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Abstract. We introduce δ-characters of Drinfeld modules, which are function-

field analogues of Buium’s δ-characters of p-adic elliptic curves and of Manin’s
differential characters of elliptic curves in differential algebra. We determine

the structure of the group of δ-characters. This shows the existence of a family

of interesting δ-modular functions on the moduli of Drinfeld modules. It also
leads to a canonical subspace inside the de Rham cohomology of a Drinfeld

module over a δ-base. This subspace has a canonical semi-linear Frobenius

operator on it.

1. Introduction

The aim of this paper is to study the group of δ-characters of Drinfeld modules.
The δ-characters are analogues of the Manin maps associated to elliptic curves in
the sense of differential algebra and, even more closely, of Buium’s δ-characters of
p-adic elliptic curves. As a consequence of understanding these δ-characters, we
produce an interesting short exact sequence of finite rank modules which maps to
the Hodge sequence of the Drinfeld module. If we look at the image inside the de
Rham cohomology group, then this image also has a natural semi-linear operator
on it.

One of the reasons for studying Drinfeld modules, indeed the original reason, is
that progress there comes easier than over number fields, yet remarkably often it can
be translated back to the number field setting. In our case too, the theorems that
we prove can also be reproved for elliptic curves over local fields of characteristic
0. However, we will not do so in this paper as it will require us to develop tools
different from the ones required in the case of Drinfeld modules. But we do note
that all the fundamental principles that go into studying Drinfeld modules also
work for elliptic curves and we will look into it that aspect in a subsequent paper.

Fix q = ph where p is a prime and h ≥ 1. Let X be a projective, geometrically
connected, smooth curve over Fq. Fix an Fq-rational point ∞ on X. Consider the

Dedekind domain A = O(X \ {∞}). Fix a maximal ideal p of A, and let Â denote
the p-adic completion of A. Denote by p̂ the maximal ideal of the complete, local
ring Â and ι : A ↪→ Â the natural inclusion. Let π ∈ A be such that ι(π) generates

the maximal ideal p̂ in Â. Since ι is an injection, by abuse of notation, we will
consider π as an element of Â as well. Let k := A/p = Â/(π) and q = |k|.

Let R be an Â-algebra which is also π-adically complete and flat, or equivalently
π-torsion free. Thus the structure map θ : A → R is injective and hence one can

Date: March 26, 2017.

1



2 JAMES BORGER AND ARNAB SAHA

say that θ is of generic characteristic. Fix a lift of the q-power Frobenius φ on R
which when restricted to Â is identity. Do note here that the identity map on Â
indeed lifts the q-power Frobenius on Â/p̂. Then one can consider the operator on

R given by δx = φ(x)−xq
π . It is called the π-derivation associated to φ.

A p̂-formal A-module scheme over S = Spf R is by definition a pair (E,ϕ),
where E is a commutative group object in the category of formal S-schemes and
ϕ : A → End(E/S) is a ring map. Then the tangent space T0E at the identity
has two A-modules structures: one coming by restriction of the usual R-module
structure to A, and the other coming from differentiating ϕ. We will say that
(E,ϕ) is strict if these two A-module structures coincide, and admissible if it is

both strict and isomorphic to Ga as a group scheme. The group scheme Ĝa plays
a second role here in that it admits an A-module structure ϕĜa

given by the usual

scalar multiplication ϕĜa
(a)x = ax. This role will be especially important for us,

as our δ-characters have (Ĝa, ϕĜa
) it as their target.

In analogy with Buium’s arithmetic jet space [Bui2], we define the n-th jet space
JnE of the Drinfeld module E to be the (π-adic) formal scheme over R with functor
of points

(JnE)(C) = E(Wn(C)),

where Wn is the function-field analogue of the usual Witt vector functor, which we
recall in section 3. It has relative dimension n+ 1 over Spf R. One might also call
it the function-field Greenberg transform. Since E is an A-module formal scheme,
JnE has a natural A-module structure (JnE,ϕJnE). However, we would like to
remark here that for all n ≥ 1, the JnE are not Anderson modules.

We then define the group Xn(E) of δ-characters to be the group of morphisms

of A-module schemes over Spf(R) from (JnE,ϕJnE) to (Ĝa, ϕĜa
). Since Ĝa has

an R-linear structure as well, Xn(E) is naturally an R-module for all n ≥ 0. Let
X∞(E) be the limit of Xn(E) over n. Now for all n ≥ 0, there is a canonical
A-linear Frobenius morphism φ : Jn+1E → JnE lying over the endomorphism φ
of Spf(R). Hence pulling back morphisms via φ as Θ 7→ φ∗Θ, endows X∞(E)
with an action of φ∗ and hence makes X∞(E) into a left module over the twisted
polynomial ring R{φ∗} with commutation law φ∗r = φ(r)φ∗.

We say E splits at m if Xm(E) 6= {0} but Xi(E) = {0} for all 0 ≤ i ≤ m − 1.
Then we show that m satisfies 1 ≤ m ≤ r, where r is the rank of E, and Xm(E)
is a free R-module with basis element Θm ∈ Xm(E) depending only on a chosen
coordinate on E. In the case when the rank r is 2, the splitting condition coincides
with the notion of canonical lifts on E, that is, m = 1 if and only if E admits a lift
of Frobenius compatible with the A-module structure on E, otherwise, m = 2.

The structure of X∞(E) was first studied by Buium [Bui2] in the case of elliptic
curves over p-adic rings R. He showed that X∞(E)⊗R K is generated by a single
element as a K{φ∗}-module, where K = R[ 1

p ]. In this paper, by using different

methods, one of our results is to show the stronger result that X∞(E) is generated
by a single element as an R{φ∗}-module:

Theorem 1.1. Let E be a Drinfeld module that splits at m. Then the R-module
Xm(E) is free of rank 1, and it freely generates X∞(E) as an R{φ∗}-module in the
sense that the canonical map R{φ∗} ⊗R Xm(E)→ X∞(E) is an isomorphism.
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Let u : JnE → E be the A-linear projection map and Nn = keru. Then Nn is a
strict A-module of relative dimension n over Spf R, and we have the exact sequence

0→ Nn i→ JnE
u→ E → 0(1.1)

of A-module π-formal schemes. We show in theorem 9.1 that HomA(E, Ĝa) =

{0}. Then if we apply the contravariant functor HomA(−, Ĝa) of A-module scheme

morphisms to (Ĝa, ϕĜa
), we obtain

0→ Xn(E)
i∗→ HomA(Nn, Ĝa)

∂→ ExtA(E, Ĝa)(1.2)

By [Ge1], we have ExtA(E, Ĝa) ' Rr−1, where r is the rank of E.

For each n ≥ 1, we show in proposition 8.2 that there is a lift of Frobenius
f : Nn+1 → Nn making the system {Nn} into a prolongation sequence with respect
the obvious projection map u : Nn+1 → Nn. We call f the lateral Frobenius.
However, f is not compatible with i and φ : Jn+1E → JnE in the obvious way,
that is, it is not true that φ ◦ i = i ◦ f holds. In fact, we can not expect it to be
true because that would induce an A-linear lift of Frobenius on (E,ϕE) which is
not the case to start with. Instead we have

φ2 ◦ i = φ ◦ i ◦ f

As a result, if f∗ denotes the pullback via f, we obtain the following commutative
diagram for all n ≥ m

0 // Xn+1(E)
(i◦φ)∗ // HomA(Nn+2, Ĝa)

0 // Xn(E)

φ∗

OO

(i◦φ)∗
// HomA(Nn+1, Ĝa)

f∗

OO

Then we define Hn(E) = HomA(Nn,Ĝa)
i∗φ∗(Xn−1(E)) . The projection map u : Nn+1 → Nn

induces u∗ : HomA(Nn, Ĝa)→ HomA(Nn+1, Ĝa). It will then follow easily that u∗

induces maps u∗ : Hn(E)→ Hn+1(E). Define H(E) = lim→Hn(E).

Similarly f : Nn+1 → Nn will induce maps

f∗ : HomA(Nn, Ĝa)→ HomA(Nn+1, Ĝa)

and f∗ : Hn(E) → Hn+1(E). Hence we have a semi-linear endomorphism f∗ :
H(E)→ H(E).

Let In(E) = image ∂ ⊆ ExtA(E, Ĝa) as in 1.1 and let I(E) := lim In(E). Then
we will show in section 10.2 that I(E) and H(E) are free R-modules of finite rank
and satisfy the short exact sequence of free R-modules

0→ Xm(E)→ H(E)→ I(E)→ 0(1.3)

where Xm(E) is a free R-module of rank 1.

Recall from [Ge1, Ge2] that the elements in Ext](E, Ĝa) are pairs (C, s) where

0→ Ĝa → C → E → 0
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is an extension of A-module schemes and s is a splitting of the extension of tangent
spaces

0 // Lie(Ĝa) // Lie(C)
s
mm // Lie(E) // 0

The groups Ext(E, Ĝa) and Ext](E, Ĝa) also fit in a Hodge sequence

0→ Lie(E)∗ → Ext](E, Ĝa)→ Ext(E, Ĝa)→ 0.

Of course, the de Rham cohomology for Drinfeld modules is, in fact, defined to
be Ext](E, Ĝa) in [Ge1]. Now given a Ψ ∈ HomA(Nn, Ĝa), one can consider the
push-out of exact sequence (1.1) by Ψ to obtain

0→ Ĝa → E∗Ψ → E → 0(1.4)

which is represented by the class as ∂(Ψ) ∈ ExtA(E, Ĝa). In section 8, we will show
a way of attaching a canonical splitting of Lie algebras as follows

0 // Lie(Ĝa) // Lie(E∗Ψ)
sWitt

mm // Lie(E) // 0

In other words, for all n ≥ 1, we can define Φ : HomA(Nn, Ĝa) → Ext](E, Ĝa)
given by Φ(Ψ) := (∂(Ψ), sWitt). We will show that the map Φ in fact descends to a

map Φ : H(E)→ Ext](E, Ĝa) and leads to the following map between short exact
sequences which is our next result

Theorem 1.2. We have the following map between exact sequences

0 // Xm(E) //

Υ

��

H(E) //

Φ

��

I(E) //
� _

��

0

0 // Lie(E)∗ // HdR(E) // Ext(E, Ĝa) // 0

Moreover, the operator f∗ on H(E) descends to its image under Φ.

Even though we show the above results for Drinfeld modules, our methods work
for elliptic curves over p-adic fields as well. However, that will be discussed in a
subsequent paper. Whether for elliptic curves or Drinfeld modules, the de Rham
cohomology has a Frobenius operator obtained by identifying it with the crystalline
cohomology. The comparison with our Frobenius operator on H(E) is a natural
open question.

2. Notation

Let us fix some notation which will hold throughout the paper. Let q = ph where
p is a prime and h ≥ 1. Let X be a projective, geometrically connected, smooth
curve over Fq. Fix an Fq-rational point ∞ on X. Let A denote the Dedekind

domain O(X \ {∞}). Let p be a maximal ideal of A, and let Â denote the p-adic

completion of A. Let t be an element of p \ p2, and let π denote its image in Â.

Then π generates the maximal ideal p̂ of Â. Let k denote the residue field A/p,

and let q̂ denote its cardinality. Note that the quotient map Â → k has a unique
section. Thus Â is not just an Fq-algebra but also canonically a k-algebra.
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Now let R be an Â-algebra which is p-adically complete and flat, or equivalently
π-torsion free. Thus the composition θ : A → Â → R is injective (assuming
R 6= {0}) and hence one says that θ is of generic characteristic. Let us also fix an

Â-algebra endomorphism φ : R→ R which lifts the q̂-power Frobenius modulo pR:

φ(x) ≡ xq̂ mod pR.

Do note that the identity map on Â does indeed lift the q̂-power Frobenius on Â/p̂.

Also note that not all rings R admit such a Frobenius lift; so the existence
of φ does place a restriction on R. For our main results, R will in the end be a
discrete valuation ring, most importantly the completion of the maximal unramified
extension of Â. So the reader may assume this from the start. But some form of
our results should hold in general, and with essentially the same proofs. This is of
some interest, for instance when R is the coordinate ring of the moduli space of
Drinfeld modules of a given rank. With an eye to the future, we have not assumed
that R is a discrete valuation ring where it is easily avoided, in sections 3–8.

Let K denote R[1/π], and for any R-module M write MK = K ⊗RM . Finally,
let S denote Spf R.

3. Function-field Witt Vectors

Witt vectors over Dedekind domains with finite residue fields were introduced
in [Bo1]. We will only work over Â, which is the ring of integers of a local field of
characteristic p, and here they were introduced earlier in [D76]. The basic results
can be developed exactly as in any of the usual developments of the p-typical Witt
vectors. The only difference is that in all formulas any p in a coefficient is replaced
with a π and any p in an exponent is replaced with a q̂.

3.1. Frobenius lifts and π-derivations. Let B be an R-algebra, and let C be
a B-algebra with structure map u : B → C. In this paper, a ring homomorphism
ψ : B → C will be called a lift of Frobenius (relative to u) if it satisfies the following:

(1) The reduction mod π of ψ is the q̂-power Frobenius relative to u, that is,
ψ(x) ≡ u(x)q̂ mod πC.

(2) The restriction of ψ to R coincides with the fixed φ on R, that is, the
following diagram commutes

B
ψ // C

R
φ
//

OO

R

OO

A π-derivation δ from B to C means a set-theoretic map δ : B → C satisfying the
following for all x, y ∈ B

δ(x+ y) = δ(x) + δ(y)

δ(xy) = u(x)q̂δ(y) + δ(x)u(y)q̂ + πδ(x)δ(y)

such that for all r ∈ R, we have

δ(r) =
φ(r)− rq̂

π
.
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When C = B and u is the identity map, we will call this simply a π-derivation on
B.

It follows that the map φ : B → C defined as

φ(x) := u(x)q̂ + πδ(x)

is a lift of Frobenius in the sense above. On the other hand, for any flat R-algebra

B with a lift of Frobenius φ, one can define the π-derivation δ(x) = φ(x)−xq̂
π for all

x ∈ B.

Note that this definition depends on the choice of uniformizer π, but in a trans-
parent way: if π′ is another uniformizer, then δ(x)π/π′ is a π′-derivation. This cor-
respondence induces a bijection between π-derivations B → C and π′-derivations
B → C.

3.2. Witt vectors. We will present three different points of view on function-field
Witt vectors, all parallel to the mixed characteristic case. But there is perhaps
one unfamiliar element below, which is that we will work relative to our general
base R, and it already has a lift of Frobenius. The consequence is that we need to
pay attention to certain twists of the scalars by Frobenius, which are invisible over
the absolute base R = Â. However this unfamiliar element has nothing to do with
the difference between mixed and equal characteristic and only with the difference
between the relative and the absolute setting.

Let B be an R-algebra with structure map u : R→ B.

(1) The ring W (B) of π-typical Witt vectors can be defined as the unique (up
to unique isomorphism) R-algebra W (B) with a π-derivtion δ on W (B) and an
R-algebra homomorphism W (B)→ B such that, given any R-algebra C with a π-
derivation δ on it and an R-algebra map f : C → B, there exists a unique R-algebra
homomorphism g : C →W (B) such that the diagram

W (B)

��
B C

foo

g
bb

commutes and g ◦ δ = δ ◦ g. Thus W is the right adjoint of the forgetful functor
from R-algebras with π-derivation to R-algebras. For details, see section 1 of [Bo1].
This approach follows that of [Jo] to the usual p-typical Witt vectors.

(2) If we restrict to flat R-algebras B, then we can ignore the concept of π-
derivation and define W (B) simply by expressing the universal property above in
terms of Frobenius lifts, as follows. Given a flat R-algebra B, the ring W (B) is the
unique (up to unique isomorphism) flat R-algebra W (B) with a lift of Frobenius (in
the sense above) F : W (B)→ W (B) and an R-algbebra homomorphism W (B)→
B such that for any flat R-algebra C with a lift of Frobenius φ on it and an R-algebra
map f : C → B, there exists a unique R-algebra homomorphism g : C → W (B)
such that the diagram

W (B)

��
B C

foo

g
bb
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commutes and g ◦ φ = F ◦ g.

(3) Finally, one can also define Witt vectors in terms of the Witt polynomials. For

each n ≥ 0 let us define Bφ
n

to be the R-algebra with structure map R
φn→ R

u→ B
and define the ghost rings to be the product R-algebras Πn

φB = B×Bφ×· · ·×Bφn

and Π∞φ B = B × Bφ × · · · . Then for all n ≥ 1 there exists a restriction, or

truncation, map Tw : Πn
φB → Πn−1

φ B given by Tw(w0, · · · , wn) = (w0, · · · , wn−1).

We also have the left shift Frobenius operators Fw : Πn
φB → Πn−1

φ B given by

Fw(w0, . . . , wn) = (w1, . . . , wn). Note that Tw is an R-algebra morphism, but Fw
lies over the Frobenius endomorphism φ of R.

Now as sets define

(3.1) Wn(B) = Bn+1,

and define the set map w : Wn(B)→ Πn
φB by w(x0, . . . , xn) = (w0, . . . , wn) where

wi = xq̂
i

0 + πxq̂
i−1

1 + · · ·+ πixi(3.2)

are the Witt polynomials. The map w is known as the ghost map. (Do note
that under the traditional indexing our Wn would be denoted Wn+1.) We can
then define the ring Wn(B), the ring of truncated π-typical Witt vectors, by the
following theorem as in the p-typical case [H05]:

Theorem 3.1. For each n ≥ 0, there exists a unique functorial R-algebra structure
on Wn(B) such that w becomes a natural transformation of functors of R-algebras.

Note that, unlike with the usual Witt vectors in mixed characteristic, addition for
function-field Witt vectors is performed componentwise. This is because the Witt
polynomials (3.2) are additive. This might appear to defeat the whole point of
Witt vectors and arithmetic jet spaces. But this is not so. The reason is that while
the additive structure is the componentwise one, the A-module structure is not.
So the difference is only that, unlike in mixed characteristic where A = Z, a group
structure is weaker than A-module structure. In fact, because the Witt polynomials
are k-linear, the k-vector space structure on Wn(B) is the componentwise one. This
is just like with the p-typical Witt vectors, where multiplication by roots of xp − x
can be performed componentwise.

3.3. Operations on Witt vectors. Now we recall some important operators on
the Witt vectors. There are the restriction, or truncation, maps T : Wn(B) →
Wn−1(B) given by T (x0, . . . , xn) = (x0, . . . , xn−1). Note thatW (B) = lim←Wn(B).
There is also the Frobenius ring homomorphism F : Wn(B)→Wn−1(B), which can
be described in terms of the ghost map. It is the unique map which is functorial in
B and makes the following diagram commutative

Wn(B)
w //

F

��

Πn
φB

Fw

��
Wn−1(B)

w
// Πn−1
φ Bn

(3.3)

As with the ghost components, T is an R-algebra map but F lies over the Frobenius
endomorphism φ of R.
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Next we have the Verschiebung V : Wn−1(B)→Wn(B) given by V (x0, . . . , xn−1) =
(0, x0, . . . , xn−1). Let Vw : Πn−1

φ B → Πn
φB be the additive map given by Vw(w0, .., wn−1) =

(0, πw0, . . . , πwn−1). Then the Verschiebung V makes the following diagram com-
mute:

Wn−1(B)
w //

V

��

Πn−1
φ B

Vw

��
Wn(B)

w
// Πn
φB

(3.4)

For all n ≥ 0 the Frobenius and the Verschiebung satisfy the identity

FV (x) = πx.(3.5)

The Verschiebung is not a ring homomorphism, but it is k-linear.

Finally, we have the multiplicative Teichmüller map [ ] : B → Wn(B) given by
x 7→ [x] = (x, 0, 0, . . . ). Here in the function-field setting, [ ] is additive and even a
homomorphism of k-algebras.

3.4. Computing the universal map to Witt vectors. Given an R-algebra C
with a π-derivation δ and an R-algebra map f : C → B, we will now describe the
universal lift g : C → W (B). The explicit description of g leads us to proposition
3.2 which is used in section 11 in computations for Drinfeld modules of rank 2. The
reader may skip this subsection without breaking continuity till then.

It is enough to work in the case where both B and C are flat over R. Then the
ghost map w : W (B)→ Π∞φ B is injective. Consider the map [φ] : C → Π∞φ C given

by x 7→ (x, φ(x), φ2(x), . . . ). Then we have the following commutative diagram:

C
f◦[φ]

{{
[φ]

��

g

||
W (B)

w //

F

��

Π∞φ B

Fw

��

Π∞φ C
foo

Fw

��
W (B)

w // Π∞φ B Π∞φ C
foo

Thus the map f ◦ [φ] : C → Π∞φ B factors through W (B) as our universal map

g : C →W (B).

Let us now give an inductive description of the map g. Write

g(x) = (x0, x1, · · · ) ∈W (B).

Then from the above diagram w ◦ g = f ◦ [φ]. Therefore the vector (x0, x1, . . . ) is
the unique solution to the system of equations

(3.6) xq̂
n

0 + πxq̂
n−1

1 + · · ·+ πnxn = f(φn(x)),

for n ≥ 0. For example, we have x0 = f(x) and x1 = f(δ(x)).

Now consider the case where B itself has a π-derivation, C = B, and f = 1. For
any x ∈ B, let us write x(n) := δn(x), or simply x′ = δ(x), x′′ = δ2(x) and so on.

Proposition 3.2. We have x0 = x, x1 = x′ and x2 = x′′ + πq̂−2(x′)q̂.
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Proof. As stated above, equalities x0 = x and x1 = x′ follow immediately from (3.6).
For n = 2, we have

xq̂
2

0 + πxq̂1 + π2x2 = φ2(x)

= φ(xq̂ + πx′)

= φ(x)q̂ + πφ(x′)

= xq̂
2

+ πq̂(x′)q̂ + π((x′)q̂ + πx′′)

And therefore we have x2 = x′′ + πq̂−2(x′)q̂. �

4. A-module schemes, Jet Spaces and prelimineries

An A-module scheme over S = Spf R is by definition a pair (E,ϕE), where E is
a commutative group object in the category of S-schemes and ϕE : A→ End(E/S)
is a ring map. (Here and below, by a scheme over the formal scheme S, we mean
a formal scheme formed from a compatible family of schemes over the schemes
SpecR/pnR.) Then the tangent space T0E at the identity has two A-modules
structures: one coming by restriction of the usual R-module structure to A, and
the other coming from differentiating ϕE . We will say that (E,ϕE) is strict if these
two A-module structures coincide, and admissible if it is both strict and isomorphic
to the additive group Ĝa = Ĝa/S as a group scheme. (Note that it is best practice to

require only the isomorphism with Ĝa to exist locally on S. So below, our Drinfeld
modules would more properly be called coordinatized Drinfeld modules.)

A Drinfeld module (E,ϕE) of rank r is an admissible A-module scheme over S
such that for each non-zero a ∈ A, the group scheme ker(ϕE(a)) is finite of degree
|a|r = q−rord∞(a) over S.

Proposition 4.1. If f is an endomorphism of the Fq-module scheme Ĝa/S over S,
then it is of the form

f(x) =

∞∑
i=0

aix
qi ,

where f is a restricted power series, meaning ai → 0 π-adically as i→∞.

Proof. Let f ∈ Hom(Ĝa, Ĝa) be an additive endomorphism of Ĝa. Then f is given
a restricted power series

∑
i bix

i such that bi → 0 as i → ∞. Since f is additive,
we have bi = 0 unless i is a power of p. Second, because f is Fq-linear, we have∑
i bpi(cx)p

i

= c
∑
i bpix

pi for all c ∈ Fq. Considering the case where c is a generator

of Fq∗, we see this implies bpi = 0 unless pi is a power of q. �

Let R{τ }̂ be the subring of R{{τ}} consisting of (twisted) restricted power
series. Then by proposition 4.1, the Fq-linear morphisms between two admissible
A-module schemes E1 and E2 over Spf R are given in coordinates by elements in
R{τ }̂ where τ acts as τ(x) = xq:

(4.1) HomFq (E1, E2) = R{τ }̂ .
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4.1. Prolongation sequences and jet spaces. Let X and Y be schemes over

S = Spf R. We say a pair (u, δ) is a prolongation, and write Y
(u,δ)→ X, if u : Y → X

is a map of schemes over S and δ : OX → u∗OY is a π-derivation making the
following diagram commute:

R // u∗OY

R

δ

OO

// OX

δ

OO

Following [Bui3], a prolongation sequence is a sequence of prolongations

Spf R T 0
(u,δ)oo T 1

(u,δ)oo · · ·
(u,δ)oo ,

where each Tn is a scheme over S. We will often use the notation T ∗ or {Tn}n≥0.
Note that if the Tn are flat over Spf R then having a π-derivation δ is equivalent
to having lifts of Frobenius φ : Tn+1 → Tn.

Prolongation sequences form a category CS∗ , where a morphism f : T ∗ → U∗

is a family of morphisms fn : Tn → Un commuting with both the u and δ, in the
evident sense. This category has a final object S∗ given by Sn = Spf R for all n,
where each u is the identity and each δ is the given π-derivation on R.

For any scheme Y over S, for all n ≥ 0 we define the n-th jet space JnX (relative
to S) as

JnX(Y ) := HomS(W ∗n(Y ), X)

where W ∗n(Y ) is defined as in [Bo2]. We will not define W ∗n(Y ) in full generality
here. Instead, we will define HomS(W ∗n(Y ), X) in the affine case, and that will
be sufficient for the purposes of this paper. Write X = Spf A and Y = Spf B.
Then W ∗n(Y ) = Spf Wn(B) and HomS(W ∗nY,X) is HomR(A,Wn(B)), the set of
R-algebra homomorphisms A→Wn(B).

Then J∗X := {JnX}n≥0 forms a prolongation sequence and is called the canon-
ical prolongation sequence [Bui3]. By [Bui3], [Bo2], J∗X satisfies the following
universal property—for any T ∗ ∈ CS∗ and X a scheme over S = S0, we have Best
universal property? Replace S∗ with any prolongation sequence, or just remove?

*!*

Hom(S0, X) = HomCS∗ (S∗, J∗X)

Let X be a scheme over S = Spf R. Define Xφn by Xφn(B) := X(Bφ
n

) for any
R-algebra B. In other words, Xφn is X ×S,φn S, the pull-back of X under the map
φn : S → S. Next define

Πn
φX = X ×S Xφ ×S · · · ×S Xφn .

Then for any R-algebra B we have X(Πn
φB) = X(B)×S · · · ×S Xφn(B). Thus the

ghost map w in theorem 3.1 defines a map of S-schemes

w : JnX → Πn
φX.

Note that w is injective when evaluated on points with coordinates in any flat
R-algebra.
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The operators F and Fw in (3.3) induce maps φ and φw as follows

JnX
w //

φ

��

Πn
φX

φw

��
Jn−1X

w
// Πn−1
φ X

(4.2)

where φw is the left-shift operator given by

φw(w0, . . . , wn) = (φS(w1), . . . , φS(wn)),

and where φS : Xφi → Xφi−1

is the composition given in the following diagram:

Xφi ∼ // Xφi−1 ×S,φ S

��

// Xφi−1

��
S

φ
// S.

(4.3)

Now let E be an A-module scheme over S with action map A
ϕE→ EndS(E). Then

the functor it represents takes values in A-modules, and hence so does the functor
B 7→ E(Wn(B)). In this way, for each n ≥ 0, the S-scheme JnE comes with an
A-module structure. We denote it by ϕJnE : A → EndS(JnE). Similarly, ϕE
induces an A-linear structure ϕEφn on each Eφ

n

. In this case, it is easy to describe
explicitly. It is the componentwise one:

ϕΠnφE
(w0, . . . , wn) = (ϕE(w0), . . . , ϕEφn (wn)).

The ghost map w : JnE → Πn
φE and the truncation map u : JnE → Jn−1E

homomorphisms of A-module schemes over S. This is because they are given by
applying the A-module scheme E to the R-algebra maps w : Wn(B) → Πn

φB and

T : Wn(B)→Wn−1(B). On the other hand, the Frobenius map φ : JnE → Jn−1E
is a homomorphisms of A-module schemes lying over the Frobenius endomorphism
φ of S. In other words, the induced map JnE → (Jn−1E)φ is a homomorphism of
A-module schemes over S.

4.2. Coordinates on jet spaces. Given an isomorphism of S-schemes E → Ĝa,
we can identify (JnE)(B) with Wn(B) and hence, using (3.1), with Bn+1. In
particular, given a coordinate x on an admissible A-module scheme E, this identi-
fication provides a canonical system of coordinates (x0, . . . , xn) on JnE. We will
use these Witt coordinates without further comment. We emphasize once again
that there are other canonical systems of coordinates on JnE, for instance the
Buium–Joyal coordinates denoted x, x′, x′′, . . . . They are related by the formulas
of proposition 3.2. Each has their own advantages.

4.3. Character groups. Given a prolongation sequence T ∗ we can define its shift
T ∗+n by (T ∗+n)j := Tn+j for all j [Bui3].

Spf R
(u,δ)← Tn

(u,δ)← Tn+1 . . .

We define a δ-morphism of order n from X to Y to be a morphism J∗+nX → J∗Y of
prolongation sequences. We define a character of order n, Θ : (E,ϕE)→ (Ĝa, ϕĜa

)

to be a δ-morphism of order n from E to Ĝa which is also a homomorphism of
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A-module objects. By the universal property of jet schemes [Bui3], an order n

character is equivalent to a homomorphism Θ : JnE → Ĝa of A-module schemes
over S. We denote the group of characters of order n by Xn(E). So we have

Xn(E) = HomA(JnE, Ĝa),

which one could take as an alternative definition. Note that Xn(E) comes with

an R-module structure since Ĝa is an R-module scheme over S. Also the inverse
system Jn+1E

u→ JnE defines a directed system

Xn(E)
u∗→ Xn+1(E)

u∗→ · · ·
via pull back. Each morphism u∗ is injective because each u has a section (typically
not A-linear). We then define X∞(E) to be the direct limit limn Xn(E).

Similarly, pre-composing with the Frobenius map φ : Jn+1E → JnE induces a
Frobenius operator φ : Xn(E) → Xn+1(E). However since φ : Jn+1E → JnE is
not a morphism over Spf R but instead lies over the Frobenius endomorphism φ of
Spf R, some care is required. Consider the relative Frobenius morphism φR, defined
to be the unique morphism making the following diagram commute:

Jn+1E

φR

((

φ

))

%%

JnE ×(Spf R),φ Spf R

��

// JnE

��
Spf R

φ
// Spf R

Then φR is a morphism of A-module formal schemes over Spf R. Now given a
δ-character Θ : JnE → Ĝa, define φ∗Θ to be the composition

(4.4) Jn+1E
φR−→ JnE ×(Spf R),φ Spf R

Θ×1−→ Ĝa ×(Spf R),φ Spf R
ι−→ Ĝa

where ι is the isomorphism of A-module schemes over S coming from the fact that
Ĝa descends to Â as an A-module scheme. For any R-algebra B, the induced
morphism on B-points is

E(Wn+1(B))
E(F )−→ E(Wn(B)φ)

ΘφB−→Bφ
b 7→b−→B.

Note that this composition E(Wn+1(B))→ B is indeed a morphism of A-modules

because identity map Bφ → B is A-linear, which is true because φ restricted to Â
is the identity.

Thus we have an additive map Xn(E) → Xn+1(E) given by Θ 7→ φ∗Θ. Note
that this map is not R-linear. However, the map

φ∗ : Xn(E)−→Xn+1(E)φ, Θ 7→ φ∗Θ

is R-linear, where Xn+1(E)φ denotes the abelian group Xn+1(E) with R-module
structure defined by the law r · Θ := φ(r)Θ. Taking direct limits in n, we obtain
an R-linear map

X∞(E)−→X∞(E)φ, Θ 7→ φ∗Θ.

In this way, X∞(E) is a left module over the twisted polynomial ring R{φ∗} with
commutation law φ∗r = φ(r)φ∗.
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5. A-linearity and Integral Extensions

The purpose of this section is to prove the corollary 5.2 below.

Theorem 5.1. Let B be a sub-Fq-algebra of A which is a Dedekind domain over
which the prime p ⊂ A is unramified. Let (E,ϕ) be a admissible B-module. Then
ϕ extends to an admissible A-module structure on E in at most one way.

We make a few remarks. First, this theorem is true without the assumption that
p is unramified. But because the unramified case is all we need and its proof is
much shorter; so we will consider only it. Also note that if E is a Drinfeld module,
this theorem follows immediately from basic facts in [D76], section 2. Indeed,
EndB(E,ϕ) is an order in a finite extension of the fraction field of A, which implies
that the tangent-space map EndB(E,ϕ) → R must be injective; therefore the
characteristic map θ : A → R can factor through EndB(E,ϕ) in at most one way.
However, we will need to apply the theorem to kernels of the projections J1E → E,
which are admissible A-modules but not Drinfeld modules.

Observe that by transport of structure we have the following:

Corollary 5.2. Let B and A be as above. Then any B-linear isomorphism between
admissible A-modules is in fact A-linear.

Let us begin by letting Gfor
a denote the formal completion of Ĝa along the identity

section Spf R → Ĝa. Thus we have Gfor
a = Spf R[[x]], where R[[x]] has the (π, x)-

adic topology. We want to extend the A-action on Ĝfor
a to an action of Â:

(5.1) Â→ EndFq (Ĝfor
a /S).

Recall that EndFq (Gfor
a ) agrees with the non-commutative power-series ring R{{τ}},

with commutation law τb = bqτ for b ∈ R. Therefore for any a ∈ A, we can write

ϕ(a) =
∑
j

αjτ
j

where αj ∈ R. Each αj can be thought of as a function of a ∈ A. To construct
(5.1) it is enough to prove that these functions are p-adically continuous, which also

implies that such an extension to a continuous Â-action is unique.

Proposition 5.3. If a ∈ pn, then αj ∈ pn−jR.

Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose
a ∈ pn+1 and write a = πb, where b ∈ pn. Let ϕ(b) =

∑
j βjτ

j and ϕ(π) =
∑
k γkτ

k.
Then we have∑

j

αjτ
j = ϕ(a) = ϕ(π)ϕ(b) =

∑
k

γkτ
k
∑
j

βjτ
j =

∑
k,j

γkβ
qk

j τ
j+k

and hence αj =
∑j
k=0 γkβ

qk

j−k. So to show αj ∈ pn+1−jR, it suffices to show

γkβ
qk

j−k ∈ pn+1−jR, for 0 ≤ k ≤ j ≤ n+ 1.

By induction we have βj−k ∈ pn−(j−k)R and hence γkβ
qk

j−k ∈ p(n−(j−k))qkR. Since

we have (n − (j − k))qk ≥ n − j + 1 for k ≥ 1, we then have γkβ
qk

j−k ∈ pn−j+1R.
For k = 0, because ϕ is a strict module structure, we have γ0 = π and hence
γ0βj ∈ πpn−jR = p1+n−jR. �
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We now consider a local analogue of the setting of theorem 5.1. Let B̂ denote a
sub-Fq-algebra of Â which is a complete discrete valuation ring with maximal ideal

q = p ∩ B̂ and such that the extension Â/B̂ is finite and unramified. (Despite the

notation, B̂ is not yet the completion of any global object B.)

Theorem 5.4. Let (E,ϕ) be a admissible B̂-module. Then ϕ extends to an admis-

sible Â-module structure on E in at most one way.

Proof. Let ϕ′ be an extension of ϕ to an admissible Â-module structure. Since Â/B̂

is unramified we can write Â = B̂[ζ], where ζ ∈ Â satisfies ζ q̂−1 = 1. So to show
that ϕ′ is uniquely determined, it is enough to show ϕ′(ζ) is uniquely determined.

Since ϕ′ extends ϕ, we know that ϕ′ is a morphism of B̂-module schemes. In
particular, it is a morphism of Fq-module schemes, and so we have ϕ′(ζ) ∈ R{{τ}},
where τ = xq. Further, since (E,ϕ′) is admissible, we can write ϕ′(ζ) = ζ + b,
where b =

∑
i biτ

i ∈ R{{τ}}τ and b0 = 0.

To prove that ϕ′ is uniquely determined, we will show that necessarily b = 0. By
induction, it is enough to show br = 0 assuming bi = 0 for i ≤ r− 1. Then we have

ζ + b = ϕ′(ζ) = ϕ′(ζ q̂) = ϕ′(ζ)q̂ = (ζ + b)q̂

Now expand (ζ + b)q̂ modulo terms of degree r + 1 and higher:

(ζ + brτ
r)q̂ ≡ ζ q̂ +

q̂−1∑
j=0

ζ q̂−j−1(brτ
r)ζj

≡ ζ + br
( q̂−1∑
j=0

ζ q̂−j−1ζjq
r)
τ r

and hence

br = brζ
−1

q̂−1∑
j=0

ζj(q
r−1).

Now sum the geometric series on the right side. If ζq
r−1 = 1, then it sums to 0,

and hence we can conclude br = 0, as intended. Otherwise, we have

br = brζ
−1 ζ

q̂(qr−1) − 1

ζqr − 1
= brζ

−1,

which implies br = 0 in this case as well. �

Proof. (theorem 5.1) It is enough to show that if ϕ,ϕ′ : A → End(Ga/R) are two
A-module structures that agree when restricted to B, then we have ϕ = ϕ′.

Let B̂ denote the completion of B with respect to B ∩ p. Then we have the
following diagram:

B̂
ĵ // Â

ϕfor

//

ϕ′for

// End(Gfor
a /R)

B

OO

j // A

OO

ϕ //

ϕ′
// End(Ga/R).

i

OO
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By assumption, we have ϕ ◦ j = ϕ′ ◦ j and hence ϕfor ◦ ĵ = ϕ′for ◦ ĵ. The equality
ϕfor = ϕ′for then follows from theorem 5.4. Finally since i is injective, we have
ϕ = ϕ′. �

6. Kernel of u : J1E → E

Let (E,ϕE) be an admissible A-module scheme over S = Spf R. By equa-
tion (4.1), we can write

(6.1) ϕ(t) =
∑

aiτ
i

with ai ∈ R, ai → 0, and a0 = π. Let Nn denote the kernel of the projection
u : JnE → E. Thus we have a short exact sequence of A-module schemes over S:

0→ Nn → JnE
u→ E → 0

We will show in this section that, when q ≥ 3, there is an isomorphism (N1, ϕN1)→
(Ĝa, ϕĜa

) of A-module schemes, where Ĝa denotes the tautological A-module with

the A-action is given by the usual multiplication of scalars: ϕĜa
(a) = aτ0.

This result has some interest on its own, but our primary interest in it will come
in the next section, where we will use it to understand the group HomA(N1, Ĝa) of

A-module homomorphisms from N1 to Ĝa.

Lemma 6.1. The R-module map R → HomA(Ĝa, Ĝa) defined by b 7→ bτ0 is an
isomorphism.

Proof. Let Ψ ∈ HomA(Ĝa, Ĝa). Write Ψ =
∑∞
i=0 biτ

i with bi ∈ R. Then we will
show bi = 0 for i ≥ 1.

For all a ∈ A, we have

Ψ ◦ ϕ(a) = ϕ(a) ◦Ψ∑
biτ

i ◦ θ(a)τ0 = θ(a)τ0 ◦
∑

biτ
i∑

θ(a)q
i

biτ
i =

∑
θ(a)biτ

i

So we have θ(a)q
i

bi = θ(a)bi for all i. For a = π, this means that bi is (π − πqi)-
torsion element of R. But R is π-torsion free and 1 − πqi−1 is a unit, for i ≥ 1.
Therefore bi = 0 for i ≥ 1. �

Lemma 6.2. If q ≥ 3, then qi − qi−j − j − 1 ≥ 0 for all j = 1, . . . , i.

Proof. Consider f(x) = qi − qi−x − x − 1, for 1 ≤ x ≤ i. Then f(1) ≥ 0 since
q ≥ 3. Now f ′(x) = qi−x ln q− 1. Since ln q > 1 for q ≥ 3, we have f ′(x) ≥ 0 for all
1 ≤ x ≤ i and hence f(x) ≥ 0 for all 1 ≤ x ≤ i and we are done. �

Consider the subset S† ⊂ R{τ }̂ defined by

S† :=
{∑
i≥0

biτ
i ∈ R{τ }̂ | v(bi) ≥ i, for all i and b0 ∈ R∗

}
.(6.2)

Here, and below, we write v(b) ≥ i to mean simply b ∈ piR.

Proposition 6.3. S† is a group under composition.
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Proof. The fact that S† is a submonoid of R{τ }̂ under composition follows im-

mediately from the law bτ i ◦ cτ j = bcq
i

τ i+j and linearity. Indeed if v(b) ≥ i and

v(c) ≥ j, then v(bcq
i

) ≥ i+ j.

Now let us show that any element f =
∑
biτ

i ∈ S† has an inverse under
composition. Let g =

∑∞
n=0 cnτ

n, where c0 = b−1
0 and we define inductively

cn = −b−q
n

0 (c0bn+c1b
q
n−1 + · · ·+cn−1b

qn−1

1 ). Then it is easy to check that g◦f = 1.
Take n ≥ 1 and assume v(ci) ≥ i for all i = 0, . . . , n− 1. Then it is enough to show

v(cn) ≥ n. We have v(cn) ≥ min{v(cib
qi

n−i) | i = 0, . . . , n− 1}. Now

v(cib
qi

n−i) = v(ci) + qiv(bn−i)

= i+ qi(n− i)
≥ i+ (n− i) = n.

Therefore the left inverse g of f lies in S†.

Now consider g′ =
∑∞
n=0 dnτ

n ∈ R{{τ}}, where d0 = b−1
0 and we inductively

define dn = −b−1
0 (b1d

q1

n−1 + b2d
q2

n−2 + · · · + bnd
qn

0 ). Then as above, one can easily
check that f ◦ g′ = 1 and hence it is a right inverse of f in R{{τ}}. But using the
associativity property of R{{τ}} we get g′ = (g ◦f)◦ g′ = g ◦ (f ◦ g′) = g and hence
g is both a left and right inverse of f in S†. �

Theorem 6.4. Suppose q ≥ 3 and v(ai) ≥ qi − 1, for all i ≥ 1. Then there

exists a unique A-linear homomorphism f : E → Ĝa, written f =
∑∞
i=0 biτ

i in
coordinates, such that v(bi) ≥ i and b0 = 1. Moreover, f is an isomorphism of
A-module schemes over S.

Proof. Consider B := Fq[t] ⊆ A. Then A is unramified over B at p. So by corollary

5.2, it is sufficient to construct a B-linear isomorphism f : E → Ĝa. In other words,
without loss of generality, we may assume A = Fq[t].

Define f =
∑∞
i=0 biτ

i, bi ∈ R, where b0 = 1 and inductively

(6.3) bi = π−1(1− πq
i−1)−1

i∑
j=1

bi−ja
qi−j

j .

Then it is easy to see that the map f satisfies ϕ(t) ◦ f = f ◦ ϕ(t), which implies

ϕ(b) ◦ f = f ◦ ϕ(b) for all b ∈ B. It is also the unique A-linear map E → Ĝa with
constant term 1.

It remains to show v(bi) ≥ i. For i = 0, it is clear. For i ≥ 1, we may
assume by induction that v(bj) ≥ j for all j = 1, . . . , i − 1. By (6.3), we have

v(bi) ≥ min{v(bi−ja
qi−j

j )− 1 | j = 1, . . . , i}. Now

v(bi−ja
qi−j

j )− 1 ≥ v(bi−j) + v(aq
i−j

j )− 1

≥ i− j + qi−j(qj − 1)− 1

= i− j + qi − qi−j − 1

≥ i, by lemma 6.2.

Therefore we have v(bi) ≥ i.
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In particular f is a restricted power series and hence defines a map between
p̂-formal schemes f : E → Ĝa which is A-linear. By proposition 6.3, there exists a
linear map g : Ĝa → E such that f ◦g = g◦f = 1. Then g is also A-linear for formal
reasons. Indeed, for any a ∈ A, we have f(g(ϕ(a)x)) = ϕ(a)x = f(ϕ(a)g(x)). Since
f is injective, we must have g(ϕ(a)x) = ϕ(a)g(x) which shows the A-linearity g
and we are done. �

Corollary 6.5. The derivative map HomA(E, Ĝa) → R, given in coordinates by∑
i biτ

i 7→ b0, is injective. In particular, if R is a discrete valuation ring, then

HomA(E, Ĝa) is free of rank 0 or 1.

Proof. If f ∈ HomA(E, Ĝa) and f =
∑∞
i=0 biτ

i, it is sufficient to show that for all

i ≥ 1, the elements bi are uniquely determined by b0. But a morphism f : E → Ĝa

satisfies ϕ(t) ◦ f = f ◦ ϕ(t) if and only if equation (6.3) is satisfied. In particular,
any such morphism is determined by the value of b0. �

7. Characters of Nn—upper bounds

We continue to let E denote the admissible A-module scheme over S of (6.1).

Lemma 7.1. For all n ≥ 0, φn(x) = πnx(n) + O(n − 1), where O(n − 1) are
elements of order less than equal to n− 1.

Proof. For n = 0, it is clear. For n ≥ 1, we have by induction

φn(x) = φ(πn−1x(n−1) +O(n− 2))

= πn−1φ(x(n−1)) +O(n− 1)

= πn−1πδ(x(n)) + (x(n−1))q̂ +O(n− 1)

= πnx(n) +O(n− 1).

�

Theorem 7.2. Assume q ≥ 3. For any n ≥ 0, let Hn denote the kernel of
the projection u : Jn+1E → JnE. Then there is a unique A-linear isomorphism

ϑn : Hn → Ĝa of the form ϑn(x) = x+ b1x
q + b2x

q2

+ · · · in coordinates such that
v(bi) ≥ i for all i ≥ 1.

Proof. First observe that we have

ϕE(t)φn(x) = φn(ϕE(t))

= φn(π)φn(x) + φn(a1)φn(x)q + · · ·+ φn(ar)φ
n(x)q

r

.

Second, the subscheme Hn is defined by setting the x, x′, . . . , x(n−1) coordinates to
0. Combining these two observations and lemma 7.1, we obtain

πnϕE(t)x(n) = ππnx(n) + φn(a1)(πnx(n))q + · · ·+ φn(ar)(π
nx(n))q

r

and hence

ϕE(t)x(n) = πx(n) + φn(a1)πn(q−1)(x(n))q + · · ·+ φn(ar)π
n(qr−1)(x(n))q

r

.

But then by theorem 6.4, there is a unique isomorphism (Hn, ϕHn)→ (Ĝa, ϕĜa
) of

the kind desired. �
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Using ϑn, we can identify the short exact sequence

0→ Hn → Nn → Nn−1 → 0

with a short exact sequence

(7.1) 0→ Ĝa → Nn → Nn−1 → 0.

Now consider the corresponding long exact sequence

0→ HomA(Nn−1, Ĝa)→ HomA(Nn, Ĝa)→ HomA(Ĝa, Ĝa)→ · · · .

By lemma 6.1, HomA(Ĝa, Ĝa) is canonically a sub-R-module of R. Therefore we
have a filtration of R-modules

HomA(Nn, Ĝa) ⊇ HomA(Nn−1, Ĝa) ⊇ · · · ⊇ HomA(N0, Ĝa) = 0,

and each associated graded module is canonically a submodule of R.

In particular, we have the following:

Proposition 7.3. If R is a discrete valuation ring, then HomA(Nn, Ĝa) is a free
R-module of rank at most n.

8. The Lateral Frobenius and characters of Nn

Now we will construct a family of important operators which we call the lateral
Frobenius operators. That is, for all n, we will construct maps f : Nn+1 → Nn

which are lifts of Frobenius relative to the projections u : Nn+1 → Nn and hence
make the system {Nn}∞n=0 into a prolongation sequence. Do note that a priori the
A-modules Nn do not form a prolongation sequence to start with.

Let N∞ denote the inverse limit the projection maps u : Nn+1 → Nn. Then the
maps f induce a lift of Frobenius on N∞. Similarly on J∞E = limn J

nE, the maps
φ induce a lift of Frobenius. Now for all n ≥ 1, the inclusion Nn ↪→ JnE is a closed
immersion and hence induces a closed immersion of schemes N∞ ↪→ J∞E. But f is
not obtained by restricting φ to N∞. In fact, φ does not even preserve N∞. So f is
an interesting operator which is distinct from φ, although it does satisfy a certain
relation with φ which we will explain below.

Here we would also like to remark that the lateral Frobenius can also be con-
structed in the mixed-characteristic setting of p-jet spaces of arbitrary schemes. But
it is much more involved than for Drinfeld modules, and the authors will present
that theory in a subsequent note.

Let F : Wn → Wn−1 and V : Wn−1 → Wn denote the Frobenius and Ver-
schiebung maps of 3.3. Let us arrange them in the following diagram, although it
does not commute.

Wn
V //

F

��

Wn+1

F

��
Wn−1

V // Wn

F

��
Wn−1
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Rather the following is true

(8.1) FFV = FV F.

Indeed, the operator FV is multiplication by π = θ(t), and F is a morphism of
A-algebras.

We can re-express this in terms of jet spaces using the natural identifications
JnE ' Wn and Nn ' Wn−1. For jet spaces, let us switch to the notation i := V ,
φ := F for the right column, and f := F for the left column. Then the diagram
above becomes the following:

Nn+1 i //

f

��

Jn+1E

φ

��
Nn i // JnE

φ
��

Jn−1E

Note again that it is not commutative. However rewriting (8.1) in the above nota-
tion, we do have

(8.2) φ◦2 ◦ i = φ ◦ i ◦ f.

We emphasize that when we use the notation Nn, the A-module structure will
always be understood to be the one that makes i an A-linear morphism. It should
not be confused with the A-module structure coming by transport of structure from
the isomorphism Nn 'Wn−1 = Jn−1E of group schemes.

We also emphasize that while i is a morphism of S-schemes, the vertical arrows
φ and f in the diagram above lie over the Frobenius endomorphism φ of S, rather
than the identity morphism.

Lemma 8.1. For any torsion-free R-algebra B, the map FV : Wn(B) → Wn(B)
is injective.

Proof. Since B is torsion free, the ghost map Wn(B)→ B×· · ·×B is injective, and
hence Wn(B) is torsion free. The result then follows because FV is multiplication
by π. �

Proposition 8.2. The morphism f : Nn → Nn−1 is A-linear.

Proof. Since both φ and i are A-linear morphisms, so are φi and φ2i. Therefore for
all a ∈ A, we have

φi(f(ax)) = φ2i(ax) = aφ2i(x) = aφi(f(x)) = φi(af(x))

Thus the two morphisms Nn+1 → Nn, given by x 7→ af(x) and by x 7→ f(ax),
become equal after application of φi. We can interpret the morphisms as two
elements of Nn(B), where B is the algebra representing the functor Nn+1, which
become equal after applying φi. But since B is torsion free, lemma 8.1 implies these
two elements must be equal. �
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For 0 ≤ i ≤ k − 1, let us abusively write f◦i for the following composition

f◦i : Nn

i-times︷ ︸︸ ︷
f ◦ · · · ◦ f→ Nn−i u→ Nn−k.

Then for all 1 ≤ i ≤ n, we define Ψi ∈ HomA(Nn, Ĝa) as

Ψi = ϑ1 ◦ f◦i−1(8.3)

where ϑ1 is as in theorem 7.2. Clearly, the maps Ψi are A-linear since each one of
the maps above is. Finally, given a character Ψ ∈ HomA(Nn−1, Ĝa), we will write
f∗Ψ = Ψ ◦ f.

The points of JnE contained in Nn are those with Witt coordinates of the form
(0, x1, x2, . . . , xn). We will use the abbreviated coordinates (x1, . . . , xn) on Nn

instead.

Lemma 8.3. For all i = 1, . . . , n, we have

Ψi(x1, . . . , xn) ≡ xq̂
i−1

1 mod π.

Proof. Since f is identified with the Frobenius map F : Wn → Wn−1, it reduces
modulo π to the q̂-th power of the projection map. Therefore, we have

Ψi(x1, . . . , xn) = ϑ1 ◦ f◦(i−1)(x1, . . . , xn) ≡ ϑ1(xq̂
i−1

1 ) mod π,

and hence is equivalent to xq̂
i−1

1 modulo π, by the defining property of ϑ1 in theo-
rem 7.2. �

Proposition 8.4. If R is a discrete valuation ring, then the elements Ψ1, . . . ,Ψn

form an R-basis for HomA(Nn, Ĝa), if q ≥ 3.

Proof. By proposition 7.3, the R-module HomA(Nn, Ĝa) is free of rank at most
n. So to show the elements Ψ1, . . . ,Ψn form a basis, it is enough by Nakayama’s
lemma to show they are linearly independent modulo π. But by lemma 8.3, we

have Ψi ≡ xq̂
i−1

1 mod π, and so the Ψi map to linearly independent elements of

R/πR⊗RO(Nn). Thus they are linearly independent in R/πR⊗R HomA(Nn, Ĝa).
improve this? �

*!*

Remark. Another interpretation of the main results of this section is as follows.
First, there is a canonical isomorphism Nn → Jn−1(Ĝa) of A-module schemes. Sec-

ond, any A-module homomorphism Jn−1(Ĝa) → Ĝa factors uniquely through the

ghost map Jn−1(Ĝa)→ Ĝna . It then follows that the character group HomA(Nn, Ĝa)
is canonically identified with Rn.

9. X∞(E)

We now assume further that R is a discrete valuation ring and E is a Drinfeld
module over Spf R. Let r denote the rank of E. We continue to write ϕE(t) =
a0τ

0 + a1τ
1 + · · ·+ arτ

r, where a0 = π, ai ∈ R for all i, and ar ∈ R∗.
Given such a Drinfeld module, one of the important δ-arithmetic objects that

one can attach to it is the group of all δ-characters of E to Ĝa, denoted X∞(E).
In the case of elliptic curves, Buium has shown that this group contains important
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arithmetic data as analogues of Manin maps in differential algebra and has found
diophantine applications on Heegner points on modular curves [BP2].

In this section and the next, we will determine the structure of X∞(E). In the
case of elliptic curves, it falls in two distinct cases as to when the elliptic curve
admits a canonical lift and when not. A similar story happens in our case when
E is a Drinfeld module of rank 2, which one might consider the closest analogue
of an elliptic curve. However, when the rank exceeds 2, the behavior of X∞(E)
offers much more interesting cases which leads us to introduce the concept of the
splitting order m of a Drinfeld module E. This natural number is always less than
or equal to the rank of E and when the rank equals 2, the notion coincides with
the canonical lift property of Drinfeld modules.

We would like to point out here that our structure result for X∞(E) is is an
integral version of that of [Bui2]. Buium shows that X∞(E)⊗R K is generated by
a single element as a K{φ∗}-module where K = R[ 1

p ]. But here we show that the

module X∞(E) itself is generated by a single element as a R{φ∗}-module. Although
our result is for Drinfeld modules over function rings in positive characteristic, our
methods work in the elliptic curves over p-adic rings setting and hence this stronger
result can be achieved in that case too.

The following theorem should be viewed as an analogue of the fact that an elliptic
curve has no non-zero homomorphism of Z-module schemes to Ga. In our case,
we show that no Drinfeld module admits a non-zero homomorphism of A-module
schemes to Ĝa.

Theorem 9.1. We have X0(E) = {0}.

Proof. Any character f =
∑
i≥0 biτ

i ∈ X0(E) satisfies the following chain of equal-
ities:

ϕĜa
(t) ◦ f = f ◦ ϕE(t)

θ(t)τ0 ◦
∑
i≥0

biτ
i =

∑
i≥0

biτ
i ◦
∑
j

ajτ
j

∑
i≥0

θ(t)biτ
i =

∑
i≥0

( r∑
j=0

bi−ja
qi−j

j

)
τ i

Comparing the coefficients of τ i for i > r, we have

(9.1) bi(1− θ(t)q
i−1)θ(t) = aq

i−r

r bi−r + aq
i−r+1

r−1 bi−r+1 + · · ·+ aq
i−1

1 bi−1

Suppose f is nonzero. There there exists an N such that bN−r 6= 0 and v(bN−r) <
v(bi) for all i ≥ N − r + 1. Then the valuation of the right-hand side of equation

(9.1) for i = N becomes v(aq
i−r

r bN−r) = v(bN−r), since v(ar) = 0. But then taking
the valuation of both sides of (9.1), we have

v(bN ) = v(bN−r)− 1 < v(bN−r)

and N ≥ N − r + 1, which is a contradiction to the hypothesis above. Therefore f
must be 0. �

As a consequence the short exact sequence of A-module schemes over S

(9.2) 0→ Nn i→ JnE → E → 0,
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induces an exact sequence

(9.3) 0→ Xn(E)
i∗→ HomA(Nn, Ĝa)

∂→ ExtA(E, Ĝa),

which we will use repeatedly.

The following result is the analogue of Buium’s in the mixed-characteristic set-
ting.

Theorem 9.2. Let (E,ϕE) be a Drinfeld module of rank r.

(1) Xr(E) is nonzero.
(2) We have

X1(E) '
{

R, if E has a lift of Frobenius,
{0}, otherwise.

Proof. (1): Consider the exact sequence (9.3). By proposition 8.4, the R-module

HomA(Nn, Ĝa) is free of rank n. But also ExtA(E, Ĝa) is free of rank r − 1, by
[Ge1]. Therefore when n = r, the kernel Xn(E) is nonzero.

(2) Now consider X1(E). It is contained in HomA(N1, Ĝa), which is free of rank

1, and the quotient is contained in ExtA(E, Ĝa), which is torsion free. Therefore

X1(E) is either {0} or all of HomA(N1, Ĝa) ' R.

Let 1 denote the identity map in HomA(Ĝa, Ĝa). Then its image ∂(1) in

ExtA(E, Ĝa) is the class of the extension (9.2). Therefore we have the equiva-
lences X1(E) ' R ⇐⇒ i∗ is an isomorphism ⇐⇒ ∂(1) = 0 ⇐⇒ (9.2) is split
⇐⇒ E has a lift of Frobenius. �

Define the splitting order of the Drinfeld module E to be the integer m such that
Xm(E) 6= {0} and Xm−1(E) = {0}. We also say that E splits at order m. By the
theorems above, we have 1 ≤ m ≤ r and additionally m = 1 if and only if E is a
canonical lift.

9.1. Splitting of Jn(E). The exact sequence (9.3) is split by the Teichmüller
section v : E → JnE, as defined in section 3. We emphasize that v is only a
morphism of Fq-modules schemes and is not a morphism of A-module schemes.
Nevertheless, it induces an isomorphism

Jn(E)
∼−→E ×Nn

of Fq-module schemes. Therefore for any character Θ ∈ Xn(E), we can write
Θ = g ⊕Ψ or

(9.4) Θ(x0, . . . , xn) = g(x0) + Ψ(x1, . . . , xn),

where Ψ = i∗Θ ∈ HomA(Nn, Ĝa) and g = v∗Θ. Note that because v is only Fq-
linear, g is also only Fq-linear. But it can still be expressed an additive restricted
power series.

Lemma 9.3. For any R-algebra B, consider the exact sequence for all n ≥ 1

0→Wn−1(B)
V→Wn(B)

Tn→ B → 0
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Then there exists a map g : B →Wn(B) such that

Wn(B)
Tn //

FV−V F
��

B

g
||

Wn(B)

commutes. It is of the form g(x) = (πx, c1x
q̂, c2x

q̂2

, . . . ), for some elements cj ∈ R.

Proof. For any y ∈Wn−1(B), we have

(FV − V F )(V y) = FV V y − V FV y = πV y − V (πy) = 0.

So such a function g exists.

To conclude that g(x) is of the given form, we use a homogeneity argument.
Let (z0, z1, . . . ) denote the ghost components of (x0, x1, . . . ). If interpret each xj
as an indeterminate of degree q̂j , then each zj is a homogenous polynomial in the

x0, . . . , xj of degree q̂j and with coefficients in A: z1 = xq̂0 +πx1, and so on. Solving
for xj in terms of z0, . . . , zj , we see that xj is a homogenous polynomial in the
z0, . . . , zj with coefficients in A[1/π].

Now let (y0, y1, . . . ) denote (FV − V F )(x0, x1, . . . ), where yj ∈ R[x0, . . . , xj ].
Then the ghost components of (y0, y1, . . . ) are (πz0, 0, 0, . . . ) = (πx0, 0, 0, . . . ). It
follows that y0 = πx0. Further, by the above, yj is an element of R[x0, . . . , xj ] but
also a homogeneous polynomial in πx0 of degree q̂j and with coefficients in A[1/π].

Therefore it is of the form cjx
q̂j

0 for some cj ∈ R. �

Proposition 9.4. Let Θ be a character in Xn(E).

(1) We have

i∗φ∗Θ = f∗(i∗Θ) + γΨ1,

where γ = πg′(0) and where g′(x0) denotes the usual derivative of the poly-
nomial g(x0) ∈ R[x0] of equation ( 9.4).

(2) For n ≥ 1, we have

i∗(φ◦n)∗Θ = (fn−1)∗i∗φ∗Θ.

Proof. (1): By lemma 9.3, we have

(φ ◦ i− i ◦ f)(x1, . . . , xn+1) = (πx1, c1x
q̂
1, c2x

q̂2

1 , . . . ),

where cj ∈ R. Therefore we have

(9.5)
((i∗φ∗ − f∗i∗)Θ)(x1, . . . , xn+1) = Θ(πx1, c1x

q̂
1, . . . )

= g(πx1) + Ψ(c1x
q̂
1, . . . ),

where g and Ψ are as in equation (9.4). In particular, the character (i∗φ∗ − f∗i∗)Θ
depends only on x1. Therefore it is of the form γΨ1, for some γ ∈ R. Further since
by theorem 7.2 we have Ψ′1(0) = 1, the coefficient γ is simply the linear coefficient
of (i∗φ∗ − f∗i∗)Θ, which by (9.5) is πg′(0).

(2): This is another way of expressing φ◦n ◦ i = φ◦ i◦ f◦(n−1), which follows from
(8.2) by induction. �
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9.2. Frobenius and the filtration by order. We would like to fix a notational
convention here. Let u : JnE → Jn

′
E denote the canonical projection map for any

n′ < n, given in Witt coordinates by u(x0, . . . , xn) = (x0, . . . , xn′).

Consider the following morphism of exact sequences of A-modules

0 // Nn

u
����

i // JnE

u
����

u // E // 0

0 // Nn−1 i // Jn−1E
u // E // 0

Since X0(E) = {0} by theorem 9.1, applying HomA(−, Ĝa) to the above, we obtain
the following morphism of exact sequences of R-modules

0 // Xn(E)
i∗ // HomA(Nn, Ĝa)

∂ // ExtA(E, Ĝa)

0 // Xn−1(E)
?�

u∗

OO

i∗ // HomA(Nn−1, Ĝa)
?�

u∗

OO

∂ // ExtA(E, Ĝa)

Proposition 9.5. For any n ≥ 0, the diagram

Xn(E)/Xn−1(E)
� � φ∗ //

� _

i∗

��

Xn+1(E)/Xn(E)� _

i∗

��
HomA(Nn, Ĝa)/HomA(Nn−1, Ĝa)

f∗

∼
// HomA(Nn+1, Ĝa)/HomA(Nn, Ĝa)

is commutative. The morphisms i∗ and φ∗ are injective, and f∗ is bijective.

In fact, we will show in corollary 10.9 that all the morphisms in the diagram of
proposition 9.5 are isomorphisms.

Proof. For n ≥ 1, commutativity of the diagram follows from proposition 9.4; for
n = 0, it follows from theorem 9.1.

The maps i∗ are injective because the projections JnE → Jn−1E and Nn →
Nn−1 have the same kernel, and f∗ is an isomorphism by proposition 8.4. It follows
that φ∗ is an injection. �

9.3. The character Θm. Recall the exact sequence (9.3)

0→ Xn(E)
i∗→ HomA(Nn, Ĝa)

∂→ ExtA(E, Ĝa)

Let m denote the splitting order of E. Then for all n < m, the map

∂ : HomA(Nn, Ĝa)→ ExtA(E, Ĝa)

is injective since Xn(E) = {0}. But at n = m, we have Xm(E) 6= {0}, and

so there is a nonzero character Ψ ∈ HomA(Nm, Ĝa) in the kernel of ∂. Write

Ψ = λ̃0Ψm − λ̃1Ψm−1 − · · · − λ̃m−1Ψ1, where λ̃i ∈ R for all i = 0, . . . ,m− 1. Then
we necessarily have λ0 6= 0 since Xm−1 = {0}. Therefore we have

(9.6) ∂Ψm = λ1∂Ψm−1 + · · ·+ λm−1∂Ψ1 ∈ ExtA(E, Ĝa)K

where λm−i = λ̃m−i/λ̃0 for all i = 1, . . . ,m− 1. This implies that the character

Ψm − λ1Ψm−1 − · · · − λm−1Ψ1
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is in ker(∂) and hence by the main exact sequence (9.3), there exists a unique
Θm ∈ Xm(E)K such that

(9.7) i∗Θm = Ψm − λ1Ψm−1 − · · · − λm−1Ψ1

It then follows immediately that Θm is a K-linear basis for Xm(E)K , say by propo-
sitions 8.4 and 9.5. (We will show in corollary 10.9 that Θm actually lies in the
group Xm(E) of integral characters, and is in fact an integral basis for it.)

Proposition 9.6. Let m denote the splitting order of E. Then for any j ≥ 0,
the character i∗(φ∗)jΘm agrees with Ψm+j modulo rational characters of lower

order, and the elements Θm, φ
∗Θm, · · · , φn−m

∗
Θm are a basis of the K-vector space

Xn(E)K .

Proof. By 9.5, each element φi
∗
Θm lies in Xm+i(E) but not in Xm+i−1(E). There-

fore such elements are linearly independent. At the same time, by the diagram
above, each Xm+i(E)/Xm+i−1(E) has rank at most 1. Thus the rank of Xn(E) is
at most n−m+ 1, and so the elements in question form a spanning set. �

Do note that this result will be improved to an integral version in theorem 10.10.

10. Ext Groups and de Rham cohomology

We will prove theorem 1.1 in this section. We continue with the notation from
the previous section. In particular, R is a discrete valuation ring.

We will briefly describe our strategy in the next few lines. Recall from (9.7) the
equality

i∗Θm = Ψm − λ1Ψm−1 − · · · − λm−1Ψ1

where λj ∈ K. A priori, the elements λj need not belong to R, but we prove in the-

orem 10.8 that they actually do. This will imply that i∗Θm lies in HomA(Nm, Ĝa)
and ker(∂), and hence by the exact sequence (9.3), we have Θm ∈ Xm(E)—that is,
the character Θm is integral. From there, it is an easy consequence that Xn(E) is

generated by Θm, . . . ,Θ
φn−m

m as an R-module.

So the key result to prove is theorem 10.8. But it will require some prepara-
tion before we can present the proof. For all n ≥ 1, we will define maps from
HomA(Nn, Ĝa) to Ext](E, Ĝa) which is also interpreted as the de Rham coho-
mology from associated to the Drinfeld module E. These maps are obtained by
push-outs of JnE by Ψ ∈ HomA(Nn, Ĝa). To give an idea, do note that, for every

n ≥ 1, there are canonical elements E∗Ψ ∈ ExtA(E, Ĝa) group where the E∗Ψ is a
push-out of JnE by Ψ as follows

0 // Nn

Ψ

��

i // JnE

gΨ

��

π // // E // 0

0 // Ĝa
// E∗Ψ // E // 0

as E∗Ψ ∈ ExtA(E, Ĝa). It leads to a very interesting theory of δ-modular forms over
the moduli space of Drinfeld modules and will be studied in a subsequent paper.
And similar to previous cases, the main principles carry over to the case of elliptic
curves or abelian schemes as well.
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Now we introduce the theory of extensions of A-module group schemes. Given
an extension ηC ∈ Ext(G,T ) and f : T → T ′ where G, T and T ′ are A-modules and
f is an A-linear map we have the following diagram of the push-forward extension
f∗C.

0 // T //

f

��

C //

��

G // 0

0 // T ′ // f∗C // G // 0

The class of f∗C is obtained as follows—the class of ηC is represented by a linear
(not necessarily A-linear) function ηC : G → T . Then ηf∗C is represented by the
class ηf∗C = [f ◦ ηC ] ∈ Ext(E, T ′). In terms of the action of t ∈ A, ϕC(t) is given

by

(
ϕG(t) 0
ηC ϕT (t)

)
where ηC : G→ T . Then ϕf∗C(t) is given by(

ϕG(t) 0
f(ηC) ϕT ′(t)

)
(10.1)

Now consider the exact sequence

(10.2) 0→ Nn i→ JnE
π→ E → 0

Given a Ψ ∈ HomA(Nn, Ĝa) consider the push out

0 // Nn

Ψ

��

i // JnE

gΨ

��

π // // E // 0

0 // Ĝa
i // E∗Ψ // E // 0

where E∗Ψ = JnE×Ĝa

Γ(Nn) and Γ(Nn) = {(i(z),Ψ(z))| z ∈ Nn} ⊂ JnE × Nn and

gΨ(x) = [x, 0] ∈ E∗Ψ.

The Teichmüller section v : E → Jn(E) is an Fq-linear splitting of the sequence
(10.2). The induced retraction

ρ = 1− v ◦ π : Jn(E)→ Nn

is given in coordinates simply by ρ : (x0, . . . , xn) 7→ (x1, . . . , xn). Let us denote by
sWitt the morphism on Lie algebras induced by ρ. Thus we have the following split
exact sequence of R-modules

0 // LieNn Di // Lie JnE
sWitt

ll
Dπ // Lie(E) // 0

Let sΨ denote the induced splitting of the push out extension

0 // Lie Ĝa
// Lie(E∗Ψ)

sΨ
ll // Lie(E) // 0

It is given explicitly by s̃Ψ : Lie JnE × Lie Ĝa → Lie Ĝa

s̃Ψ(x, y) := DΨ(sWitt(x)) + y

and

sΨ : Lie(E∗Ψ) =
Lie JnE × Lie Ĝa

Lie Γ(Nn)
→ Lie Ĝa
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This induces the following morphism of exact sequences

(10.3) 0 // Xn(E) //

��

HomA(Nn, Ĝa) //

Ψ7→(E∗Ψ,sΨ)

��

Ext(E, Ĝa) // 0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

Proposition 10.1. Let Θ be a character in Xn(E), and put Ψ = i∗Θ ∈ HomA(Nn, Ĝa)

and g = v∗Θ : E → Ĝa, as in equation ( 9.4).

(1) The map Xn(E)→ Lie(E)∗ of ( 10.3) sends Θ to −Dg.

(2) Let Θ̃ = φ∗Θ, and put Ψ = i∗Θ̃ and g = v∗Θ̃. Then we have g̃(x) = g(xq̂)

and Ψ̃(y) = Ψ(ρ(φ(i(y)))) + g(πy1).

Proof. (1): Let us recall in explicit terms how the map is given. For the split

extension E × Ĝa, the retractions Lie(E) × Lie Ĝa = Lie(E × Ĝa) → Lie Ĝa are

in bijection with maps Lie(E) → Lie Ĝa, a retraction s corresponding to map
x 7→ s(x, 0). Therefore to determine the image of Θ, we need to identify E∗Ψ with
a split extension and then apply this map to sΨ.

A trivialization of the extension E∗Ψ is given by the map

JnE × Ĝa

Γ(Nn)
= E∗Ψ

∼−→E × Ĝa

defined by [a, b] 7→ (π(a), θ(a) + b). The inverse isomorphism H is then given by
the expression

H(x, y) = [v(x), y −Θ(v(x))],

and so the composition E → E × Ĝa → E∗Ψ → Ĝa is simply −Θ ◦ v = −g, which
induces the map −Dg on the Lie algebras.

(2): We have

Θ̃(x) = Θ(φ(x))

= Ψ(ρ(φ(t))) + g(xq̂0 + πx1)

=
(
Ψ(ρ(φ(t)) + g(πx1)

)
+ g(xq̂0).

In other words, we have Ψ̃(ρ(x)) = Ψ(ρ(φ(x)) + g(πx1) and g̃(x0) = g(xq̂0). Setting
x = i(y), we obtain the desired result. �

Proposition 10.2. If Ψ ∈ i∗φ∗(Xn(E)), then the class (E∗Ψ, sΨ) ∈ Ext](E, Ĝa) is
zero.

Proof. We know from diagram (10.3) that E∗Ψ is a trivial extension since Ψ̃ lies in
i∗Xn+1(E). Now as in part (2) of proposition 10.1, we have, in the notation of

that proposition, g̃(x0) = g(xq̂0) and hence Dg̃ = 0. Therefore by part (1) of that

proposition, the class in Ext](E, Ĝa) is zero. �
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10.1. The crystal H(E). The φ-linear map φ∗ : Xn−1(E) → Xn(E) induces a
linear map Xn−1(E)φ → Xn(E), which we will abusively also denote φ∗. We then
define

Hn(E) =
HomA(Nn, Ĝa)

i∗φ∗(Xn−1(E)φ)

Then u : Nn+1 → Nn induces u∗ : HomA(Nn, Ĝa) → HomA(Nn+1, Ĝa). And
since u∗i∗φ∗(Xn(E)) = i∗u∗φ∗(Xn(E)) = i∗φ∗u∗(Xn(E)) ⊂ i∗φ∗(Xn+1(E)), it
also induces a map u∗ : Hn(E)→ Hn+1(E). Define H(E) = lim→Hn(E).

Similarly, f : Nn+1 → Nn induces f∗ : HomA(Nn, Ĝa) → HomA(Nn+1, Ĝa),
which descends to a φ-linear morphism of R-modules

f∗ : Hn(E)→ Hn+1(E)

because we have f∗i∗φ∗(Xn−1(E)) = i∗φ∗φ∗(Xn−1(E) ⊂ i∗φ∗Xn(E). This then
induces a φ-linear endomorphism f∗ : H(E) → H(E). Finally, let In(E) denote

the image of ∂ : Hom(Nn, Ĝa)→ ExtA(E, Ĝa). So Hom(Nn, Ĝa)/Xn(E) ' In(E).
Then u induces maps u∗ : In(E)→ In+1(E), and we put I(E) = lim→ In(E).

Proposition 10.3. The morphism

u∗ : Hn(E)⊗K → Hn+1(E)⊗K

is injective. For n ≥ m, it is an isomorphism.

Proof. Consider the following diagram of exact sequences:

0 0

K〈φ◦(n−m)∗Θ〉φ

OO

i∗φ∗ // K〈Ψn+1〉

OO

0 // bXn(E)φK

OO

i∗φ∗ // HomA(Nn+1, Ĝa)K

OO

// Hn+1(E)K // 0

0 // Xn−1(E)φK

u∗

OO

i∗φ∗ // HomA(Nn, Ĝa)K

u∗

OO

// Hn(E)K //

u∗

OO

0

0

OO

0

OO

The cokernels of the two maps u∗ are of the displayed form by propositions 8.4

and 9.6. If n < m, the expression K〈φ◦(n−m)∗Θ〉 is understood to be zero. The

map i∗φ∗ : K〈φ◦(n−m)∗Θ〉φ → K〈Ψn+1〉 is injective, by proposition 9.5. Therefore
the map u∗ : Hn(E)K → Hn+1(E)K is also injective. It is an isomorphism if

n ≥ m, because K〈φ◦(n−m)∗Θ〉 is 1-dimensional and hence the map

i∗φ∗ : K〈φ◦(n−m)∗Θ〉φ → K〈Ψn+1〉

is an isomorphism. �
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Corollary 10.4. We have

Hn(E)⊗K '
{
K〈Ψ1, . . . ,Ψn〉, if n ≤ m
K〈Ψ1, . . . ,Ψm〉, if n ≥ m

Do note that we will promote this to an integral result in (10.7). But before we
get there, we will need some preparation.

Proposition 10.5. We have

In(E)⊗K '
{
K〈Ψ1, . . . ,Ψn〉, if n ≤ m− 1
K〈Ψ1, . . . ,Ψm−1〉, if n ≥ m− 1

Proof. The case n ≤ m− 1 is clear. So suppose n ≥ m− 1. Then HomA(N j , Ĝa)⊗
K has basis Ψ1, . . . ,Ψj , and Xn(E) ⊗ K has basis Θm, . . . , (φ

n−m)∗Θm. Since
each (φj)∗Θm equals Ψm+j plus lower order terms, K〈Ψ1, . . . ,Ψm−1〉 is a com-

plement to the subspace Xn(E) of HomA(Nn, Ĝa). Therefore the map ∂ from
K〈Ψ1, . . . ,Ψm−1〉 to the quotient In(E) is an isomorphism. �

Finally the morphism HomA(Nn, Ĝa)→ Ext](E, Ĝa) of diagram (10.3) vanishes
on φ∗(Xn−1(E)), by proposition 10.2, and hence induces a morphism of exact
sequences

(10.4) 0 // Xn(E)
φ∗(Xn−1(E)φ)

//

Υ

��

Hn(E) //

Φ

��

In(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

where as in the introduction, In(E) denotes the image of ∂ : Hom(Nn, Ĝa) →
ExtA(E, Ĝa).

Proposition 10.6. The map Φ : Hn(E) ⊗ K → Ext](E, Ĝa) ⊗ K is injective if
and only if γ 6= 0.

Proof. It is enough to show that Υ is injective if and only if γ 6= 0. By proposi-

tion 9.6, the class of Θm is a K-linear basis for Xn(E)
φ∗(Xn−1(E)φ)

⊗K, and so it is enough

to show Φ is injective if and only if Υ(Θm) 6= 0. As in (9.4), write Θm = Ψ + g.
Then by proposition 10.1, it is enough to show g′(0) 6= 0 if and only if γ 6= 0. But
this holds because by proposition 9.4, we have γ = πg′(0). �

Lemma 10.7. Consider the φ-linear endomorphism F of Km with matrix

0 0 . . . 0 µm
1 0 0 µm−1

0 1 0 µm−2

...
. . .

. . .
...

...

0 0 1 µ1


,

for some given µ1, . . . , µm ∈ K. If Km admits an R-lattice which is stable under
F , then we have µ1, . . . , µm ∈ R.
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Proof. We use Dieudonné–Manin theory. Without loss of generality, we may
assume that R/πR is algebraically closed. Let P denote the polynomial Fm −
µ1F

m−1−· · ·−µm in the twisted polynomial ring K{F}. Then by (B.1.5) of [Lau]
(page 257), there exists an integer r ≥ 1 and elements β1, . . . , βm ∈ K(π1/r) such
that we have

P = (F − β1) · · · (F − βm)

in the ring K(π1/r){F} with commutation law Fπ1/r = π1/rF . (Note that the
results of [Lau] are stated under the assumption that the residue field of R is
an algebraic closure of Fp, but they hold if it is any algebraically closed field

of characteristic p.) Since R = K ∩ R[π1/r], it is enough to show µi ∈ R[π1/r].
Therefore, by replacing R[π1/r] with R, it is enough to assume that P factors as
above where in addition all βi lie in K.

Now fix i, and let us show βi ∈ R. Assume βi 6= 0, the case βi = 0 being
immediate. Because the (left) K{F}-module Km has an F -stable integral lattice
M , every quotient of Km also has a F -stable integral lattice, namely the image of
M . By (B.1.9) of [Lau] (page 260), for each i, the K{F}-module Km has a quotient
(in fact, a summand) isomorphic to N = K{F}/K{F}(F − πv(βi)). Therefore N
also has a F -stable integral lattice. But this can happen only if v(βi) ≥ 0, because
F sends the basis element 1 ∈ N to πv(βi) ∈ N . �

Theorem 10.8. If E splits at m, then we have λ1 . . . , λm−1 ∈ R.

Proof. We will prove the cases when γ = 0 and γ 6= 0 separately.

Case γ = 0 When γ = 0 we have f∗i∗ = i∗φ∗, and hence for all n ≥ 1, this
induces a φ-linear map f : In−1(E)→ In(E) as follows

0 // Xn(E)
i∗ // HomA(Nn, Ĝa)

∂ // In(E) // 0

0 // Xn−1(E)

φ

OO

i∗ // HomA(Nn−1, Ĝa)
∂ //

f

OO

In−1(E) //

f

OO

0

Let I(E) = lim→ In(E) ⊆ Ext(E, Ĝa). Then by proposition 10.5, the vector space
I(E)K has a K-basis ∂Ψ1, . . . , ∂Ψm−1, and with respect to this basis, the φ-linear
endomorphism f has matrix

Γ0 =



0 0 . . . 0 λm−1

1 0 0 λm−2

0 1 0 λm−3

...
. . .

. . .
...

...

0 0 1 λ1


Since I(E) is contained in Ext(E, Ĝa), it is a finitely generated free R-module and
hence an integral lattice in I(E)K . But then lemma 10.7 implies λ1, . . . , λm−1 ∈ R.

Case γ 6= 0 Let H(E) = lim→Hn(E). Let us consider the matrix Γ of the φ-
linear endomorphism f of H(E)K with respect to the K-basis Ψ1, . . . ,Ψm given by
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corollary 10.4. Let γ ∈ R be as in proposition 9.4. Then we have

i∗φ∗Θm = f∗i∗Θm + γΨ1

= f∗(Ψm − λ1Ψm−1 − · · · − λm−1Ψ1) + γΨ1

= f∗(Ψm)− φ(λ1)Ψm − · · · − φ(λm−1)Ψ2 + γΨ1.

Therefore we have

f∗(Ψm) ≡ φ(λ1)Ψm + · · ·+ φ(λm−1)Ψ2 − γΨ1 mod i∗φ∗(Xφ
m)

and hence

Γ =



0 0 . . . 0 −γ
1 0 0 φ(λm−1)
0 1 0 φ(λm−2)
...

. . .
. . .

...
...

0 0 0 φ(λ2)
0 0 1 φ(λ1)


We will now apply lemma 10.7 to the operator f∗ on H(E)K , but to do this we
need to produce an integral lattice M . Consider the commutative square

H(E)
Φ //

��

Ext](E, Ĝa)

j

��
H(E)K

ΦK // Ext](E, Ĝa)K .

Let M denote the image of H(E) in H(E)K . It is clearly stable under f∗. But also

the maps ΦK and j are injective, by proposition 10.6 and because Ext](E, Ĝa) '
Rr; so M agrees with the image of H(E) in Ext](E, Ĝa) and is therefore finitely
generated.

We can then apply lemma 10.7 and deduce φ(λm−1), . . . , φ(λ1) ∈ R. This implies
λm−1, . . . , λ1 ∈ R, since R/πR is a field and hence the Frobenius map on it is
injective. �

Corollary 10.9. (1) The element Θm ∈ Xm(E)K lies in Xm(E).
(2) For n ≥ m, all the maps in the diagram

Xn(E)/Xn−1(E)
φ∗ //

i∗

��

Xn+1(E)/Xn(E)

i∗

��
HomA(Nn, Ĝa)/HomA(Nn−1, Ĝa)

f∗ // HomA(Nn+1, Ĝa)/HomA(Nn, Ĝa)

are isomorphisms.

Proof. (1): By theorem 10.8, the element i∗Θm of HomA(Nm, Ĝa)K actually lies in

HomA(Nm, Ĝa), and therefore by the exact sequence (9.3) we have Θm ∈ Xm(E).

(2): By proposition 9.5, we know f∗ is an isomorphism.

By proposition 9.5, the maps i∗ are injective for all n ≥ m. So to show they are
isomorphisms, it is enough to show they are surjective. The R-linear generator Ψm

of HomA(Nn, Ĝa)/HomA(Nn−1, Ĝa) is the image of Θm, which by part (1), lies in
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Xm(E). Therefore i∗ is surjective for n = m. Then because f∗ is an isomorphism,
it follows by induction that i∗ is surjective for all n ≥ m.

Finally, φ∗ is an isomorphism because all the other morphisms in the diagram
are. �

We knew before that i∗(φj)∗Θm agrees with Ψm+j plus lower order rational
characters, but the corollary above implies that these lower order characters are in
fact integral.

Theorem 10.10. Let E be a Drinfeld module that splits at m.

(1) For any n ≥ m, the composition

(10.5) Xn(E)−→HomA(Nn, Ĝa)−→HomA(Nn, Ĝa)/HomA(Nm−1, Ĝa)

is an isomorphism of R-modules.
(2) Xn(E) is freely generated as an R-module by Θm, . . . , (φ

∗)n−mΘm.

Proof. (i): By corollary 10.9, the induced morphism on each graded piece is an
isomorphism. It follows that the map in question is also an isomorphism.

(ii): This follows formally from (i) and the fact, which follows from 10.9, that
the map (10.5) sends any (φ∗)jΘm to Ψm+j plus lower order terms. �

10.2. H(E) and de Rham cohomology. Collecting the results above, we have
isomorphisms

R〈Ψ1, . . . ,Ψm−1〉 = HomA(Nm−1, Ĝa)
∼−→ In(E)

R〈Ψ1, . . . ,Ψm〉 = HomA(Nm, Ĝa)
∼−→Hn(E)

for n ≥ m, and hence in the limit

R〈Ψ1, . . . ,Ψm−1〉
∼−→ I(E)(10.6)

R〈Ψ1, . . . ,Ψm〉
∼−→H(E)(10.7)

And so the K-linear bases of K⊗I(E) and K⊗H(E)—the ones respect to which the
action of f∗ is described by the matrices Γ0 and Γ in the proof of theorem 10.8—are
in fact R-linear bases of I(E) and H(E).

We also have isomorphisms for n ≥ m

R〈Θm〉 = Xm(E)
∼−→Xn(E)/φ∗(Xn−1(E)φ).

Combining these, we have the following map between exact sequences of R-modules,
as in (10.4):

0 // Xm(E) //

Υ

��

H(E) //

Φ

��

I(E) //
� _

��

0

0 // Lie(E)∗ // Ext](E, Ĝa) // Ext(E, Ĝa) // 0

where Υ sends Θm to γ/π (in coordinates). It follows that Φ is injective if and only
if γ 6= 0.
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11. Computation of λ1 and γ in the rank 2 case

Theorem 11.1. Let A = Fq[t] with q ≥ 3, let π ∈ A be an irreducible polynomial
of degree `, and let E be a Drinfeld module over R of the form

ϕE(t)(x) = πx+ a1x
q + a2x

q2

.(11.1)

Then we have

λ1 ≡ (−1)`w
q`−1(q`−1)

q−1
(
1− a′1wq

`−1

+ a′2w
q`−1+q`

)q`−1
mod π,

where w = a1a
−1
2 , and

γ = πλ1/a1 mod π2.

Observe that when ϕE(t)(x) is of the form πx+ axq + xq
2

, which is always true
after changing the coordinate x (perhaps passing to a cover of S), we have the
simplified forms

λ1 ≡ (−1)`a
q`−1(q`−1)

q−1
(
1− a′aq

`−1)q`−1
mod π,(11.2)

γ = πλ1/a mod π2.(11.3)

Proof. Let ϑ1 : N1 → Ĝa be the isomorphism defined in theorem 6.4. Then ϑ1 ≡
τ0 mod π. Also ϑ1 induces the isomorphism (ϑ1)∗ : Ext(E,N1) → Ext(E, Ĝa). In
order to determine the action of A on J1E and J2E we need to determine how t
acts on the coordinates x′ and x′′. Now we note that JnE ' Wn can be endowed
with the δ-coordinates (denoted [z, z′, z′′, . . . ]) or the Witt coordinates (denoted
(z0, z1, z2, . . . )) and they are related by the following in J2E by proposition 3.2

[z, z′, z′′] = (z, z′, z′′ + πq̂−2(z′)q̂)(11.4)

Taking π-derivatives of both sides of equation (11.1) using the formula

δ(axq
j

) = a′xq̂q
i

+ φ(a)πq
i−1(x′)q

i

,

we obtain

ϕ(t)(x′) = π′xq̂ + a′1x
qq̂ + a′2x

q2q̂

+ πx′ + φ(a1)πq−1(x′)q + φ(a2)πq
2−1(x′)q

2
(11.5)

and

ϕ(t)(x′′) = π′′xq̂
2

+ a′′1x
qq̂2

+ a′′2x
q2q̂2

+ {terms with x′ and x′′}
(11.6)

Then the A-action ϕJ1E : A→ End(J1E) is given in Witt coordinates by the 2× 2
matrix

ϕJ1E(t) =

(
ϕE(t) 0
ηJ1E ϕN1(t)

)
where ηJ1E = π′xq̂ + a′1x

qq̂ + a′2x
q2q̂. And by (11.6) and (11.4), the A-action

A→ End(J2E) is given by the (1 + 2)× (1 + 2) block matrix

ϕJ2E(t) =

(
ϕE(t) 0
ηJ2E ϕN2(t)

)
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where (using 11.4) ηJ2E is the column vector

ηJ2E =

(
π′xq̂ + a′1x

qq̂ + a′2x
q2q̂

∆(π)xq̂
2

+ ∆(a1)xqq̂
2

+ ∆(a2)xq
2q̂2

)

and where ∆(y) = y′′ + πq̂−2(y′)q̂.

Now we will consider two cases—

(1): Consider ηΨ1∗(J
1E) ∈ Ext(E, Ĝa) which is the image of Ψ1 under the con-

necting morphism HomA(Ĝa, Ĝa)
∂→ Ext(E, Ĝa) and Ψ1 : N1 → Ĝa is the iso-

morphism defined in theorem 6.4 and satisfies Ψ1 = ϑ1 ◦ f◦0 = τ0 mod π where
f◦0 = 1.

0 // N1 //

Ψ1

��

J1E //

��

E // 0

0 // Ĝa
// f∗(J1E) // E // 0

where ηJ1E = [π′xq̂ + a′1x
qq̂ + a′2x

q2q̂] ∈ Ext(E,N1) Hence

ηΨ1∗(J1E) =[π′xq̂ + a′1x
qq̂ + a′2x

q2q̂] ∈ Ext(E, Ĝa)

∂(Ψ1) ≡[xq̂ + a′1x
qq̂ + a′2x

q2q̂] mod π.

(2): Now consider ηΨ2∗(J
2E) ∈ Ext(E, Ĝa) obtained as

0 // N2 //

Ψ2

��

J2E //

��

E // 0

0 // Ĝa
// f∗(J2E) // E // 0

Now we have

ηJ2E =

[(
π′xq̂ + a′1x

qq̂ + a′2x
q2q̂

∆(π)xq̂
2

+ ∆(a1)xqq̂
2

+ ∆(a2)xq
2q̂2

)]
∈ Ext(E,N2)

Let Ξ(y) = (y′)q̂ + π∆(y). Then applying Ψ2 = ϑ1 ◦ f and f(z1, z2) = zq̂1 + πz2, we
have

∂(Ψ2) = ηΨ2∗(J
2E) = [ϑ1(Ξ(π)xq̂

2

+ Ξ(a1)xqq̂
2

+ Ξ(a2)xq
2q̂2

)] ∈ Ext(E, Ĝa)

∂(Ψ2) ≡ [Ξ(π)xq̂
2

+ Ξ(a1)xqq̂
2

+ Ξ(a2)xq
2q̂2

] mod π

≡ [(π′)q̂xq̂
2

+ (a′1)q̂xqq̂
2

+ (a′2)q̂xq
2q̂2

] mod π

≡ [xq̂
2

+ (a′1)q̂xqq̂
2

+ (a′2)q̂xq
2q̂2

] mod π.

Recall that the map R{τ}ˆ→ Ext(E, Ĝa) given by η 7→ [η] is surjective and the
kernel consists of the inner derivations, which is to say all η of the form

πα− α ◦ ϕE(t),
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for some α ∈ R{τ}ˆ. Let us now work out these relations explicitly for α = τ0, τ1, τ2.
If α = τ j , with j ≥ 0, we get the relation

πτ j = τ j(πτ0 + a1τ
1 + a2τ

2)

τ j+2 = a−q
j

2 [(π − πq
j

)τ j − aq
j

1 τ
j+1]

τ j+2 ≡ −(a1a
−1
2 )q

j

τ j+1 mod π

and hence we have by induction the relations

(11.7) τ i+1 ≡ (−1)iw
qi−1
q−1 τ1 mod π

where w = a1a
−1
2 , for all i ≥ 0.

Therefore writing q̂ = q`, we have

∂(Ψ1) ≡ xq̂ + a′1x
qq̂ + a′2x

q2q̂

≡ xq
`

+ a′1x
q`+1

+ a′2x
q`+2

≡ τ ` + a′1τ
`+1 + a′2τ

`+2

≡ (−1)`+1w1+···+q`−2

(1− a′1wq
`−1

+ a′2w
q`−1+q`)τ1

and

∂(Ψ2) ≡ xq̂
2

+ (a′1)q̂xqq̂
2

+ (a′2)q̂xq
2q̂2

≡ τ2` + (a′1)q
`

τ2`+1 + (a′2)q
`

τ2`+2

≡ (−1)2`+1w1+···+q2`−2(
1− (a′1)q

`

wq
2`−1

+ (a′2)q
`

wq
2`−1+q2`)

τ1

≡ (−1)2`+1w1+···+q2`−2(
1− a′1wq

`−1

+ a′2w
q`−1+q`

)q`
τ1.

and hence

λ1 =
∂(Ψ2)

∂(Ψ1)
≡ (−1)`wq

`−1+···+q2`−2(
1− a′1wq

`−1

+ a′2w
q`−1+q`

)q`−1
mod π

≡ (−1)`wq
`−1(1+···+q`−1)

(
1− a′1wq

`−1

+ a′2w
q`−1+q`

)q`−1
mod π

≡ (−1)`w
q`−1(q`−1)

q−1
(
1− a′1wq

`−1

+ a′2w
q`−1+q`

)q`−1
mod π

Now we determine γ. Write g =
∑
i αiτ

i. Then from proposition 9.4, we know
γ = πα0. Now we will compute α0. Let (z0, z1, z2) := ϕJ2E(t)(x, 0, 0). Then

Θ2(ϕJ2E(t)(x, 0, 0)) = Ψ2(z1, z2)− λ1Ψ1(z1) + g(z0)

= ϑ1(zq̂1 + πz2)− λ1ϑ1(z1) + g(z0)

≡ zq̂1 − λ1z1 + g(z0) mod π

where z0 = πx+ a1x
q + a2x

q2

and z1 = π′xq̂ + a′1x
qq̂ + a′2x

q2q̂. On the other hand
from the A-linearity of Θ2 we have

Θ2(ϕJ2E(t)(x, 0, 0)) = ϕĜa
(t)Θ2(x, 0, 0) = πΘ2(x, 0, 0) ≡ 0 mod π

and hence zq̂1 − λ1z1 + g(z0) ≡ 0 mod π. Substituting z0 and z1 in, we obtain

0 ≡ (π′xq̂ + a′1x
qq̂ + a′2x

q2q̂)q̂ − λ1(π′xq̂ + a′1x
qq̂ + a′2x

q2q̂) + g(πx+ a1x
q + a2x

q2

)

≡ (xq̂ + a′1x
qq̂ + a′2x

q2q̂)q̂ − λ1(xq̂ + a′1x
qq̂ + a′2x

q2q̂) + g(a1x
q + a2x

q2

)
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Now substitute g(x) =
∑
j≥0 αjx

qj into this and consider the coefficient of xq. If
q̂ = q, we obtain λ1 ≡ α0a1 and hence

γ = πα0 ≡ πλ1/a1 mod π2.

If q̂ 6= q, we obtain α0a1 ≡ 0 and hence γ ≡ 0 mod π2. �

References

[Bo1] J. Borger: The basic geometry of Witt vectors, I: The affine case, Algebra and Number

Theory 5 (2011), no. 2, pp 231-285.
[Bo2] J. Borger: The basic geometry of Witt vectors, II: Spaces, Mathematische Annalen 351

(2011), no. 4, pp 877-933.
[Bui1] A. Buium: Intersections in jet spaces and a conjecture of S.Lang, Annals of Math. 136

(1992), 583-593.

[Bui2] A. Buium: Differential characters of abelian varieties over p-adic fields, Invent. Math., 122,
2, (1995), 309-340.

[Bui3] A. Buium: Differential Modular Forms, Crelle J., 520 (2000), 95-167.

[BP1] A. Buium, B. Poonen: Independence of points on elliptic curves arising from special points
on modular and Shimura curves, I: global results, Duke Math. J., 147, 1 (2009), 181-191.

[BP2] A. Buium, B. Poonen: Independence of points on elliptic curves arising from special points

on modular and Shimura curves, II: local results, Compositio Math., 145 (2009), 566-602
[Ge1] E. -U. Gekeler: de Rham cohomology for Drinfeld modules. Seminaire de Theorie des

Nombres, Paris 19881989, 5785, Progr. Math. 91, Birkhauser Boston, Basel, Berlin, 1990.

MR1104700 (93a:14020).
[Ge2] E. -U. Gekeler: On the de Rham isomorphism for Drinfeld modules. J. Reine Angew. Math.

401 (1989), 188208. MR1018059 (90g:11070).

[Jo] A. Joyal: δ-anneaux et vecteurs de Witt, C.R. Math. Rep. Acad. Sci. Canada 7 (1985) 177-
182.

[Lau] G. Laumon: Cohomology of Drinfeld modular varieties. Part I. Cambridge University Press,
Cambridge (1996)

[M] J.I. Manin, Rational points of algebraic curves over function fields, IzvestijaAkad.Nauk SSR

27 (1963), 1395-1440 (in Russian).
[H05] L. Hesselholt, Lecture notes on Witt vectors, Survey article, unpublished, 2005.

[D76] V.G. Drinfeld, Coverings of p-adic symmetric domains, Funkcional. Anal. i Prilozen,

10(2):29-40, 1976.

12. A-linearity and Integral Extensions

The purpose of this section is to prove the corollary 12.2 below.

Theorem 12.1. Let B be a subring of A which is a finitely generated Dedekind domain. hy-

potheses clear? Let (E,ϕ) be a admissible B-module. Then ϕ extends to an admissible A-module
*!* structure on E in at most one way.

We note that if E is a Drinfeld module, this theorem follows immediately from basic facts

in [D76], section 2. Indeed, EndB(E,ϕ) is an order in a finite extension of the fraction field of

A, which implies that the tangent-space map EndB(E,ϕ) → R must be injective; therefore the
characteristic map θ : A → R can factor through EndB(E,ϕ) in at most one way. However,

we will need to apply the theorem to kernels of the projections J1E → E, which are admissible
A-modules but not Drinfeld modules.

Observe that by transport of structure we have the following:

Corollary 12.2. Let B and A be as above. Then any B-linear isomorphim between admissible
A-modules is in fact A-linear.

We emphasize that we will apply this only in the proof of theorem 6.4, where A will be

unramified over B at p; and with this restriction, the proofs below simplify considerably.
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Let Gfor
a denote the formal completion of Ĝa along the identity section Spf R→ Ĝa. Thus we

have Gfor
a = Spf R[[x]], where R[[x]] has the (π, x)-adic topology. We want to extend the A-action

to a map

(12.1) Â→ End(Ĝfor
a ).

Recall that End(Gfor
a ) agrees with the non-commutative power-series ring R{{τ}}, with commu-

tation law τb = bq2τ for b ∈ R. Therefore for any a ∈ A, we can write

ϕ(a) =
∑
j

αjτ
j

where αj ∈ R. Each αj can be thought of as a function of a ∈ A. To construct (12.1) it is enough

to prove that these functions are p-adically continuous, which also implies that such an extension

to a continuous Â-action is unique.

Proposition 12.3. If a ∈ pn, then αj ∈ pn−jR.

Proof. Clearly, it is true for n = 0. Now assume it is true for some given n. Suppose a ∈ pn+1

and write a = πb, where b ∈ pn. Let ϕ(b) =
∑

j βjτ
j and ϕ(π) =

∑
k γkτ

k. Then we have

ϕ(a) = ϕ(π)ϕ(b) =
∑
k

γkτ
k
∑
j

βjτ
j =

∑
k,j

γkβ
q2
k

j τ j+k =
∑
j

αjτ
j

where αj =
∑j

k=0 γkβ
q2
k

j−k. So to show αj ∈ pn+1−jR, it suffices to show

γkβ
q2
k

j−k ∈ pn+1−jR when 0 ≤ k ≤ j ≤ n+ 1.

By induction we have βj ∈ pn−jR. Thus for k ≥ 1, we have γkβ
q2
k

j−k ∈ p(n−(j−k))q2
k
R ⊆

pn−j+1R. If k = 0, then because ϕ is a strict module structure, we have γ0 = π and hence
γ0βj ∈ πpn−jR = p1+n−jR. �

We now consider a local analogue of the setting of theorem 12.1. Let B̂ denote a subring of

Â which is a complete discrete valuation ring with maximal ideal q = p ∩ B̂ and such that the

extension Â/B̂ is finite. (Despite the notation, B̂ is not yet the completion of any global object

B.)

Theorem 12.4. Let (E,ϕ) be a admissible B̂-module. Then ϕ extends to an admissible Â-module

structure on E in at most one way.

The proof, given below, will consider the case where Â is of the form B̂[x]/(f) where f(x) =

xn+dn−1xn−1 + · · ·+d1x+d0 ∈ B̂[x] is a monic irreducible polynomial of various types. Thus we

are led to consider the universal extension of the B̂-module structure to a B̂[x]-module structure:

ϕ̃ : B̂[x]→ End(Gfor
a /R[λ]), where R[λ] denotes the polynomial ring R[λ0, λ1, . . . ] and ϕ̃ is defined

by ϕ̃(x) =
∑
λjτ

j . The proof will then go by showing that there is at most one specialization

(12.2) t : R[λ]→ R

with the property that the induced action B̂[x]→ End(Gfor
a /R) factors through the quotient map

s : B̂[x]→ Â, thereby inducing an Â-module structure ϕe : Â→ End(Gfor
a /R):

(12.3) Â
ϕe // End(Gfor

a /R)

B̂[x]

s

OOOO

ϕ̃ // End(Gfor
a /R[λ])

t∗

OO

B̂
?�

OO

ϕ // End(Gfor
a /R)
?�

OO
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Lemma 12.5. Let f(x) be a polynomial in B̂[x]. Then for any i ≥ 0, the coefficient of τ i

in the power series ϕ̃(f(x)) is of the form Ci(f(x))λi + Di(f(x)), where Ci(f(x)) ∈ R[λ0] and

Di(f(x)) ∈ R[λ0, . . . , λi−1]. More precisely, if f(x) =
∑

m dmxm, then Ci(f(x)) is given by the
formula

Ci(f(x)) =
∑
m

m−1∑
l=0

θ(dm)λ
q2
i(m−l−1)+l

0 .

Proof. Since the morphism sending f(x) to the coefficient of τ i in ϕ̃(f(x)) is a B̂-linear, it is enough

to consider polynomials f(x) of the form xm, for m ≥ 0. Then we have ϕ̃(xm) = (
∑

j λjτ
j)m. If

we expand the product on the right-hand side, the term of degree i will be the sum of all terms

(λj1τ
j1 ) · · · (λjmτ

jm ) = (λj1λ
q2
j1

j2
λq2

j1+j2

j3
· · · )τ i,

for j1 + · · · + jm = i. If all the jk are less than i, then the coefficient of the right-hand side is

a monomial in λ0, . . . , λi−1. On the other hand, if say jl+1 equals i, then all the other jk are 0;

and so the coefficient is

λl0λi(λ
q2
i

0 )(m−(l+1)) = λ
q2
i(m−l−1)+l

0 λi.

Therefore the sum of these coefficients over all choices j1, . . . , jm will be of the form Ci(f(x))λi +

Di(f(x)), where Ci(f(x)) =
∑m−1

l=0 λ
q2
i(m−l−1)+l

0 and Di(f(x)) ∈ R[λ0, . . . , λi−1], as required.

�

Proposition 12.6. Suppose t : R[λ] → R is a morphism such that t(λ0) = π. Let f(x) ∈ B̂[x]

be an Eisenstein polynomial of degree n, and assume qÂ ⊆ pn. Then for every i, there is a unit

u ∈ R∗ such that t(Ci(f(x))) = uπn−1.

Proof. Write f(x) = xn + dn−1xn−1 + · · ·+ d0. From proposition 12.5, we have

Ci(f(x)) =

n−1∑
l=0

λ
q2
i(n−l−1)+l

0 +

n∑
j=1

θ(dn−j)Ci(x
n−j)

and hence

t(Ci(f(x))) =

n−1∑
l=0

πq2
i(n−l−1)+l +

n∑
j=1

θ(dn−j)t(Ci(x
n−j)).

Since θ(dj) ∈ qR, we have
∑n

j=1 θ(dn−j)Ci(x
n−j) ∈ qR ⊆ πnR. Therefore we can write

t(Ci(f(x))) =

n−1∑
l=0

πq2
i(n−l−1)+l + πnv

for some v ∈ R. Now in the sum
∑n−1

l=0 πq2
i(n−l−1)+l, the valuation of the l-th term is strictly

decreasing as a function of l. Thus the minimum is attained at l = n− 1, and so we have

t(Ci(f(x))) = πn−1 + πnw

for some w ∈ R. We can now take our element u to be 1 + πw, which is invertible because R is
π-adically complete. �

Proof. (theorem 12.4) Let K/L denote the extension of fraction fields induced by the inclusion

B̂ → Â. This is a finite extension of local fields and hence can be written as a tower of extensions

of two types: (i) separable and unramified and (ii) totally ramified (and possibly inseparable).
need reference or proof Therefore it is enough to assume K/L is one of these two types.

*!*
(i): K/L is separable and unramified

Write Â = B̂[ζ], where ζq2−1 = 1. To show ϕe is uniquely determined by ϕ, it is enough to

show ϕe(ζ) is uniquely determined by ϕ. Since (E,ϕe) is admissible, we can write ϕe(ζ) = ζ + b,

where b ∈ Â[[τ ]]τ . Since we have τζ = ζq2τ = ζτ , the element ζ lies in the center of the ring

End(Gfor
a ). Therefore we have

ζ + b = ϕe(ζ) = ϕe(ζq2 ) = ϕe(ζ)q2 = (ζ + b)q2 = ζq2 + bq2 = ζ + bq2

and hence b = bq2 . Since b ∈ τÂ[[τ ]], this is possible only if b = 0. This implies ϕe(ζ) = ζ and in

particular that ϕe(ζ) is uniquely determined. Therefore so is ϕe.
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(ii): K/L is totally ramified

Then we have Â ' B̂[x]/(f), where f is an Eisenstein need reference! polynomial such that π
*!*corresponds to the coset of x. So it is sufficient to show that ϕe ◦ s(x) is uniquely determined in

End(Gfor
a /R). Since we have

ϕe ◦ s(x) = t ◦ ϕ̃(x) = t(
∑
j

λjτ
j) =

∑
j

t(λj)τ j ,

it is sufficient to show that the elements t(λj) ∈ R are uniquely determined.

We do this by induction on j. For j = 0, it is true because t(λ0) = s ◦ θ(x) = π, since

(E,ϕe) is an admissible A-module. For j ≥ 1, we may assume t(λj) is uniquely determined for
j = 0, . . . , i− 1. Then by lemma 12.5, the element t(λi) satisfies

t(Ci(f(x)))t(λi) + t(Di(f(x))) = 0.

By proposition 12.6, we know that t(Ci(f(x))) is of the form uπn−1, where u ∈ R∗. Since R

is flat, π is not a zero divisor and hence neither is uπn−1 = t(Ci(f(x))). Therefore t(λi) is the
unique solution in R to the equation above. �

Proof. (theorem 12.1) It is enough to show that if ϕ,ϕ′ : A → End(Ga/R) are two A-module

structures that agree when restricted to B, then we have ϕ = ϕ′.

Let B̂ denote the completion of B with respect to B ∩ p. Then we have the following diagram:

B̂
ĵ // Â

ϕfor
//

ϕ′for
// End(Gfor

a /R)

B

OO

j // A

OO

ϕ //
ϕ′

// End(Ga/R).

i

OO

By assumption, we have ϕ ◦ j = ϕ′ ◦ j and hence ϕfor ◦ ĵ = ϕ′for ◦ ĵ. The equality ϕfor = ϕ′for

then follows from theorem 12.4. Finally since i is injective, we have ϕ = ϕ′. �

13. Computation of λ1 and γ in the rank 2 case

Theorem 13.1. Let A = Fq2 [t] with q2 ≥ 3, and let E be the Drinfeld module over R of the

form

ϕE(t)(x) = πx+ a1x
q2 + a2x

q2
2
.(13.1)

Let g = v∗Θ2, and write α0 = g′(0). Then we have

α0 ≡ −a−1
2 (1− a′1(a1a

−1
2 ) + a′2(a1a

−1
2 )q2+1)q2−1 mod π

λ1 ≡ a1α0 mod π

γ ≡ πα0 mod π2.

Observe that when ϕE(t)(x) is of the form πx+axq2 +xq2
2
, which is always true after changing

the coordinate x (perhaps passing to a cover of S), we have the simplified forms

α0 ≡ −(1− aa′)q2−1 mod π(13.2)

λ1 ≡ −a(1− aa′)q2−1 mod π(13.3)

γ ≡ −π(1− aa′)q2−1 mod π2(13.4)

Proof. Let ϑ1 : N1 → Ĝa be the isomorphism defined in theorem 6.4. Then ϑ1 ≡ τ0 mod π. Also

ϑ1 induces the isomorphism (ϑ1)∗ : Ext(E,N1) → Ext(E, Ĝa). In order to determine the action
of A on J1E and J2E we need to determine how t acts on the coordinates x′ and x′′. Now we

note that JnE 'Wn can be endowed with the δ-coordinates (denoted [z, z′, z′′, . . . ]) or the Witt

coordinates (denoted (z0, z1, z2, . . . )) and they are related by the following in J2E by proposition
3.2
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[z, z′, z′′] = (z, z′, z′′ + πq2−2(z′)q2 )(13.5)

By taking π-derivatives on both sides of equation (13.1) we get

ϕ(t)(x′) = π′xq2 + a′1x
q2

2
+ a′2x

q2
3

+ πx′ + φ(a1)πq2−1(x′)q2 + φ(a2)πq2
2−1(x′)q2

2

ϕ(t)(x′′) = π′′xq2
2

+ a′′1x
q2

3
+ a′′2x

q2
4

+ {terms with x′ and x′′}(13.6)

Then the A-action ϕJ1E : A→ End(J1E) is given by the 2× 2 matrix

ϕJ1E(t) =

(
ϕE(t) 0
ηJ1E ϕN1 (t)

)
where ηJ1E = π′τ +a′1τ

2 +a′2τ
3. And by (13.6) and (13.5), the A-action A→ End(J2E) is given

by the (1 + 2)× (1 + 2) block matrix

ϕJ2E(t) =

(
ϕE(t) 0
ηJ2E ϕN2 (t)

)
where

ηJ2E =

(
π′xq2 + a′1x

q2
2

+ a′2x
q2

3

∆(π)xq2
2

+ ∆(a1)xq2
3

+ ∆(a2)xq2
4

)
and where ∆(z) = z′′ + πq2−2(z′)q2 .

Given an extension ηC ∈ Ext(G,T ) and f : T → T ′ where G, T and T ′ are A-modules and f
is an A-linear map we have the following diagram of the push-out extension f∗C.

0 // T //

f

��

C //

��

G // 0

0 // T ′ // f∗C // G // 0

The class of f∗C is obtained as follows- the class of ηC is represented by a linear (not necessarily A-

linear) function ηC : G→ T . Then ηf∗C is represented by the class ηf∗C = [f ◦ ηC ] ∈ Ext(E, T ′).

In terms of the action of t ∈ A, ϕC(t) is given by

(
ϕG(t) 0

ηC ϕT (t)

)
where ηC : G→ T . Then

ϕf∗C(t) is given by (
ϕG(t) 0

f(ηC) ϕT ′ (t)

)
Now we will consider two cases—

(1): Consider ηΨ1∗(J1E) ∈ Ext(E, Ĝa) which is the image of Ψ1 under the connecting morphism

HomA(Ĝa, Ĝa)
∂→ Ext(E, Ĝa) and Ψ1 : N1 → Ĝa is the isomorphism defined in theorem 6.4 and

satisfies Ψ1 = ϑ1 ◦ f◦0 = τ0 mod π where f◦0 = 1.

0 // N1 //

Ψ1

��

J1E //

��

E // 0

0 // Ĝa
// f∗(J1E) // E // 0

where ηJ1E = [π′xq2 + a′1x
q2

2
+ a′2x

q2
3
] ∈ Ext(E,N1). Hence

ηΨ1∗(J1E) = [ϑ1(π′xq2 + a′1x
q2

2
+ a′2x

q2
3
)] ∈ Ext(E, Ĝa)

∂(Ψ1) ≡ [xq2 + a′1x
q2

2
+ a′2x

q2
3
] mod π.
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(2): Now consider ηΨ2∗(J2E) ∈ Ext(E, Ĝa) obtained as

0 // N2 //

Ψ2

��

J2E //

��

E // 0

0 // Ĝa
// f∗(J2E) // E // 0

Now we have

ηJ2E = [(π′xq2 + a′1x
q2

2
+ a′2x

q2
3
,∆(π)xq2

2
+ ∆(a1)xq2

3
+ ∆(a2)xq2

4
)T]

∈ Ext(E,N2).

Let Ξ(z) = (z′)q2 + π∆(z). Then applying Ψ2 = ϑ1 ◦ f and f(z1, z2) = zq21 + πz2, we have

∂(Ψ2) = ηΨ2∗(J2E) =[ϑ1(Ξ(π)xq2
2

+ Ξ(a1)xq2
3

+ Ξ(a2)xq2
4
)] ∈ Ext(E, Ĝa)

∂(Ψ2) ≡[Ξ(π)xq2
2

+ Ξ(a1)xq2
3

+ Ξ(a2)xq2
4
] mod π.

Recall that the map R{τ }̂ → Ext(E, Ĝa) given by η 7→ [η] is surjective and the kernel consists
of all η of the form

πα− α ◦ ϕE(t),

for some α ∈ R{τ }̂ (i.e., the inner derivations). Let us now work out these relations explicitly for

α = τ0, τ1, τ2.

If α = τ0 we get the relation

πτ0 = τ0(πτ0 + a1τ
1 + a2τ

2)

τ2 = −(a1a
−1
2 )τ1(13.7)

If α = τ1 we get

πτ1 = τ1(πτ0 + a1τ
1 + a2τ

2)

τ3 = a−q2
2 [(π − πq2 )τ1 − aq2

1 τ2]

τ3 ≡ −(a1a
−1
2 )q2τ2 mod π

τ3 ≡ −(a1a
−1
2 )q2+1τ1 mod π(13.8)

If α = τ2 we get

πτ2 = τ2(πτ0 + a1τ
1 + a2τ

2)

τ4 = a−q2
2

2 [(π − πq2
2
)τ2 − aq2

2

1 τ3]

τ4 ≡ (a1a
−1
2 )q2

2
τ3 mod π

τ4 ≡ (a1a
−1
2 )q2

2+q2+1τ1 mod π(13.9)

Therefore from (13.7), (13.8), (13.9) we get

∂(Ψ1) ≡ (1− a′1(a1a
−1
2 ) + a′2(a1a

−1
2 )q2+1)τ1 mod π

∂(Ψ2) ≡ −(a1a
−1
2 )(1− a′1(a1a

−1
2 ) + a′2(a1a

−1
2 )q2+1)q2τ1 mod π

and hence

λ1 =
∂(Ψ2)

∂(Ψ1)
≡ −(a1a

−1
2 )(1− a′1(a1a

−1
2 ) + a′2(a1a

−1
2 )q2+1)q2−1 mod π

Now we determine γ and α0. Write

(13.10) g =
∑
i

αiτ
i.
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Then from proposition 9.4, we know γ = πα0. Now we will compute α0. Let (z0, z1, z2) :=

ϕJ2E(t)(x, 0, 0). Then

Θ2(ϕJ2E(t)(x, 0, 0)) = Ψ2(z1, z2)− λ1Ψ1(z1) + g(z0)

= ϑ1(zq2
1 + πz2)− λ1ϑ1(z1) + g(z0)

≡ zq2
1 − λ1z1 + g(z0) mod π

where z0 = πx+ a1xq2 + a2xq2
2

and z1 = π′xq2 + a′1x
q2

2
+ a′2x

q2
3
. On the other hand from the

A-linearity of Θ2 we have

Θ2(ϕJ2E(t)(x, 0, 0)) = ϕĜa
(t)Θ2(x, 0, 0) = πΘ2(x, 0, 0) ≡ 0 mod π

and hence zq2
1 − λ1z1 + g(z0) ≡ 0 mod π. Substituting z0 and z1 in, we obtain

(a′2)q2xq2
4

+ ((a′1)q2 − λ1a
′
2)xq2

3
+(1− λ1a

′
1)xq2

2
− λ1x

q2

+ g(a1x
q2 + a2x

q2
2
) ≡ 0 mod π.

(13.11)

Now write g(x) =
∑

j≥0 αjx
q2
j
. Substituting this into (13.11) and considering the coefficient of

xq2 , we obtain λ1 = α0a1 and hence γ = πα0 = πλ1/a1. �

It is possible to determine all the coefficients αj in (13.10) modulo π as we did α0. One finds

α1 ≡ a−q2
2 (λ1a

′
2 − α2a

q2
2

1 − (a′1)q2 ), α2 ≡ (a′2)q2a−q2
2

2 , αj ≡ 0 for j ≥ 3.

If a2 = 1 and a1 = a, these simplify to

α1 ≡ −(a′)q2 , αj ≡ 0 for j ≥ 2.


