fonc] € Ext(E,T").

In terms of the action of t € A, pc(t) is given by ( ¢alt) 0 ) where n¢ : G — T'. Then
nc o7 (t)

s, c(t) is given by
( pa(t) 0 )
fne) e (t)

(1): Consider 1y, (15 € Ext(E, Ga) which is the image of ¥'; under the connecting morphism

Homy (@av Ga) 2) Ext(E, Ga) and ¥; : N1 — @a is the isomorphism defined in theorem 6.4 and
satisfies U1 = 91 0 j°° = 79 mod 7 where {°° = 1.

Now we will consider two cases—

0 N1 JIE E 0

'

0——= Gy —> fu(JIE)——=E——>0

where 015 = [7'292 + a’lx%Q + a’zm‘DS] € Ext(E, N'). Hence

Mo, (J1E) = [91 (72?2 + a'lz‘”2 + aéa:”s)] € Ext(E, G,)

o(Ty) = [292 + a'lmq"’2 + a'2;tq23] mod 7.
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(2): Now consider 1y, (s2p) € Ext(E, Ga) obtained as

Now we have

ny2p = (729 +ah2®’ +ahet®” A(m)a®’ + Afar)z®2” + Afaz)z®")T]

0

N2 J?E E 0

'

0——>Go—> fu(J2E) — > E—>0

€ Bxt(E, N?).

Let 2(2) = (/)22 + wA(z). Then applying Wo = 91 o f and §(21, 22) = 2921 + 722, we have

0(P2) = Ny, (J2E) :[ﬁl(E(W)$Qz2 n E(al)quS + E(a2)$q24)] € Ext(E,Ga)

O(V2) E[E(Tr)a:‘”2 + E(a1):cq23 + E(ag)wq24] mod .

41

Recall that the map R{r} — Ext(E, G.) given by n — [n] is surjective and the kernel consists

of all n of the form

T —aopp(l),

for some o € R{7} (i.e., the inner derivations). Let us now work out these relations explicitly for

a=7971 72

If =79

(13.7)

1

If a =7+ we get

(13.8)

2

If a = 7° we get

(13.9)

we get the relation

770 = 19(770 + ay 7! 4 ax7?)

T —(111112_1)7-1

art = 11 (770 + ay 7! + aa7?)

73 a;% [(m — 792 )7'1 — a'1127'2]

= f(alagl)qQ‘rZ mod 7
= 7(a1a;1)q2+171 mod 7
712 = 72 (770 + a1t + aa7?)

2 2
7t = a;qz [(m— 7r'122)7'2 — a‘llz Ts}
= (alagl)qz27'3 mod 7

s
™ = (a1a; hyaz"Fa2+171 od 7

Therefore from (13.7), (13.8), (13.9) we get

(V) =(1- a'l(alagl) + a'z(alagl)qwq)rl mod 7
o(Vq) = 7(a1a;1)(1 — a'l(alagl) + aé(alagl)Q2+1)qul mod
and hence
o(w _ _ - -
A = 82\11? = —(a1a, H - al(a1a; h+ as(aragy hyaztlyaz—1 6

Now we determine v and «g. Write

(13.10)

g:ZaiTi.
i
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Then from proposition 9.4, we know v = mag. Now we will compute ag. Let (20, 21,22) =
@ r2g(t)(z,0,0). Then

O2(p y25(t)(x,0,0)) = Wa(z1,22) — A1¥1(21) + 9(20)
=91 (2F + m22) — M91(21) + g(20)
=292 — X\iz1 + g(20) mod 7
where zg = mx + a1292 + agacq?2 and z1 = 7'x92 + a’lxq22 + a’2z‘5’23. On the other hand from the
A-linearity of ©2 we have
O2(¢ 2 (t)(x,0,0)) = ©g, (t)©2(z,0,0) = 7O2(x,0,0) = 0 mod 7
and hence z‘fz —A121 + 9(20) = 0 mod 7. Substituting z9 and z1 in, we obtain

(13.11) (ag) 292" + ((a})%2 — Mag)a®2” +(1 — Mal)a” — Ayzi2
+ g(a12® + az2%”) = 0 mod .

Now write g(z) = Zj>0 ajm%j, Substituting this into (13.11) and considering the coefficient of
292, we obtain A1 = aga1 and hence v = mag = w1 /a1. O

It is possible to determine all the coefficients a; in (13.10) modulo 7 as we did . One finds
= 92 / a2? /a2 = (gl )12 4= 92" = ;
o1 = ay P (A1ay — aaf? — (a7)??), a2 = (ay)?2a, oaj =0 for j > 3.
If ag = 1 and a1 = a, these simplify to

a1 = —(a')2, aj =0 for j > 2.



