Some Questions on the Course
 Conformal Differential Geometry
 Honours/PhD Special Topics Math3349/6209

Question 1 Show that inverse orthographic projection

$$
\mathbb{R}^{2} \ni(x, y) \mapsto\left(x, y, \sqrt{1-x^{2}-y^{2}}\right) \in \mathbb{R}^{3}
$$

from the unit disc $\left\{(x, y)\right.$ s.t. $\left.x^{2}+y^{2}<1\right\}$ to the round 2 -sphere $\left\{(x, y, z) \in \mathbb{R}^{3}\right.$ s.t. $\left.x^{2}+y^{2}+z^{2}=1\right\}$ is not conformal except at $(0,0)$.

Question 2 Show that the mapping

$$
\mathbb{R}^{2} \ni\binom{x}{y} \longmapsto\binom{x^{3}-3 x y^{2}-x^{2}+4 x y+y^{2}-x-2 y+1}{3 x^{2} y-y^{3}-2 x^{2}-2 x y+2 y^{2}+2 x-y} \in \mathbb{R}^{2}
$$

is conformal except at the points $(1,0)$ and $(0,1)$.
Question 3 Consider a smooth connected n-manifold equipped with a torsion-free affine connection ∇_{a} having curvature $R_{a b}{ }^{c}{ }_{d}$ defined by

$$
\left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) X^{c}=R_{a b}{ }_{d}^{c} X^{d} .
$$

(i) Show that

$$
\nabla_{a} X^{b}-\frac{1}{n} \delta_{a}{ }^{b} \nabla_{c} X^{c}=0 \Longleftrightarrow\left\{\begin{aligned}
\nabla_{a} X^{b} & =\delta_{a}{ }^{b} Y \\
\nabla_{a} Y & =-\frac{1}{n-1} R_{a b} X^{b}
\end{aligned}\right.
$$

where $R_{b d} \equiv R_{a b}{ }^{a}{ }_{d}$.
(ii) Show that

$$
\operatorname{dim}\left\{\sigma_{b c} \text { s.t. } \sigma_{(a b)}=0 \text { and } \nabla_{(a} \sigma_{b) c}=0\right\} \leq \frac{n(n-1)(n+1)}{6} \text {. }
$$

Question 4 Use the definition of the Levi-Civita connection to show that the Riemannian curvature of the surface in \mathbb{R}^{3} defined by

$$
z=\alpha x^{2}+\beta y^{2}+\text { higher order terms }
$$

is given by

$$
R_{a b c d}=4 \alpha \beta\left(g_{b c} g_{a d}-g_{b c} g_{a d}\right) \quad \text { at the origin. }
$$

Question 5 Solve the partial differential equations

$$
\partial_{a} \Upsilon_{b}=\Upsilon_{a} \Upsilon_{b} \quad \text { and } \quad \partial_{a} \Upsilon_{b}=\Upsilon_{a} \Upsilon_{b}-\frac{1}{2} \Upsilon_{c} \Upsilon^{c} \delta_{a b}
$$

in \mathbb{R}^{n} for $n \geq 2$.

