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28th July 2011
There are many ‘map projections’ [4]. All are distorting in some way

but one can preserve:–

• geodesics (gnomomic (Thales circa 590 B.C.)),
• areas (Archimedes circa 240 B.C., Lambert 1772),
• angles (Mercator 1569, stereographic (Halley 1695)).

Map projections that preserves angles are called ‘conformal’ and we
shall be concerned with
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One can see that this is conformal either by pure thought [6] or by
calculus, as follows. Notice that
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so inverse stereographic projection (in arbitrary dimension) is given by

Rn 3 x φ7−→ 1

‖x‖2 + 4

[
4x

‖x‖2 − 4

]
∈ Sn ⊂

Rn

⊕
R

= Rn+1

and we may calculate the (n+ 1)× n matrix (the Jacobian)

(1) φ′(x) =
4

(‖x‖2 + 4)2

[
(‖x‖2 + 4)Idn×n − 2x xt

4xt

]
.
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We may use φ′(x) to map vectors in Rn to vectors in Rn+1 tangent to Sn

at φ(x) according to X 7→ φ′(x)X. The inner product between two such
vectors in Rn+1 is 〈φ′(x)X,φ′(x)Y 〉 = (φ′(x)X)t(φ′(x)Y ). However,[

(‖x‖2 + 4)Idn×n − 2x xt

4xt

]t [
(‖x‖2 + 4)Idn×n − 2x xt

4xt

]

=
[
(‖x‖2 + 4)Idn×n − 2x xt, 4x

] [(‖x‖2 + 4)Idn×n − 2x xt

4xt

]
= (‖x‖2 + 4)2Idn×n − 4(‖x‖2 + 4)x xt + 4‖x‖2 x xt + 16x xt

= (‖x‖2 + 4)2Idn×n

.

Therefore, from (1) we find

(φ′(x))tφ′(x) =
16

(‖x‖2 + 4)2
Idn×n = Ω2(x)Idn×n,

where

Ω(x) =
4

‖x‖2 + 4
=

1

1 + ‖x/2‖2
.

It follows that

(2) 〈φ′(x)X,φ′(x)Y 〉Rn+1 = X t(φ′(x))tφ′(x)Y = Ω2(x)〈X, Y 〉Rn .

Finally, observe that the formula for the angle θ between X and Y ,

cos θ =
〈X, Y 〉√
〈X,X〉〈Y, Y 〉

does not see a rescaling of the form (2), no matter what is Ω(x).
The Mercator projection from the two-sphere to the cylinder may

be obtained by following stereographic projection with the complex
logarithm z 7→ log z (where they are defined). All complex analytic
functions are conformal in two dimensions.

29th July 2011
Smooth surfaces S in R3 may locally be viewed, according to the

implicit function theorem [10], in three equivalent ways:–

• implicit S = {f = 0}, where df |S 6= 0,
• explicit S = {z = F (x, y)} for some choice of coördinates,

• parametric S = φ(U), for R2 ⊃open U
φ→ R3 with rankφ′ = 2.

Gauss initiated the study of such surfaces under ‘Euclidean motions.’
The group of Euclidean motions in Rn comprises transformations of
the form

x 7→ Ax+ b, where A ∈ SO(n) and b ∈ Rn.
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Here, SO(n) denotes the ‘special orthogonal group’ comprising n × n
matrices A satisfying AtA = Id and detA = 1. Noting that[

A b
0 1

] [
x
1

]
=

[
Ax+ b

1

]
,

we may view the group of Euclidean motions as a subgroup of the group
of invertible (n + 1) × (n + 1) matrices. In particular, there are two
natural subgroups

SO(n) ∼=
{[

A 0
0 1

]}
and Rn ∼=

{[
Id b
0 1

]}
of which the latter is normal. In other words, the group of Euclidean
motions is a ‘semi-direct product’ [9], usually written as SO(n) n Rn.
Elements from these two subgroups are referred to as ‘rotations’ and
‘translations,’ respectively.

The näıve approach to surfaces S ↪→ R3 under Euclidean motions is
to move them into some normal form from which one can read off some
useful information. Evidently, one can spend the translation freedom
to move a given point on the surface to the origin and then partially
spend the rotation freedom to align the unit normal (let’s suppose the
surface is oriented so that it has a preferred unit normal) with the
z-axis. In other words, we may arrange that S is given explicitly as

z = xtQx+ . . . ,

in some orthogonal coördinate system (x1, x2, z) whereQ is a symmetric
2× 2 matrix and the ellipsis . . . denotes cubic and higher order terms.
The remaining coördinate freedom is rotation about the z-axis and
may be spent in orthogonally diagonalising Q. We therefore arrive at
a defining equation for S of the form

z = λ1(x
1)2 + λ2(x

2)2 + . . .

where the only remaining ambiguity is to swop λ1 ↔ λ2. Therefore,
we are led to the invariant quantities

• mean curvature H ≡ λ1 + λ2,
• Gauss curvature K ≡ λ1λ2.

In fact, one can back-track a little to obtain more ‘effective’ expressions

H ≡ traceQ and K ≡ detQ.

Gauss’ Theorema Egregium1: the quantity K is intrinsic to S. !!

We shall now explain what this theorem means and how to prove it in
a manner that introduces all sorts of useful geometric machinery.

1Remarkable Theorem
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Firstly, a precise statement of Theorema Egregium. In the derivation
above, the quantities H and K were defined at a point but now let us
regard them as smooth functions on S. Let us write S parametrically
by means of φ : U → R3 for some open subset U ⊆ R3. We obtain a
function on U with values in the 2× 2 symmetric matrices

(3) g(x) ≡
(
φ′(x)

)t
φ′(x)

and Theorema Egregium says that the function K(x) can be obtained
solely from g(x). The geometric interpretation of this statement, that
‘K(x) is intrinsic to S,’ emerges because the matrix g(x) records exactly
the inner product on the tangent space to S at φ(x):–

• Tangent space at φ(x) ∈ S = {φ′(x)X for X ∈ R2},
• 〈φ′(x)X,φ′(x)Y 〉R3 = X tg(x)Y .

In other words, the matrix g(x) is what beings living on S can measure.
They may need the help of ‘local coördinates’ φ(x) for x ∈ U ⊆ R2 to
write down g(x) as a matrix but the remarkable fact is that they can
then compute the function K(x) for themselves, without knowing how
S sits inside R3. In particular, its value at any point on S will be
independent of choice of local coördinates near that point.

4th August 2011
At this point it is not beyond the pale to prove Theorema Egregium

by brute force calculation. Specifically, if we write

g(x) = g(x1, x2) =

[
E F
F G

]
for smooth functions E = E(x), F = F (x), G = G(x), and we write
partial derivatives ∂E/∂xa as Ea et cetera, then

K =

 2(EG− F 2)(2F12 − E22 −G11)
+ F (4F1F2 − 2F1G1 − 2F2E2 − E2G1 + E1G2)

+ E(G1
2 − 2F1G2 + E2G2) +G(E2

2 − 2E1F2 + E1G1)


16(EG− F 2)2

.

This sheds absolutely no light on what’s really going on here!
To discover the true picture (Riemann, Levi-Civita, Ricci,. . . ) let’s

consider what happens to the matrix g(x) if we change coördinates.
The plan is to incorporate the result into a definition (of Riemannian
manifold) and then work solely with this definition to construct some
natural machinery in which freedom from any further choices (such as
a system of coördinates) is manifest.
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The picture is like this

S
-
x1

6
x2

-
x̃1

6
x̃2

-
φ

XXXXXXXXXXz

φ̃

������'

and, where it makes sense, φ̃(x̃) = φ(x) (and x = (x1, x2) is regarded
as a function of x̃ = (x̃1, x̃2)). By the chain rule

φ̃′(x̃) = φ′(x)
∂x

∂x̃
, where

∂x

∂x̃
≡
[
∂x1/∂x̃1 ∂x1/∂x̃2

∂x2/∂x̃1 ∂x2/∂x̃2

]
.

Therefore, the matrix g(x) changes as follows.

(4) g̃(x̃) =
(
φ̃′(x̃)

)t
φ̃′(x̃) =

(
φ′(x)

∂x

∂x̃

)t
φ′(x)

∂x

∂x̃
=

(
∂x

∂x̃

)t
g(x)

∂x

∂x̃
.

Henceforth, we shall regard a parameterisation R2 ⊇ U
φ−→ S as giving

a ‘system of local coördinates’ (x1, x2) on S. Then for each such local
coördinate system, the matrix-valued function g(x) defined by (3) may
be written out in terms of its components g(x) =

(
gab(x)

)
, which are

themselves simply smooth functions on S (defined only where the local
coördinates are themselves defined). In terms of these components, the
transformation (4) reads

g̃ab(x̃) =
2∑
c=1

2∑
d=1

∂xc

∂x̃a
gcd(x)

∂xd

∂x̃b
.

We will abbreviate expressions such as this by omitting the summation
sign and instead using the ‘Einstein summation convention,’ namely
that repeated indices implicitly require that they be summed. Also,
when matrix multiplication is written out explicitly like this, one can
freely reorder the expression. In summary, (4) may be written as

(5) g̃ab = gcd
∂xc

∂x̃a
∂xd

∂x̃b

where all quantities are regarded as smooth function on S. A smooth
manifold is defined by abstractly gluing together open subsets of Rn by
smooth coördinate changes (to obtain a Hausdorff topological space).
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Using (5) as a prototype, there are many tensors that can similarly
be defined on an arbitrary smooth manifold M either operationally or
conceptually as follows (supposing some knowledge of vector bundles).

in Local Coördinates as Vector Bundle

vector field Xa ∂

∂xa
X̃a = Xb∂x̃

a

∂xb

TMy KX
M

1-form ωa dx
a ω̃a = ωb

∂xb

∂x̃a

T ∗My Kω
M

or ω ∈ Λ1

2-form ωab = −ωba ω̃ab = ωcd
∂xc

∂x̃a
∂xd

∂x̃b
ω ∈ Λ2

metric
gab = gba g̃ab = gcd

∂xc

∂x̃a
∂xd

∂x̃b

and (gab) is positive definite

g ∈
⊙2Λ1 (+ve def)

Also notice that the exterior derivative on functions

Λ0 3 f 7−→ df ≡ ∂f

∂xa
dxa

and the action of vector fields on functions

Xf ≡ Xa ∂f

∂Xa
= X df

are coördinate-free and, therefore, intrinsically defined on any smooth
manifold.

5th August 2011
On Rn there are some useful operations that can be defined using

the standard coördinates, namely

(6) Xb 7→ ∂aX
b ≡ ∂Xb

∂xa
and ωb 7→ ∂aωb ≡

∂ωb
∂xa

on vector fields and 1-forms respectively. In fact, these are really the
same operation. Specifically, if we use the standard Euclidean metric
and its inverse on Rn

δab =
{

1 if a = b
0 if a 6= b

δab =
{

1 if a = b
0 if a 6= b

to identify vector fields and 1-forms according to

ωa = δabX
b Xa = δabωb,

then the operations (6) clearly coincide.
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Remarkably, the differential operators (6) on Rn (and the fact that
they agree under the natural identification of vector fields and 1-forms)
generalise to any Riemannian manifold. Indeed, this is the key to a
completely intrinsic proof of Theorema Egregium. Before setting up
this generalisation, however, here is an example that shows the utility
of these operations on Rn.

The operations (6) certainly depend on choice of coördinates. Let’s
see this explicitly on 1-forms. Suppose x̃a is another choice of local
coördinates and recall that ω̃a = ωb(∂x

b/∂x̃a). We compute

∂̃aω̃b =
∂

∂x̃a

(
ωc
∂xc

∂x̃b

)
=
∂ωd
∂x̃a

∂xd

∂x̃b
+ ωc

∂2xc

∂x̃a∂x̃b

=
∂ωd
∂xc

∂xc

∂x̃a
∂xd

∂x̃b
+ ωc

∂2xc

∂x̃a∂x̃b
= ∂cωd

∂xc

∂x̃a
∂xd

∂x̃b
+ ωc

∂2xc

∂x̃a∂x̃b
.

In particular, notice that ∂2xc/∂x̃a∂x̃b is symmetric in a and b. Hence,

∂̃[aω̃b] = ∂[cωd]
∂xc

∂x̃a
∂xd

∂x̃b

where ∂[aωb] ≡ 1
2
(∂aωb−∂bωa) denotes the skew part of ∂aωb. But this is

exactly the operational definition of a 2-form and we have constructed
the exterior derivative, an intrinsic differential operator d : Λ1 → Λ2

on any smooth manifold. It continues with the de Rham complex

(7) Λ0 d−→ Λ1 d−→ Λ2 d−→ Λ3 d−→ · · · d−→ Λn−1 d−→ Λn

intrinsically defined on any smooth n-manifold where the operators d
in local coördinates are given by

Λp 3 ωb···d 7→ ∂[aωb···c] ∈ Λp+1

where, again, square brackets [· · · ] mean to take the skew part over the
indices they enclose. We have generalised the familiar operations of
grad, curl, and div on R3 to coördinate-free operators on an arbitrary
smooth manifold. The sequence (7) is a complex meaning that the
composition of any two consecutive operators is zero.

Just as n×n matrices naturally split into symmetric and skew parts

(8) A = 1
2
(A+ At) + 1

2
(A− At)

so it is natural to consider the symmetric part of ∂aωb, namely

∂(aωb) ≡ 1
2
(∂aωb + ∂bωa),

having seen above that this operator is very much tied to Rn with its
standard coördinates and Euclidean metric. It is the Killing operator
on Rn and its solutions enjoy a geometric interpretation, namely that
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the corresponding vector field be an infinitesimal Euclidean isometry.
We shall come back to this geometric interpretation shortly, but it is
already illuminating to solve ∂(aωb) = 0 explicitly as follows. It is clear
that

∂(aωb) = 0 ⇐⇒ Fab ≡ ∂aωb is skew.

Observe that
Kabc ≡ ∂aFbc = ∂a∂bωc

is skew in bc since Fbc is and symmetric in ab by the equality of mixed
partial derivatives. The following algebraic observation is well-known.

Lemma 1. Suppose Kabc is symmetric in ab and skew in bc. Then it
vanishes.

Proof. We compute

Kabc = Kbac = −Kbca = −Kcba = Kcab = −Kacb = −Kabc

so Kabc = 0, as advertised. �

Thus, we have shown that the Killing equation is equivalent to the
following system

(9)
∂aωb = Fab
∂aFbc = 0

for Fab = F[ab],

which is closed in the sense that all the partial derivatives of all of the
unknown functions ωb and Fbc are determined in terms of the functions
themselves. It is straightforward to solve, firstly for Fab, which must
be constant, and then for ωa to conclude that

ωa = sa +mabx
b for constant tensors sa and mab = −mba.

We shall see later how these solutions correspond to Euclidean motions.
There is a more refined splitting of n× n matrices

A =
(

1
2
(A+ At)− 1

n
(traceA)Id

)
+ 1

2
(A− At) + 1

n
(traceA)Id

into a symmetric trace-free part, a skew part, and a pure-trace part.
Correspondingly, a weaker version of the Killing equation known as
the conformal Killing equation is obtained by requiring only that the
trace-free symmetric part of ∂aωb vanish. We shall write this equation
as ∂(aωb)

◦ = 0. Immediately, it may be rewritten as

∂aωb = Fab + Λδab, where Fab is skew.

Like the Killing equation, this equation has a geometric interpretation.
As the name suggests, it is that the corresponding vector field should
be an infinitesimal conformal symmetry. Pending a full explanation
of this interpretation, let us try to solve it as we did for the Killing
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equation (the general approach being known as ‘prolongation’). As
above, we consider

Kabc ≡ ∂a∂bωc = ∂aFbc + (∂aΛ)δbc,

noting that this tensor is symmetric in ab and has the property that
Ka(bc) = Laδbc for some La. Here is the counterpart of Lemma 1.

Lemma 2. Suppose Kabc satisfies

K[ab]c = 0 and Ka(bc) = Laδbc for some La.

Then Kabc = Laδbc + Lbδac − Lcδab.

Proof. Consider

K̂abc = Kabc − (Laδbc + Lbδac − Lcδab),

noting that K̂abc satisfies the hypotheses of Lemma 1. �

Lemma 2 shows that

∂aFbc = (∂bΛ)δac − (∂cΛ)δab,

which we may rewrite as

∂aFbc = δabQc − δacQb, where ∂aΛ = −Qa.

Now observe that

Kabcd ≡ ∂a∂b∂cωd = ∂a∂bFcd + (∂a∂bΛ)δcd

is symmetric in abc and has the property that Kab(cd) = Labδcd for some
tensor Lab, namely Lab = ∂a∂bΛ = −∂aQb.

Lemma 3. Suppose Kabcd is symmetric in abc and satisfies

Kab(cd) = Labδcd for some Lab (necessarily symmetric).

If n ≥ 3, then Kabcd = 0.

Proof. Lemma 2 implies that Kabcd = Labδcd + Lacδbd − Ladδbc and
because Kabcd is symmetric in ab we conclude that

0 = 2K[ab]cd = Lacδbd − Lbcδad − Ladδbc + Lbdδac.

Tracing this expression over ac gives

0 = Lδbd + (n− 2)Lbd, where L ≡ δabLab.

Tracing over bd now implies L = 0 and if n ≥ 3, then substituting back
implies that Lab = 0, as required. �
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This lemma is just what we need to conclude that ∂aQb = 0 and we
have closure. Specifically, the conformal Killing equation ∂(aωb)

◦ = 0 is
equivalent to the following closed system

(10)
∂aωb = Fab + Λδab

∂aFbc = δabQc − δacQb ∂aΛ = −Qa

∂aQb = 0
for Fab = F[ab].

It follows immediately that the dimension of the solution space is

n+
n(n− 1)

2
+ 1 + n =

(n+ 1)(n+ 2)

2
.

Indeed, the general solution is

ωa = sa +mabx
b + λxa + rbxbxa − 1

2
rax

bxb,

where sa,mab, λ, rb are constant tensors with mab = −mba. We shall
see later how these solutions correspond to conformal motions. In
particular, we shall see how the vector field(

rbxbx
a − 1

2
raxbxb

) ∂

∂xa

corresponds to the family of conformal transformations

xa 7−→
xa − 1

2
tra‖x‖2

1− trbxb + 1
4
t2‖r‖2‖x‖2

, for t ∈ R.

11th August 2011
In this lecture we shall be concerned with the theory of connections

on vector bundles [7]. Connections in this generality will turn out to
be considerably more useful than our initial aim, which is to extend
the differential operator (6) to an arbitrary Riemannian manifold.

A connection on a smooth vector bundle E is a linear differential
operator ∇ : E → Λ1 ⊗ E satisfying the Leibniz rule:–

∇(fσ) = df ⊗ σ + f∇σ for f ∈ Γ(Λ0) and σ ∈ Γ(E).

In particular, the exterior derivative itself d : Λ0 → Λ1 is a connection
on the trivial bundle and the general connection on the trivial bundle
is given by

∇f = df + γf, for any fixed γ ∈ Γ(Λ1).

Locally, a connection on any smooth vector bundle may be constructed
by trivialising the vector bundle E|U ∼= U×RN . Then σ ∈ Γ(U,E) can
be identified with an array (σ1, σ2, · · · , σN) of smooth functions and
∇ : E|U → Λ1 ⊗ E|U defined by

∇(σ1, σ2, · · · , σN) = (dσ1, dσ2, · · · , dσN).
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If ∇ and ∇̃ are connections on E, then so is h∇+ (1− h)∇̃ for any
smooth function h. It follows that local connections may be patched
together by a partition of unity and, therefore, that any smooth vector
bundle will admit a connection. This deals with existence. As far as
freedom is concerned, suppose that ∇ and ∇̃ are two connections on

E and consider Φ ≡ ∇̃ − ∇ : E → Λ1 ⊗ E. It is a homomorphism of
vector bundles, equivalently a differential operator of degree zero. To
see this, note that

Φ(fσ) = ∇̃(fσ)−∇(fσ)

= df ⊗ σ + f∇̃σ − df ⊗ σ − f∇σ
= f∇̃σ − f∇σ = fΦ(σ).

One says that ‘Φ is linear over the functions’ and it follows easily that
Φ is a homomorphism. In summary, if ∇ : E → Λ1⊗E is a connection
then the general connection on E is ∇+Φ, where Φ ∈ Γ(Λ1⊗End(E))
is arbitrary.

A connection ∇ : E → Λ1 ⊗ E induces linear differential operators

∇ : Λk ⊗ E → Λk+1 ⊗ E

(the E-coupled exterior derivative) characterised by a version of the
Leibniz rule, namely

(11) ∇(ω ⊗ σ) = dω ⊗ σ + (−1)kω ∧∇σ.

Notice that this is consistent

∇(fω ⊗ σ) = d(fω)⊗ σ + (−1)kfω ∧∇σ
= df ∧ ω ⊗ σ + fdω ⊗ σ + (−1)kfω ∧∇σ
= dω ⊗ fσ + (−1)kω ∧ df ⊗ σ + (−1)kω ∧ f∇σ
= dω ⊗ fσ + (−1)kω ∧ (df ⊗ σ + f∇σ)
= dω ⊗ fσ + (−1)kω ∧∇(fσ) = ∇(ω ⊗ fσ)

and also that Λk ⊗ E ∇−→ Λk+1 ⊗ E satisfies a Leibniz rule:–

∇(fτ) = df ∧ τ + f∇τ for f ∈ Γ(Λ0) and σ ∈ Γ(Λk ⊗ E).

The composition E
∇−→ Λ1⊗E ∇−→ Λ2⊗E is actually a homomorphism

of vector bundles: one checks it is linear over the functions:–

∇2(fσ) = ∇(df ⊗ σ + f∇σ)
= d2f ⊗ σ − df ∧∇σ + df ∧∇σ + f∇2σ = f∇2σ.

We shall write ∇2 : E → Λ2⊗E as κ ∈ Γ(Λ2⊗End(E)) and call it the
curvature of ∇.
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If two vector bundles E and F are equipped with connections then
the Leibniz rule automatically equips various bundles induced from E
and F with connections, including

E∗ E ⊗ E Λ2E
⊙2E End(E) = E∗ ⊗ E

E ⊗ F Hom(E,F ) = E∗ ⊗ F.
For example, if we denote the canonical pairing between a vector bundle
and its dual by E∗ ⊗ E 3 ρ⊗ σ 7→ ρ σ ∈ Λ0, then

(12) d(ρ σ) = (∇ρ) σ + ρ ∇σ
(another version of the Leibniz rule) characterises ∇ : E∗ → Λ1 ⊗ E∗.

Lemma 4. For the induced connection on End(E) and the coupled
exterior derivative ∇ : Λ2 ⊗ End(E)→ Λ3 ⊗ End(E) we have

∇κ = 0 (the Bianchi indentity).

Proof. Let us consider the composition

(13) Λk ⊗ E ∇−→ Λk+1 ⊗ E ∇−→ Λk+2 ⊗ E.
We find that

∇2(ω ⊗ σ) = ∇(dω + (−1)kω ∧∇σ) = · · · = ω ∧∇2σ.

In other words (13) is nothing other than Id∧ κ : Λk ⊗E → Λk+1⊗E.
Now, let us consider the composition

E
∇−→ Λ1 ⊗ E ∇−→ Λ2 ⊗ E ∇−→ Λ3 ⊗ E.

We can group it in two different ways to conclude that

E
∇−→ Λ1 ⊗ E

κ
y yId ∧ κ

Λ2 ⊗ E ∇−→ Λ3 ⊗ E
commutes. Untangling this conclusion implies ∇κ = 0. �

Now let us view the operation Xb 7→ ∂aX
b from (6) as a connection

on the tangent bundle of Rn and see what is its curvature. Writing T
for the tangent bundle, we see that ∂ : T → Λ1⊗T satisfies the Leibniz
rule so certainly it is a connection. From (11), the induced operator
∂ : Λ1 ⊗ T → Λ2 ⊗ T is characterised by

ωbX
c 7→ ∂[aωb] − ω[a∂b]X

c = ∂[aωb] + ω[b∂a]X
c = ∂[a(ωb]X

c)

and it follows that, in general, Xb
c 7→ ∂[aXb]

c. The curvature is the
composition Xc 7→ ∂bX

c 7→ ∂[a∂b]X
c, which vanishes.

To summarise connections: Leibniz Rules, OK?
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12th August 2011
We shall now specialise our discussion to connections on the tangent

bundle, equivalently the co-tangent bundle. We shall refer to them as
affine connections. Some authors [1] write linear connections instead.

Immediately, a problem arises. We already have a natural linear
differential operator Λ1 → Λ2, namely the exterior derivative. However,
a connection ∇ : Λ1 → Λ1 ⊗ Λ1 gives rise to another one, namely the
composition

Λ1 ∇−→ Λ1 ⊗ Λ1 ∧−→ Λ2.

There is no need for these to agree. However, if we write τ for their
difference, then we see that τ is linear over the functions:–

τ(fω) ≡ (∧ ◦ ∇ − d)(fω)
= ∧(df ⊗ ω + f∇ω)− (df ∧ ω + fdω)
= df ∧ ω + f ∧ ◦∇ω − df ∧ ω − fdω
= f ∧ ◦∇ω − fdω = fτ(ω).

Hence τ : Λ1 → Λ2 is a homomorphism of vector bundles. It is called
the torsion of the affine connection ∇. It is convenient to regard it as a
homomorphism Λ1 → Λ1 ⊗ Λ1 that happens to take values in Λ1 ∧ Λ1.
Then ∇ − τ : Λ1 → Λ1 ⊗ Λ1 is a torsion-free connection canonically
constructed from∇. Henceforth we shall suppose our affine connections
to be torsion-free. Notice that our previous discussion shows that on
any smooth manifold, torsion-free affine connections exist. It is easy
to check that, by sticking with torsion-free connections, other awkward
problems are avoided. For example, ∇ : Λ1 ⊗ T → Λ2 ⊗ T may be
unambiguously defined either by (11) or as the composition

(14) Λ1 ⊗ T ∇−→ Λ1 ⊗ Λ1 ⊗ T ∧⊗Id−−−→ Λ2 ⊗ T,

where ∇ is the induced connection on Λ1 ⊗ T .
From now on, we shall usually adorn connections and tensors with

indices, consistently using upper indices for contravariant tensors such
as vector fields and lower indices for covariant tensors such as k-forms
or metrics. On the one hand, this reflects simply writing everything
in local coördinates. But the consistent distinction between upper and
lower indices means that, instead, we may view the indices as markers
depicting the type of the tensor and incorporate the natural operations
such as skewing, symmetrising, or contracting into the notation by
altering the order of the indices and by viewing the Einstein summation
convention as the natural pairing between vectors and co-vectors. This
is Penrose’s abstract index notation [8].
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By definition, for a torsion-free affine connection ∇a, the exterior
derivative may be written as ωb 7→ ∇[aωb]. If ∇a is torsion-free, the
general torsion-free connection is

∇̃aωb = ∇aωb − Γab
cωc, where Γab

c = Γ(ab)
c.

The corresponding connection on vector fields is

∇̃aX
c = ∇aX

c + Γab
cXb

for then (12) holds for ∇̃a, given that it holds for ∇a:–

(∇̃aX
c)ωc +Xb(∇̃aωb) = (∇aX

c + Γab
cXb)ωc +Xb(∇aωb − Γab

cωc)

= (∇aX
c)ωc +Xb(∇aωb) = ∇a(X

bωb).

The corresponding formula for the induced connection on
⊗2Λ1 is

(15) ∇̃aθbc = ∇aθbc − Γab
dθdc − Γac

dθbd

(because the Leibniz rule allows one readily to verify this formula for
simple tensors θbc = φbψc whence the general case follows by linearity).

The curvature of an affine connection is a tensor R ∈ Γ(Λ2⊗End(T ))
and for a torsion-free connection may be defined by

(16) (∇a∇b −∇b∇a)X
c = Rab

c
dX

d

(tradition dictating that it differ by a factor of 2 from κ defined above).
Notice that we are using that ∇a is torsion-free implicitly on the left
hand side of (16) since then ∇ : Λ1 ⊗ T → Λ2 ⊗ T may be realised as
the composition (14). From (12) it is easily checked that the curvature
on the co-tangent bundle is given by

(∇a∇b −∇b∇a)ωd = −Rab
c
dωc.

Theorem 1. On a Riemannian manifold there is a unique torsion-free
affine connection ‘preserving the metric’ in the sense that ∇agbc = 0
for the induced connection on

⊙2Λ1.

Proof. Fixing an arbitrary torsion-free affine connection ∇̃a, the general
torsion-free affine connection is given by

∇aφb = ∇̃aφb − Γab
cφc for Γab

c = Γ(ab)
c, equivalently Γ[ab]

c = 0.

Let us use (15) to compute

(17) ∇agbc = ∇̃agbc − Γab
dgdc − Γac

dgbd = ∇̃agbc − Γabc − Γacb,

where we are using gab to identify covariant and contravariant tensors
according to Xa ≡ gabX

b and, conversely, ωa ≡ gabωb. Here, we are
denoting by gab the ‘inverse’ of gab, namely gabg

bc = δa
c where δa

c is
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the Kronecker delta, i.e. the canonical pairing between tangent and co-
tangent vectors. (In the vernacular, one speaks of ‘raising and lowering
indices’ and often does this without comment). From (17) we see that
existence and uniqueness of our desired connection boils down precisely
to existence and uniqueness for the following algebraic equations

(18) Γ[ab]c = 0 and Γa(bc) = 1
2
∇̃agbc,

which, in turn, boils down to Lemma 1. To see this, it is convenient to
rephrase Lemma 1 as the statement that

Λ1 ⊗ Λ2 3 Kabc 7−→ K[ab]c ∈ Λ2 ⊗ Λ1

is an isomorphism (precisely, Lemma 1 says that this homomorphism is
injective but these vector bundles clearly have the same rank). To solve

(18) we note that Γabc = 1
2
∇̃agbc −Kabc, where Kabc = Ka[bc], provides

the general solution of the second equation and then Lemma 1 is just

what we need to solve K[ab]c = 1
2
∇̃[agb]c and hence the first equation.

More specifically, the unique solution of (18) is easily seen to be

Γabc = 1
2

(
∇̃agbc + ∇̃bgac − ∇̃cgab

)
(cf. the statement and proof of Lemma 2). �

The connection ∇a from Theorem 1 is called the metric connection or
the Levi-Civita connection associated with gab. It is the basic object in
Riemannian differential geometry [1, 5]. As an aside, we remark that
its construction only depends on the non-degeneracy of gab (meaning

that Xb 7→ gabX
b is an isomorphism T

'→ Λ1) and hence applies equally
well in the Lorentzian setting.

18th August 2011

• Lie derivative by formula, e.g. LXY b = Xa∇aY
b + (∇bX

a)ωa.
• Geometric interpretation of Lie derivative.
• Derivation of Killing equation on vector fields.
• Formal definition of conformal structure via ĝab = Ω2gab.
• Derivation of conformal Killing equation.

19th August 2011

• Conformal change in Levi-Civita connection:–

∇̂aωb = ∇aωb −Υaωb −Υbωa + Υcωcgab, where Υa = (∇aΩ)/Ω.

• Conformal change in Riemann curvature tensor:–

R̂abcd = Ω2
(
Rabcd − (Ξacgbd − Ξbcgad − Ξadgbc + Ξbdgac)

)
,

where Ξab = ∇aΥb −ΥaΥb + 1
2
ΥcΥ

cgab.
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• Decomposition of Riemann curvature tensor:–

R̂abcd = Wabcd + Pacgbd − Pbcgad − Padgbc + Pbdgac,

where Pab is symmetric (the Rho-tensor or Schouten tensor)

and Wabcd is totally trace-free (the Weyl tensor).

• Discussion with Bianchi symmetry. . .

• The Weyl tensor is conformally invariant: Ŵab
c
d = Wab

c
d.

• P̂ab = Pab −∇aΥb + ΥaΥb − 1
2
ΥcΥ

cgab.
• Rabcd obstructs Riemannian flatness for n ≥ 2.
• Wabcd obstructs conformal flatness for n ≥ 4.
• Rabcd = 4K(gacgbd − gbcgcd) in case n = 2.
• The unit 2-sphere has K = 1/4.

25th August 2011

• By stereographic projection, the unit n-sphere has

Rabcd = gacgbd − gbcgad.
• Liouville’s Theorem and formula [3]

xa
p7−→

ma
bx
b − 1

2
sb‖x‖2

1 + rcxc − 1
2
t‖x‖2

, where
λ > 0 ma

b ∈ SO(n)

t = − 1
2λ
‖r‖2 sa = − 1

λ
mabrb.

• Proof by conformal Killing equation.
• Proof by solving ∂aΥb = ΥaΥb − 1

2
ΥcΥ

cδab.
• Proof by conformal circles [2]

2U.U∂Ab − 6U.AAb + 3A.AU b = 0, where ∂ ≡ Ua∂a and Ab ≡ ∂U b.
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