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CHAPTER 1

Introduction

This year I will take a slightly different approach to the material. The main
reference will be the 1998 Notes, but adjusted as indicated in the current Notes.

The main difference this year is that sequences will be introduced earlier and
will play a more central role. One still gets the same results in the end, but I think
the main ideas will be easier to understand in this manner.
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CHAPTER 2

The Real Number System

Sections 2.1–3
As before.

Section 2.4
Omit this section.

Thus at this stage we assume the real number system satisfies Axioms 1–13.
All the usual properies of addition, multiplication, subtraction, division, and of
inequalities, are consequences

As noted in Remark 2.6(98), the set of rational numbers also satifies Axioms
1–13, and hence have all these same properties. (However, certain existence prop-
erties, such as the existence of a number x for which x2 = 2, are not true of the
rationals, see Section 5.)

We will introduce the Completeness Axiom after we discuss sequences. It will
be in a different, but equivalent, form to that in the 98 Notes. The Completeness
Axiom is true for the set of real numbers but the analogous statement is not true
for the set of rational numbers.

Section 2.5
In the summary, omit everything except the first sentence “We prove that

√
2

is irrational”.
Omit everything in Section 2.5 from Theorem 2.12 onwards, leaving only The-

orem 2.11 which shows that
√

2 is irrational. More precisely, what Theorem 2.11
proves is that if there is a number whose square is 2 then that number cannot be
rational.

( One cannot prove from Axioms 1–13 that there is a positive number whose
square is 2. The reason is that Axioms 1–13 also hold for the rational numbers, and
so if we could prove this fact then it would also be true in the rational numbers,
i.e. there would be a a positive rational number whose square is 2. But this would
contradict Theorem 2.11. )

Sections 2.6–10
As before. Note that the last three sections are marked F, i.e. extra non-

examinable material to put the other material in a broader context.

CHAPTER 3

LIMITS

Omit this chapter. We will return to it later, after first treating sequences.
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CHAPTER 4

Sequences

This replaces the chapter from the 98 Notes.
The reference for this chapter is [Adams, Section 10.1], but we do considerably more

material than this. Another reference is Chapter 2 of Fundamentals of Analysis by Michael
Reed; this book will also be the text for the second year course “Analysis and its applica-
tions” beginning next year.

4.1. Examples of sequences

We introduce the idea of a sequence and give a few examples.

• A sequence is an infinite list of numbers with a first, but no last, element. Simple
examples are

1, 2, 1, 3, 1, 4, . . .

1,
1

2
,
1

3
, . . .

1,−1, 1,−1, 1, . . .

• A sequence can be written in the form

a1, a2, a3, . . . , an, . . . .

• More precisely, a sequence is a function f whose domain is the set of natural
numbers, where in the above example f(n) = an. We often just write (an) or (an)n≥1 to
represent the sequence.

• If the pattern is clear, we may just write the first few terms, as in the first three
examples above.

• The general term an may instead be given by a formula, such as

an =
(
1 +

1

n

)n
,

which gives the sequence

1 + 1,
(
1 +

1

2

)2

,
(
1 +

1

3

)3

, . . . .

• A sequence may be given by a method for calculating each element of the sequence
in terms of preceding elements. One example is the Fibonacci sequence

a1 = 1, a2 = 1, an = an−1 + an−2 if n ≥ 3.

Hence the sequence is

1, 1, 2, 3, 5, 8, 13, 21, . . . .

• Sometimes it is convenient to write a sequence in the form

ak, ak+1, ak+2, . . .

where k is some other integer than 1 (e.g. 0).

• One can represent a sequence by its graph. For example the sequence
(
(−1)n+1/n2

)
,

i.e. (1,−1/4, 1/9,−1/16, . . . ) has graph
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where the vertical scale is somewhat distorted. However, this is not usually useful. It is
often more helpful to think of a sequence geometrically in terms of points on the real line.

4.2. Limit of sequences

We discuss the idea of the limit of a sequence and give the precise definition.
We give some examples.

We are interested in the behaviour of sequences (an)n≥1 for large n. The idea is that
“the sequence (an)n≥1 converges to the limit a” if the terms of the sequence get closer
and closer to a as n gets larger and larger. This is not exactly what we want, as the terms
of the sequence

a1 = 1, a2 = 1
1

2
, a3 = 1

2

3
, a4 = 1

3

4
, . . .

get closer and closer to 2, but also to 3 (for example), as n gets larger and larger. Also,
the sequences

1, 1 +
1

2
, 1− 10−3, 1 +

1

4
, 1− 10−5, 1 +

1

6
, 1− 10−7, . . . ,

1, 1 +
1

2
, 1 + 10−3, 1 +

1

4
, 1 + 10−5, 1 +

1

6
, 1 + 10−7, . . . ,

both converge to 1, but the distance |an−1| between an and 1 is not a decreasing function
in either case.

A more precise version of what we mean by “the sequence (an)n≥1 converges to the
limit a” is that beyond some term in the sequence, all terms are within .1 of a; beyond a
further point in the sequence all terms are within .01 of a; beyond a further point in the
sequence all terms are within .001 of a; etc.

For example, we may have

|an − a| ≤ .1 if n ≥ 50,

|an − a| ≤ .01 if n ≥ 300,

|an − a| ≤ .001 if n ≥ 780,

etc.
More precisely:

no matter which positive number is chosen (let’s call it ε), there is always
an integer (let’s call it N , or N(ε) to emphasise that it may depend
on ε), such that the Nth and all later members of the sequence are
within ε of a.

In the above situation we could choose N as follows:
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ε N

.1 50

.01 300

.001 780

For example, according to this criterion, the sequence 1,−1/4, 1/9,−1/16, . . . con-
verges to 0, the sequence 1, 1

2
, 1

3
, . . . converges to 0, the sequence 1,−1, 1,−1, 1, . . . does

not converge (it “oscillates back and forth between ±1”), the sequence 1, 2, 1, 3, 1, 4, . . .
does not converge and the sequence 1, 4, 9, 16, . . . also does not converge (we sometimes
say that it “diverges to +∞”).

Often it is not clear whether or not a sequence converges. For example, it is not
immediately clear if the sequences

(
(1 + 1

n
)n
)
n≥1

,
(
n sin 1

n

)
n≥1

, or the sequence given by

a1 = 1 and an+1 = 1
2
an + 2 for n ≥ 1, will converge. For this and more complicated

examples we need a precise definition of convergence. Also, in order to prove general
theorems about convergent sequences, we need to have a precise definition.

The following definition makes our previous idea very precise.

Definition 4.1. We say that the sequence (an) converges to a limit a, and write

lim an = a, or an → a,

if for every positive number ε there exists an integer N such that

n ≥ N implies |an − a| ≤ ε.(4.1)

Note that |an − a| ≤ ε is equivalent to an ∈ [a − ε, a − ε]. Thus another way of
expressing the definition is “for every interval [a − ε, a + ε] (provided ε > 0) there is an
integer N such that all members of the sequence from the Nth onwards belong to this
interval”.

We sometimes say an converges to a as n approaches ∞ and write

lim
n→∞

an = a or an → a as n→∞.

(Note that ∞ is not a number, and the symbol ∞ by itself here has no meaning, just as
→ has no meaning by itself.)

Example 4.2. Show that the sequence given by an = 1+ 1
n2 converges to 1 according

to the definition.

Solution. Let ε > 0 be given.
We want to find N such that (4.1) is true with a = 1. But

|an − 1| = 1

n2
.

Since

1

n2
≤ ε if n2 ≥ 1

ε
,

i.e.

if n ≥ 1√
ε
,

we can take N to be any integer ≥ 1/
√
ε, e.g. take

N =

[
1√
ε

]
+ 1,

where [ ] denotes “the integer part of”.

Thus if ε = .1 we can take any integer N ≥ 1/
√
.1, for example N = 4 (or anything

larger). If ε = .01 we can take N = 10 (or anything larger). If ε = .001 we can take
N = 32 (or anything larger). But the above proof works of course for any ε > 0.
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Example 4.3. We previously mentioned the sequence given by a1 = 1, and an+1 =
1
2
an + 2 for n ≥ 1.

The first few terms are

1, 2.5, 3.25, 3.625, 3.8125, 3.90625, 3.953125, 3.9765625, . . . .

It seems reasonable that the sequence is converging to 4. One way to prove this is as
follows.

Proof. Let ε > 0 be given.
We want to find N such that1

n ≥ N ⇒ |an − 4| ≤ ε.(4.2)

We have a formula for an+1 in terms of an, and we first use this to get a formula for
|an+1 − 4| in terms of |an − 4|. Thus

|an+1 − 4| =
∣∣∣1
2
an + 2− 4

∣∣∣ =

∣∣∣1
2
an − 2

∣∣∣ =

∣∣∣1
2
(an − 4)

∣∣∣ =
1

2
|an − 4|.

Thus |a1 − 4| = 3, |a2 − 4| = 3/2, |a3 − 4| = 3/22, |a4 − 4| = 3/23, . . . . In general2

|an − 4| = 3/2n−1.
It follows that

|an − 4| ≤ ε for those n such that
3

2n−1
≤ ε.

This last inequality is equivalent to 2n−1/3 ≥ 1/ε, i.e. 2n−1 ≥ 3/ε, i.e. (n − 1) ln 2 ≥
ln(3/ε), i.e. n ≥ 1 + ln(3/ε)/ ln 2.

Hence (4.2) is true for

N = 1 +

[
ln 3

ε

ln 2

]
.

You may object that we used ln, the natural logarithm, in the previous example, but
we have not yet shown how to define logarithms and establish their properties from the
axioms. This is a valid criticism. But in order to have interesting examples, we will often
do this sort of thing.

However, we will not do it when we are establishing the underlying theory. In partic-
ular, the development of the theory will not depend on the examples.

Example 4.4. Show that limn→∞
c
np

= 0 for any real number c and any p > 0.

Solution. (See [Adams, Example 4, page 522]). Let ε > 0 be given. Then∣∣∣ c
np

∣∣∣ ≤ ε if np ≥ |c|
ε
, i.e. if n ≥

(
|c|
ε

)1/p

.

Thus we can take any integer N ≥
( |c|
ε

)1/p
, and it then follows that∣∣∣ c

np

∣∣∣ ≤ ε if n ≥ N.

This implies the required limit exists and equals zero.

Remark 4.5. Have a look again at (4.1) and compare the four statements

n ≥ N implies |an − L| ≤ ε,
n ≥ N implies |an − L| < ε,

n > N implies |an − L| ≤ ε,
n > N implies |an − L| < ε.

1We will often write “⇒” for “implies”.
2This could easily be proved by induction, but it is not necessary to do so.
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These statements are certainly not equivalent. However, the following four statements are
equivalent!

for every positive number ε there exists an integer N such that

n ≥ N implies |an − a| ≤ ε,
for every positive number ε there exists an integer N such that

n ≥ N implies |an − a| < ε,

for every positive number ε there exists an integer N such that

n > N implies |an − a| ≤ ε,
for every positive number ε there exists an integer N such that

n > N implies |an − a| < ε.

Do you see why? I will discuss this in class. Which version does Adams use?

If the sequence (an) does not converge, we say that it diverges. This may happen in
various ways. There are three examples in the first paragraph on page 4.

There is a special case that is important. This is as in the following definition where
for each real number K, an ≥ K for all sufficiently large n. Note that of all the examples
in the first paragraph on page 4, this only occurs for the last of these examples.

Definition 4.6. The sequence (an) diverges to +∞ if for each real number K there
is an integer N such that

an ≥ K for all n ≥ N.
We write an →∞ or lim an =∞.

Similarly, (an) diverges to −∞ if for each real number K there is an integer N such
that

an ≤ K for all n ≤ N.
We write an → −∞ or lim an = −∞.

(In the case an →∞, think of K as large and positive. In the case an → −∞, think
of K as large and negative.)

Note, by the way, that we never say “(an) converges to∞” or “(an) converges to−∞”.

Example 4.7. Show from the definition that 2n →∞.

Proof. Let K be any (positive) real number.
We want to show that for all sufficiently large n, 2n ≥ K. But this inequality

is equivalent to n ln 2 ≥ lnK, which is equivalent to n ≥ lnK/ ln 2. Hence if we let

N = 1 +
[

lnK
ln 2

]
, this last inequality is true whenever n ≥ N . Hence

n ≥ N ⇒ 2n ≥ K.
This means 2n →∞.

Note that if an →∞ then 1/an → 0 (assuming an 6= 0 in order that 1/an is defined).
This follows from the definitions, because |1/an| ≤ ε is equivalent to |an| ≥ 1/ε. But the
latter is true for all sufficiently large n since an → ∞, and so the former is also true for
all sufficiently large n.

4.3. The Archimedean Axiom

If you look at the 1998 Calculus Notes, Section 2.4, you will see that there is another
axiom, the Completeness Axiom, as well as the Algebraic and Order axioms for the ral
numbers.

In these Notes, we take a different approach, and instead of the Completeness Axiom
we introduce two axioms:
• The Archimedean Axiom,
• The Cauchy Completeness Axiom.
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The second will be discussed in a later section and the first will be discussed here.

It can be shown that no more axioms are necessary. More precisely, it can be shown
that any two models of all the axioms are essentially the same (more precisely, they are
“isomorphic”). If you are adventurous, this is discussed in the last Chapter of the book
Calculus by Michael Spivak.

It can also be proved that these two axioms together are equivalent to the Complete-
ness Axiom used in the 1998 Notes. More precisely, using just the algebraic and order
axioms, one can prove that

1. (Archimedean Axiom + Cauchy Completeness Axiom) ⇒ Completeness Axiom,
2. Completeness Axiom ⇒ (Archimedean Axiom + Cauchy Completeness Axiom).

If you are very adventurous, see the book Kripke, Introduction to Analysis, p38 Q’s 9 &10,
where the equivalence is essentially set as an (advanced) exercise.

Here then is the Archimedean Axiom:

Axiom (Archimedean Axiom). For every real number x there is a natural number
n such that |x| ≤ n.

Here is a simple consequence. If |x| ≤ n, then by properties of inequalities, |x| < n+1,
|x| < n+ 2, etc. In particular, we can find natural numbers strictly greater than |x|.

While the axiom may seem obvious, and indeed it is clearly true for the model of the
real numbers which we have in our mind, it does not actually follow from the algebraic
and order axioms, as I discuss below in a starred comment.

One difference between the Archimedean Axiom and the Algebraic and Order Axioms
is as follows. The Algebraic and Order Axioms are either of the form

1. for all real numbers, some elementary property (such as a+b = b+a, or a+0 = a,
or a < b ⇒ a + c < b + c) is true, where “elementary” means that the property
does not involve any further “quantifiers” (i.e. expressions of the form “for all” or
“there exists”); or are one of the

2. additive or multiplicative inverse axioms, in which case the real number which is
asserted to exist is in fact unique.

On the other hand, the natural number n asserted to exist by the Archimedean Axiom
for each real number x is certainly not unique. If |x| ≤ n is true, then n may be replaced
by any larger natural number. Moreover, the set N of natural numbers (which is needed
in the statement of the Archimedean Axiom) also involves a certain level of complexity in
its (precise) definition; see the last exercise in Chapter 2 of Spivak.

There is one immediate consequence of the Archimedean Axiom which is quite im-
portant.

Corollary 4.8. For every real number ε > 0 there is a natural number N such
that 1/N ≤ ε.

Proof. Suppose ε > 0. From the Archimedean Axiom there is a natural number N
such that N ≥ 1/ε. From properties of inequalities it follows that 1/N ≤ ε.

Consider the ε and N as in the Corollary. If n ≥ N then 1/n ≤ 1/N (by properties
of inequalities). Since 1/N ≤ ε it follows that

n ≥ N ⇒ 1/n ≤ ε.

Since ε > 0 was an arbitrary positive number, this is the same as asserting 1/n→ 0. Thus
we have used the Archimedean Axiom to prove 1/n→ 0.(

F By essentially arguing in the reverse direction we can also prove the converse;

namely that the statement 1/n→ 0 implies the Archimedean Axiom. Thus if we assume
just the algebraic and order axioms, the statement 1/n → 0 is in fact equivalent to the

Archimedean Axiom.
)
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So now I am forced to confess that I cheated in the previous section.3 In each of Ex-
amples 4.2–4.4, 4.7 there was a hidden application of the Archimedean Axiom somewhere
in the last three lines of the solution. Find the hidden application for Easter.

F The fact that the Archimedean Axiom is necessary, in the sense that it does not
follow from the previous axioms, is a consequence of the fact that there are models of
the algebraic and order axioms which do not satisfy the Archimedean Axiom. They are
sometimes called the Hyper-reals!

Part of any such model looks like a “fattened up” copy of R, in the sense that it
contains a copy of R together with “infinitesimals” squeezed between each real a and all
reals greater than a. This part is followed and preceded by infinitely many “copies” of
itself, and between any two copies there are infinitely many other copies. See the following
crude diagram.

Remark 4.9. The main point to remember from this section is that in specific ex-
amples where we have to show that for any real number of a given form (such as 1√

ε
in

Example 4.2) there is always an integer N at least as large (N will depend of course on
the particular real number 1√

ε
), the Archimedean Axiom is probably needed. You should be

aware of this, but after a few more examples we will adopt our previous cavalier attitude
and not explicitly note when the axiom is needed.

4.4. Properties of limits

We prove that limits of sequences behave as we expect under addition, sub-
traction, multiplication and division, and we prove the Squeeze Theorem.

It is not usually not very efficient to use the definition of a limit in order to prove that
a sequence converges. Instead, we prove a number of theorems which will make things
much easier.

The first theorem shows that if two sequences converge, then so does their sum,
and moreover the limit of the new sequence is just the sum of the limits of the original
sequences. The theorem may be written more briefly as:

if an → a and bn → b then an + bn → a+ b .

Note that the theorem has two claims; first that (an + bn) is convergent, and second that
the actual limit is a+ b.

The result is not very surprising, since if an is getting close to a and bn is getting
close to b then we expect that an + bn is getting close to a + b. So you may consider

3I promise not to do it again, and I only cheated in the examples, not in definitions or
theorems.
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the theorem as a partial justification that Definition 4.1 does indeed capture the informal
notion of a limit.

Notice in the (rather subtle and elegant) proof how the definition of a limit is used
three times; once to get information from the fact an → a, once to get information from
the fact bn → b, and finally to deduce that an + bn → a+ b.

By the way, why do we use ε/2 in (4.3) and (4.4), and why is this justifiable by
Definition 4.1?

Theorem 4.10. Suppose (an) and (bn) are convergent sequences with limits a and b
respectively. Then (an + bn) is a convergent sequence, and its limit is a+ b.

Proof. Let ε > 0 be given.
Since an → a there exists an integer N1 (by Definition 4.1) such that

n ≥ N1 implies |an − a| ≤ ε/2.(4.3)

Since bn → b there exists an integer N2 (again by Definition 4.1) such that

n ≥ N1 implies |bn − b| ≤ ε/2.(4.4)

It follows that if n ≥ max{N1, N2} then

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b| by the triangle inequality

≤ ε

2
+
ε

2
by (4.3) and (4.4)

= ε.

It follows from Definition 4.1, with N = max{N1, N2}, that (an + bn) converges and
the limit is a+ b.

The next easy result is useful in a number of situations. It is certainly not true in
general, consider for example the sequence

1, 2, 3, 4, . . . .

Theorem 4.11. Suppose an → a. Then the sequence is bounded; i.e. there is a real
number M such that |an| ≤M for all n.

Proof. From the definition of convergence, taking ε = 1, there is an integer N such
that

a− 1 ≤ an ≤ a+ 1 for all n ≥ N.(4.5)

Fix this N . Since the set of terms

a1, a2, . . . , aN−1

is finite, it follows that there exist real numbers M1 and M2 such that

M1 ≤ an ≤M2 for all n < N.(4.6)

(Just take M1 = min{a1, a2, . . . , aN−1} and M2 = max{a1, a2, . . . , aN−1}.)
From (4.5) and (4.6),

M∗1 ≤ an ≤M∗2 for all n,

where M∗1 = min{a− 1,M1}, M∗2 = max{a+ 1,M2}.
The required result follows by taking M = max{|M∗1 |, |M∗2 |}.

The standard properties about products, quotients etc. of convergent sequences can
all be similarly established. We state them together in the following theorem (which
includes Theorem 4.10). The proofs are F material and are at the end of this section.
But you should try to understand them, and I will discuss them in class.
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Theorem 4.12. Suppose

lim an = a, lim bn = b,

and c is a real number. Then the following limits exist and have the given values.

lim an ± bn = a± b,
lim can = ca,

lim anbn = ab,

lim
an
bn

=
a

b
, assuming b 6= 0 and bn 6= 0 for each n.

Example 4.13. Let an =
(
1 + 1√

n

)2

− (1 + 2−n).

We can prove directly from the definition of convergence that 1√
n
→ 0 and 2−n → 0.

It then follows from the previous theorem that 1+ 1√
n
→ 1 (since we can think of 1+ 1√

n
as

obtained by adding the term 1 from the constant sequence (1) to the term 1√
n
). Applying

the theorem again,
(
1 + 1√

n

)2

→ 1. Similarly, 1 + 2−n → 1.

Hence (again from the theorem) an → 0.

Example 4.14. Let an = 2n2−1
3n2−7n+1

.

Write

2n2 − 1

3n2 − 7n+ 1
=

2− 1
n2

3− 7
n

+ 1
n2

.

Since the numerator and denominator converge to 2 and 3 respectively, it follows an → 0.

The next theorem says that a sequence cannot have two distinct limits. It is not
surprising of course, but note how it does follow from the actual definition of a limit.

Theorem 4.15. Suppose an → a and an → b. Then a = b.

Proof. Assume (in order to obtain a contradiction) that a 6= b. Take ε = |a−b|/3 in
the definition of a limit, Definition 4.1. (For motivation, look at the following diagram).

Since an → a, it follows that

an ∈ [a− ε, a+ ε](4.7)

for all sufficiently large n, say for n ≥ N1.
Since an → b, it follows that

an ∈ [b− ε, b+ ε](4.8)

for all sufficiently large n, say for n ≥ N2.
But this implies

an ∈ [a− ε, a+ ε] and an ∈ [b− ε, b+ ε]

for all n ≥ max{N1, N2}, which is impossible as ε = |a− b|/3.
Thus the assumption a 6= b led to a contradiction and so a = b.

The following theorem says that if a sequence is “squeezed” between two sequences
which both converge to the same limit, then the original sequence also converges, and it
converges to the same limit.

Theorem 4.16. Suppose an ≤ bn ≤ cn for all n (or at least for all n ≥ N for some
N). Suppose an → L and cn → L as n→∞. Then bn → L as n→∞.
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Proof. Let ε > 0 be given. (For motivation, look at the following diagram).

Since an → L there is some integer N1 such that

n ≥ N1 ⇒ an ∈ [L− ε, L+ ε].(4.9)

Since cn → L there is some integer N2 such that

n ≥ N2 ⇒ cn ∈ [L− ε, L+ ε].(4.10)

Let N be the larger of N1 and N2, i.e. let N = max{N1, N2}. Then since an ≤ bn ≤ cn
it follows from (4.9) and (4.10) that

n ≥ N ⇒ bn ∈ [L− ε, L+ ε].

But ε was an arbitrary positive number, and so it follows that bn → L.

Example 4.17. Consider the sequence 3 + (sin cosn)/n.
Since −1 ≤ sinx ≤ 1, it follows that 3 − 1/n ≤ 3 + (sin cosn)/n ≤ 3 + 1/n. But

3− 1/n→ 3 and 3 + 1/n→ 3. Hence 3 + (sin cosn)/n→ 3.

We finish this section with the promised proofs of the algebraic properties of limits.
Try to understand the ideas, although the material is F (well, sort of 1

2
F).

F Proof of Theorem 4.12.

• We first establish the result for can.
Let ε > 0 be any positive number. We want to show

|can − ca| ≤ ε
for all sufficiently large n.

Since an → a there exists an integer N such that

|an − a| ≤ ε/|c| for all n ≥ N.
(This assumes c 6= 0. But if c = 0, then the sequence (can) is the sequence all of whose
terms are 0, and this sequence certainly converges to ca = 0.) Multiplying both sides of
the inequality by |c| we see

|can − ca| ≤ ε for all n ≥ N,
and so can → ca by the definition of convergence.

• The result for an − bn now follows easily. Just note that

an − bn = an + (−1)bn.

But (−1)bn → (−1)b by the previous result with c = −1, and so the result now follows
from Theorem 4.10 about the sum of two sequences.

• The result for anbn uses Theorem 4.11 in the proof.
As usual, let ε > 0 be any positive number. We want to show that

|anbn − ab| ≤ ab
for all n ≥ some N .

To see how to choose N , write

|anbn − ab| = |anbn − anb+ anb− ab|
= |an(bn − b) + b(an − a)|
≤ |an(bn − b)|+ |b(an − a)|
= |an| |bn − b|+ |b| |an − a|.

(4.11)

(This trick of adding and subtracting the same term, here it is anb, is often very useful.)
We will show that both terms are ≤ ε/2 for all sufficiently large n.
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For the second term |b| |an − a|, the result is certainly true if b = 0, since the term is
then 0. If b 6= 0, since an → a, we can choose N1 such that

|an − a| ≤
ε

2|b| for all n ≥ N1,

and so

|b| |an − a| ≤
ε

2
for all n ≥ N1.(4.12)

For the first term |an| |bn − b|, we use Theorem 4.11 to deduce for some M that
|an| ≤ M for all n. By increasing M if necessary take M 6= 0. By the same argument as
for the second term, we can choose N2 such that

M |bn − b| ≤
ε

2
for all n ≥ N2,

and so

|an| |bn − b| ≤
ε

2
for all n ≥ N2.(4.13)

Putting (4.11), (4.12) and (4.13) together, it follows that if n ≥ N , where N =
max{N1, N2}, then

|anbn − ab| ≤
ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, this proves anbn → ab.

• We can prove that an/bn → a/b by first showing 1/bn → 1/b and then using the
previous result about products of sequences.

We first prove the Claim: there is some number K > 0 such that |bn| > K for all n.
The proof is similar to that in Theorem (4.11), and goes as follows:

Since b 6= 0 we can choose ε = |b|/2 (> 0) in the definition of convergence and deduce
that for some integer N1,

n ≥ N1 ⇒ |bn − b| ≤ |b|/2,
and so in particular

n ≥ N1 ⇒ |bn| ≥ |b|/2.
Next let

c = min{|b1|, . . . , |bN−1|}.
Then

n < N1 ⇒ |bn| ≥ c,
where c > 0 since |b1|, . . . , |bN−1| > 0.4

Putting the previous results together, and letting K = min{c, |b|/2} > 0, we see

|bn| ≥ K(4.14)

for all n. This establishes the Claim.

We now proceed with the proof that 1/bn → 1/b. For this let ε > 0 be any positive
number.

In order to see how to choose N in the definition of convergence, we compute∣∣∣ 1

bn
− 1

b

∣∣∣ =
|b− bn|
|bn| |b|

≤ |b− bn|
K |b| ,(4.15)

where for the inequality we have replaced |bn| by the smaller (but still positive) number
K in (4.14).

Since bn → b we can find an integer N such that for all n ≥ N ,

|b− bn| ≤ K |b| ε.

4This is an important point. If we have an infinite set of numbers, such as
{1, 1/2, 1/3, . . . , 1/n, . . . }, all of which are > 0, then there may not be a minimum member of
the set. In fact for this example, if c ≤ 1/n for all n, we have to take c = 0 (or c < 0), not c > 0.
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It follows from (4.15) that if n ≥ N then∣∣∣ 1

bn
− 1

b

∣∣∣ ≤ ε.
Since ε > 0 was arbitrary, it follows that 1/bn → 1/b.

Since an → a, it now follows from the result for products that an/bn → a/b.

4.5. Cauchy sequences

A sequence converges iff it is Cauchy. This gives a criterion for convergence
which does not require knowledge of the limit. We deduce that a bounded
monotone sequence is convergent.

Is there a method (or criterion) for telling if a sequence (an) converges, if we do not
know the actual limit? Definition 4.1 does not help, as it involves the limit a. But there
is indeed such a criterion, and it is due to Cauchy,

Loosely speaking, the Cauchy criterion says that if we go far enough out in the
sequence then we can make the members of the sequence as close to each other as we like.
The previous sentence is vague and ambiguous, and you should never ever say or write
anything like that in a mathematical argument. What I mean is that for each ε > 0 there
is an N such that any two members of the sequence from the Nth onwards are within ε
of each another. More precisely:

Definition 4.18. A sequence (an) is a Cauchy sequence if for each number ε > 0
there exists an integer N such that

|am − an| ≤ ε whenever m ≥ N and n ≥ N.

If the condition in the above definition is true, that is if the sequence (an) is Cauchy,
we sometimes write:

|am − an| → 0 as m,n→∞.

Example 4.19. Show that the sequence an = 2n−1
n+3

is Cauchy.

Solution. Let ε > 0 be given.
In order to find N as in the definition, we compute

|am − an| =
∣∣∣2m− 1

m+ 3
− 2n− 1

n+ 3

∣∣∣
=

∣∣∣∣ 7(m− n)

(m+ 3)(n+ 3)

∣∣∣∣
≤
∣∣∣∣ 7m

(m+ 3)(n+ 3)

∣∣∣∣+ ∣∣∣∣ 7n

(m+ 3)(n+ 3)

∣∣∣∣
≤ 7

n+ 3
+

7

m+ 3
since

m

m+ 3
≤ 1 and

n

n+ 3
≤ 1

≤ 7

n
+

7

m
.

Next we note that 7
n
≤ ε

2
provided n ≥ 14

ε
, i.e. provided n ≥ N where N =

[
14
ε

]
+ 1.

Similarly, 7
m
≤ ε

2
provided m ≥ N .

It follows that

|am − an| ≤ ε whenever m,n ≥ N.
Hence the sequence is Cauchy.

It is important to realise that the definition requires more than just that consecutive
members of the sequence from the Nth onwards are within ε of each other.

For example, it is not too hard to see from the “graph” of the function
√
x that the

following statement is true:
for each number ε > 0 there exists N such that

n ≥ N implies |
√
n+ 1−

√
n| ≤ ε.
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(The main point is that the slope of the graph is 1/
(
2
√
x
)
, and so is very small when x

is very large.) The algebraic proof is in footnote5.
On the other hand, it is clear that the next statement is false:

for each number ε > 0 there exists N such that

m,n ≥ N implies |
√
m−

√
n| ≤ ε.

The algebraic proof is in footnote6.

The major fact in this section is:

a sequence converges iff it is Cauchy.(4.16)

One direction of (4.16), the fact that a convergent sequence is Cauchy, is easy to
prove.

Theorem 4.20. If a sequence converges then it is Cauchy.

Proof. Suppose an → a. Let ε > 0 be given.
In order to find N as in the definition of a Cauchy sequence, we write

|am − an| = |(am − a) + (a− an)| ≤ |am − a|+ |an − a|.(4.17)

Since an → a there exists an integer N such that |an − a| ≤ ε/2 whenever n ≥ N (and
what is the same thing, |am − a| ≤ ε/2 whenever m ≥ N). Hence

|am − an| ≤
ε

2
+
ε

2
= ε whenever m,n ≥ N.

This proves that (an) is Cauchy.

It turns out that the other direction of (4.16), that every Cauchy sequence is conver-
gent, does not follow from the axioms so far, and so must be assumed as an extra (and
final!) axiom.

Axiom (Cauchy Completeness Axiom). If a sequence is Cauchy then it is con-
vergent.

The Cauchy Completeness Axiom says, informally, that any sequence which is “trying
to converge”, really does have something to converge to, and so is indeed convergent in
the sense of Definition 4.1. That is, there are no “gaps” in the real numbers.

F The analogous statement is not true for the rational numbers. That is, if a sequence
of rational numbers is Cauchy, then it is not necessarily true that the sequence will converge
to a rational number. (Of course, it will converge to a real number — this is just what
the axiom says — but the limit may be irrational.)

5To show that
∣∣√n+ 1−

√
n
∣∣ ≤ ε for all sufficiently large n, we compute

√
n+ 1−

√
n =

√
n+ 1 +

√
n√

n+ 1 +
√
n

(√
n+ 1−

√
n
)

=
(n+ 1)− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

≤ 1
√
n
.

It follows that
√
n+ 1−

√
n ≤ ε if 1√

n
≤ ε, i.e. if n ≥ 1

ε2
.

6It is very important to realise that the statement is false means there is some (“bad”) ε > 0
for which there is no N such that

m,n ≥ N implies |
√
m−

√
n| ≤ ε.

Thus we have to find just one “bad” ε.
But ε = 1 is bad since there is certainly no N such that

m,n ≥ N implies |
√
m−

√
n| ≤ 1.

Thus we have shown the required statement is false! (In fact, in this case any ε > 0 will be “bad”.)
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For example, take any sequence (an) of rational numbers which converges to
√

2 (we

saw in Section 2.5 that
√

2 cannot be rational). One example of such a sequence is obtained

from the decimal expansion of
√

2 = 1.414213562 . . . ; thus we can take the sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, . . . .(4.18)

This sequence of rational numbers converges, and so is Cauchy by Theorem 4.20. But it
does not converge to a rational number. Thus the analogue of the Cauchy Completeness
Axiom is not true in the rational numbers.

In particular, we now see that the Cauchy Completeness Axiom cannot follow from
the other algebraic, order and Archimedean axioms. The analogues of all these other
axioms hold for the rational numbers. But the analogue of the Cauchy Completeness
Axiom does not hold for the rational numbers.

We have now come to the end of the list of axioms. They are the algebraic, order,
Archimedean and Cauchy Completeness axioms. (To compare the approach here with that
in the 1998 Calculus Notes, go back and reread the first four paragraphs in Section 4.3.)

Throughout the rest of the course, we will rarely indicate when we are using the
algebraic, order or Archimedean axioms, but we will usually remark if we are using the
Cauchy Completeness axiom.

We next show that if a sequence is bounded and increasing (or decreasing) then it is
convergent. We do this by proving that such a sequence is Cauchy, and then we use the
Cauchy Completeness Axiom to show that the sequence is convergent.

First we give a definition.

Definition 4.21. A sequence (an)n≥1 is monotone increasing if an ≤ an+1 for all
n ≥ 1. It is is monotone decreasing if an ≥ an+1 for all n ≥ 1.

Thus the sequences 1, 1, 2, 2, 3, 3, . . . and 1/2, 2/3, 3/4, 4/5, . . . are both monotone
increasing.

Theorem 4.22. If a sequence is monotone increasing (or decreasing) and bounded,
then it is convergent.

Proof. Suppose the sequence (an) is monotone increasing and bounded. (A similar
proof will apply if it is decreasing.) In particular, suppose an ≤M for all n.

To motivate the argument look at the following diagram:

Let I be the interval [a1,M ].
Divide I into two closed intervals of equal length. Either all members of the sequence

are in the left interval, or at least one member of the sequence is in the right interval (and
in the second case, since the sequence is monotone increasing, all later members of the
sequence are also in the right interval). In either case, all members of the sequence after
some term are in one of the two subintervals. Choose this subinterval and denote it by
I1. Thus

an ∈ I1 for all n ≥ N1 (say).

(In the diagram, N1 = 1 and I1 is the left interval; this implies there are no members of
the sequence beyond the right endpoint of I1. There is not enough information just in the
diagram to tell us this fact. )

Similarly divide I1 into two closed intervals of equal length and choose I2 to be that
subinterval which eventually contains all members of the sequence, i.e.

an ∈ I2 for all n ≥ N2 (say).

(In the diagram, N2 = 4 and I2 is the right interval.)
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Similarly divide I2 into two closed intervals of equal length and choose I3 to be that
subinterval which eventually contains all members of the sequence, i.e.

an ∈ I3 for all n ≥ N3 (say).

(In the diagram, N3 = 7 and I3 is the right interval.)
etc.
In order to show that (an) is Cauchy, let ε > 0 be given.
Since the length7 of Ik is (M − a)/2k, it follows that there is an integer k such that

the length of Ik is ≤ ε 8. But

am, an ∈ Ik if m,n ≥ Nk,
and so

|am − an| ≤ ε if m,n ≥ Nk.
It follows that the sequence (an) is Cauchy (take N in Definition 4.18 to equal Nk).

Hence (an) converges by the Cauchy Completeness Axiom.

Example 4.23. Show the sequence n
√
n is monotone decreasing and bounded below,

and hence is convergent.

Solution. As remarked before, in order to have interesting examples we will occa-
sionally use material that has not been rigorously established. We do that here.

So for x > 0, let9

f(x) = x1/x = e
1
x

ln x.

Then f(n) = n1/n (i.e. n
√
n). Moreover,

f ′(x) =
(
− 1

x2
lnx+

1

x2

)
e

1
x

ln x,

which is negative for x > e.
It follows that the sequence n

√
n is decreasing if n ≥ 3.

It is clear that the sequence is bounded below by 1, i.e. 1 ≤ n
√
n for all n.

By the previous theorem, the sequence must converge.

In one of the assignment problems we will see that n
√
n→ 1.

F The analogue of Theorem 4.22 is not true for the rational numbers. In other words,
a bounded increasing (or decreasing) sequence of rational numbers need not converge to
a rational number. (Of course it will converge to a real number — this is just what the
theorem says.)

The sequence in (4.18) is an example of a bounded increasing sequence of rational
numbers which does not converge to a rational number; instead it converges to the irra-
tional number

√
2.

4.6. Subsequences and the Bolzano-Weierstrass Theorem

A sequence need not of course converge, even if it is bounded. But by
the Bolzano-Weierstrass theorem, every bounded sequence has a convergent
subsequence.

Suppose (an) is a sequence of real numbers. A subsequence is just a sequence obtained
by skipping terms. For example, the following are subsequences:

a2, a4, a6, . . . ,

a1, a27, a31, a44, a101, . . . .

We usually write a subsequence of (an) as

an1 , an2 , an3 , an4 , . . . ,

7The length of the interval [a, b] is defined to be b− a.
8F This actually requires the Archimedean Axiom. We have (M − a)/2k−1 ≤ (M − a)/k.

Now use the Archimedean Axiom to choose k so that k ≥ (M − a)/ε.
9Recall that if x > 0 then xa = eln x

a
= ea ln x.
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or just as (ank ). Thus in the above two examples, we have

n1 = 2, n2 = 4, n3 = 6, . . . ,

n1 = 1, n2 = 27, n3 = 31, n4 = 44, n5 = 101, . . . ,

respectively.

A bounded sequence certainly need not be convergent. For example, the sequences

1,−1, 1,−1, 1,−1, 1,−1, . . . ,

1 +
1

2
,−1 +

1

3
, 1 +

1

4
,−1 +

1

5
, 1 +

1

6
,−1 +

1

7
, . . . ,(4.19)

do not converge.
But there are subsequences of each sequence which converge to 1. For example,

1, 1, 1, 1, 1, 1, . . . ,

1,−1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . ,

are two different subsequences of the first sequence which converge to 1. In fact there are
infinitely many different subsequences converging to 1.

Similarly, there are subsequences converging to −1. There are also subsequences of
the second sequence converging to 1 and subsequences converging to −1.

The following theorem turns out to have many important applications.

Theorem 4.24 (Bolzano-Weierstrass Theorem). If a sequence is bounded then it has
a convergent subsequence.

Proof. F Let (an) be bounded. We will construct a convergent subsequence

an1 , an2 , an3 , an4 , an5 , an6 , . . . .

Since the sequence (an) is bounded, there is a closed bounded interval I1 which
contains all terms from the sequence. Choose one such term and denote it by an1 (n1 = 1
will do).

(The following diagram, not to scale, corresponds to the sequence (4.19).)

Divide I1 into two closed intervals of equal length (and having only the midpoint of
I1 in common). At least one of these intervals contains an infinite number of different
terms10 from (an); call this interval I2. Choose one such term from (an) and denote it by
an2 , but with the condition n1 < n2. (In the diagram, we could take n2 = 2.)

Divide I2 into two closed intervals of equal length (and having only the midpoint of
I2 in common). At least one of these intervals contains an infinite number of different
terms from (an); call this interval I3. Choose one such term from (an) and denote it by
an3 , but with the condition n2 < n3. (In the diagram, we could take n3 = 4.)

Divide I3 into two closed intervals of equal length (and having only the midpoint of
I3 in common). At least one of these intervals contains an infinite number of terms from
(an); call this interval I4. Choose one such term from (an) and denote it by an4 , but with
the condition n3 < n4. (In the diagram, we could take n4 = 8.)

etc.
The sequence

an1 , an2 , an3 , an4 , . . . ,

is a subsequence of (an).
Moreover, it is Cauchy.

10For example, a3 and a4 are always considered to be different terms, even if they have the
same value.
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To see this, first note that for each N ,

anN , anN+1 , anN+2 , anN+3 , · · · ∈ IN .

Now let ε > 0 be a given positive number. The length of IN is |IN | = |I1|
2N−1 . Choose

N so |I1|
2N−1 ≤ ε 11. It follows that

|anp − anq | ≤ ε whenever p, q ≥ N.
This means the sequence (ank ) is Cauchy. Hence it converges. This proves the theorem.

Remark 4.25. If all members of the original sequence (an) belong to a closed bounded
interval [a, b], then so does the limit of any subsequence.

Proof. To simplify notation, denote the subsequence by (xk). Suppose in order to
obtain a contradiction that xk → c and xk ≤ b for all k, but c > b (see the next diagram).

Let ε = (c − b)/2, or any number less than the distance from b to c. Eventually all
members of the sequence are within ε of c, and so in particular are > b. This contradicts
the fact that xk ≤ b for all k.

Similarly if xk ≥ a for all k and xk → c, then c ≥ a.

Example 4.26. F We have seen examples of bounded sequences which have sub-
sequences converging to 1 and subsequences converging to −1. Given m distinct real
numbers x1, . . . , xm it is easy to see that there is a sequence which has a subsequence
converging to x1, another converging to x2, . . . , and another converging to xm.

What is more surprising is that there is a sequence, which for each real number
x ∈ [0, 1], has a subsequence converging to x.

The sequence can be constructed as follows. First enumerate all decimal expansions
of length one, then all of length two, then all of length three, then all of length four, etc.
Thus the sequences is

·0, ·1, ·2, ·3, . . . , ·9, ·00, ·01, ·02, ·03, . . . , ·99, ·000, ·001, ·002, ·003,

. . . , ·999, ·0000, ·0001, ·0002, ·0003, . . . , ·9999, ·0000, ·0001, . . . .

Note that various values are repeated, e.g. ·2, ·20, ·, 200, . . . etc., but this does not matter.
By using decimal expansions, we see that for any number x there is a subsequence

converging to x. For example, the subsequence converging to
√

2/2 = ·7071067810 . . . is

·7, ·70, ·707, ·7071, ·70710, ·707106, . . . .

It is possible to change this construction a little and obtain a sequence which for every
real number x has a subsequence converging to x. (The sequence cannot be bounded, since
it must contain arbitrarily large real numbers.)

11F This needs the Archimedean Axiom. It is equivalent to choosing N such that 2N−1 ≥
|I1|/ε. But since 2N−1 ≥ N , for example by induction, it is sufficient to use the Archimedean
Axiom to find a natural number N ≥ |I1|/ε.
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CHAPTER 5

Continuous Functions

5.1. Definition and examples

The notion of continuity of a function is defined in terms of sequences.
Some examples of continuous and discontinuous functions are given. (We
also show that between any two numbers there are an infinite number of
rationals and an infinite number of irrationals.)

Recall that the domain of a function f , denoted by D(f), is the set of numbers x such
that f(x) is defined. We will usually be interested in functions whoxe domains are intervals
[a, b], (a, b), (a,∞)1, etc. But it is possible for the domain to be a more complicated set
of real numbers.

We will define the notion of continuity in terms of convergence of sequences. The
informal idea of continuity of a function f at a point c is that “as x appraoches c then
f(x) approaches f(c)”.

More accurately, we have the following natural definition.

Definition 5.1. A function f is continuous at a point c ∈ D(f) if for every sequence
(xn) such that xn ∈ D(f) and xn → c, we have f(xn)→ f(c).

We say f is continuous (on its domain) if f is continuous at every point in its domain.

In other words,

xn ∈ D(f) and xn → c ⇒ f(xn)→ f(c).

We will often not write xn ∈ D(f), although this is always understood in order that f(xn)
be defined.

Thus in order to show f is continuous at c, we have to show that for every sequence
xn → c one has f(xn)→ f(c).

In order to show f is not continuous at c, we only have to show there is one (“bad”)
sequence xn → c with f(xn) 6→ f(c).2

Example 5.2. Suppose

f(x) =

{
x 0 ≤ x < 1
1
2
x2 1 ≤ x ≤ 3

2

The domain of f is [0, 3
2
]. The following is an attempt to sketch the graph of f .

1I emphasise that ∞ is not a numbr, and that for us the symbol ∞ has no neaning by itself.
The interval (a,∞) is just the set of real numbers strictly greater than a.

2If there is one, there will in fact be many such “bad” sequences — we can always change
the first million or so terms — but the point is that to show continuity fails it is sufficient to just
prove there is one “bad” sequence.

19
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It is clear that f is not continuous at 1. For example, take the sequence xn = 1− 1
n
.

Then xn → 1 but f(xn) (= 1− 1
n
) 6→ f(1) since f(1) = 1

2
.

On the other hand, if c 6= 1 and c ∈ D(f) then

xn → c ⇒ f(xn)→ f(c).

To see this, first suppose xn → c and 1 < c ≤ 3
2

. Then xn ≥ 1 for all sufficiently

large n, and so f(xn) = 1
2
x2
n for all sufficiently large n. From properties of sequences if

xn → c then x2
n → c2 and so 1

2
x2
n → 1

2
c2. But f(xn) = 1

2
x2
n for all sufficiently large n,

and so lim f(xn) = lim 1
2
x2
n = 1

2
c2.

In particular, f is not continuous on its domain.
The case 0 ≤ c < 1 is similar, and easier.

If we vary this example a little, and define

g(x) =

{
x 0 ≤ x < 1
1
2
x2 1 < x ≤ 3

2
,

then the domain of g is [0, 1) ∪ (1, 3
2
]. The function g is continuous at each c ∈ D(g), and

so is continuous on its domain.

Example 5.3. The absolute value function f (given by f(x) = |x|) is continuous.
We first show continuity at 0. For this, suppose xn → 0. Then |xn| → 0 (this is

immediate from the definition of convergence, since |xn − 0| ≤ ε iff | |xn| − 0 | ≤ ε), i.e.
f(xn)→ f(0).

To prove continuity at c 6= 0 is similar to the previous example.

The following result is established directly from the properties of convergent se-
quences.

Proposition 5.4. Every polynomial function is continuous.

Proof. Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k.

To show that f is continuous at some point c, suppose xn → c.
Then x2

n → c2, x3
n → c3, etc., by the theorem about products of convergent sequences.

It follows that a1xn → a1c, a2x
2
n → a2c

2, a3x
3
n → a3c

3, etc., by the theorem about
multiplying a convergent sequence by a constant. Finally,

a0 + a1x+ a2x
2 + · · ·+ akx

k → a0 + a1c+ a2c
2 + · · ·+ akc

k

by repeated applications of the theorem about sums of convergent sequences (a0 is here
regarded as a constant sequence).

Example 5.5. Here is a surprising example.
Let

f(x) =

{
x x rational

x −x irrational.

The following diagram is misleading, since between any two real numbers there is both a
rational and an irrational number (in fact an infinite number of each).3

3To see this, first suppose 0 < a < b. Choose an integer n such that 1
n
< b − a (from the

Archimedean axiom!). Then at least one member m
n

of the sequence

1

n
,
2

n
,
3

n
,
4

n
,
5

n
, . . .

will lie between a and b. This is very plausible from the diagram. To show it rigorously requires
showing there is a largest k such that k

n
< a, which in turn requires a slightly more careful

definition of the natural numbers. Then take m = k + 1.

Since we can then obtain another rational between m
n

and b, etc., etc., there is in fact an infinite
number of rationals between a and b.
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The function f is continuous at 0. To see this, suppose xn → 0. Then |xn| → 0 (this
follows from the definition of a limit). Since −|xn| ≤ f(xn) ≤ |xn|, it follows from the
Squeeze theorem that f(xn)→ 0, i.e. f(xn)→ f(0).

On the other hand, f is not continuous at c if c 6= 0. For example if c is irrational
then we can choose a sequence of rationals xn such that xn → c (by repeated applications
of the remark above in italics). It follows that f(xn) = xn → c 6= f(c). Similarly if c is
irrational.

We will later define the exponential, logarithm, and trigonometric functions, and show
they are continuous. Meanwhile, we will use them in examples (but not in the development
of the theory).

5.2. Properties of continuous functions

The basic properties of continuous functions follow easily from the analo-
gous properties of sequences.

Theorem 5.6. Let f and g be continuous functions and let D = D(f)∩D(g).4 Then

1. f + g is continuous on D,
2. fg is continuous on D,
3. αf is continuous on D(f) (α any real number)
4. f/g is continuous at any point c ∈ D such that g(c) 6= 0.

Proof. Suppose c ∈ D. Let (xn) be any sequence such that xn → c (and as usual,
xn ∈ D).

Then f(xn)→ f(c) and g(xn)→ g(c), since f and g are continuous at c. It follows

f(xn) + g(xn)→ f(c) + g(c)

by Theorem 4.12 about sums of convergent sequences. That is,

(f + g)(xn)→ (f + g)(c).

It follows that f + g is continuous at c.
The proof in the other cases is similar. Just note for the case f/g that if xn → c and

g(c) 6= 0, then g(xn) 6= 0 for all sufficiently large n5.

If a < 0, a similar argument works with the sequence

− 1

n
,− 2

n
,− 3

n
,− 4

n
,− 5

n
, . . .

Finally, choosing n so
√

2
n
< b− a and applying a similar argument to the sequence
√

2

n
,
2
√

2

n
,
3
√

2

n
,
4
√

2

n
,
5
√

2

n
, . . .

gives the result for irrational numbers.
4If A and B are sets, then their intersection A ∩ B is the set of numbers in both A and B.

Their union A ∪B is the set of numbers in at least one of A and B.
5If g(c) > 0, by continuity of g at c and the definition of convergence of a sequence, g(xn) ∈

[ 1
2
g(c), 3

2
g(c)] for all sufficiently large n and so it is positive. The argument in case g(c) < 0 is

similar.
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The composition of two continuous functions is continuous. (See Adams page 35 for
a discussion about the composition of functions, or the 1998 Calculus Notes page 16.)

Theorem 5.7. Suppose f and g are continuous. Then f ◦ g is continuous.

Proof. The domain D of f ◦ g is the set of numbers x such that both x ∈ D(g) and
g(x) ∈ D(f).

Suppose c ∈ D. Let xn → c and xn ∈ D. It follows that g(xn) → g(c) since g is
continuous at c. It then follows that f(g(xn))→ f(g(c)) since f is continuous at g(c) (note
that g(xn) ∈ D(f)). In other words, (f ◦ g)(xn) → (f ◦ g)(c), and so f ◦ g is continuous
at c.

It follows from our results so far that rational functions (quotients of polynomials)
and in general functions defined from other continuous functions by means of algebraic
operations and composition, will be continuous on their domain.

Example 5.8. The function

f1(x) = sin
1

x

is the composition of the two continuous functions sin(x) and 1/x 6 and so is continuous.
The domain of f1 is the set of real numbers x such that x 6= 0. That is, D(f1) = {x | x 6=
0 }.

Similarly, the function

f2(x) = x sin
1

x

is continuous on its domain, which is the same domain as for f1.

However, there is an interesting difference between f1 and f2. In the case of the latter
we can define a new function g2 by

g2(x) =

{
x sin 1

x
x 6= 0

0 x = 0.

Then D(g2) = R and g2(x) = f2(x) if x 6= 0, i.e. if x ∈ D(f2). Moreover, g2 is continuous
on its domain R.

To show continuity of g2 at x 6= 0, take any sequence xn → x. For all sufficiently
large n, xn ∈ D(f2), and so g2(xn) = f2(xn). It follows that g2(xn) → g2(x) since
f2(xn)→ f(x) by the continuity of f . This means g2 is continuous at x if x 6= 0.

To show continuity of g2 at x = 0, take any sequence xn → 0. Then

−|xn| ≤ g2(xn) ≤ |xn|,

6The notation may seem a bit confusing. You may ask “is it the same x in both cases”? But
this is not the right way to look at it. By the function sin x, is meant the function which assigns
to each real number x (say) the real number sin x. If we said the function sin y, or just sin, we
would mean the same thing.

Similarly, the function 1/x, or 1/y, or “the reciprocal function”, all mean the same thing.
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and so g2(xn)→ 0 (= g2(0)) by the Squeeze Theorem. (We need to be a bit careful since
some of the xn may equal zero.) This means g2 is continuous at 0.

In the case of f1 there is no way of extending the function to a continuous function g1

defined on all of R. This is essentially because there is no number y such that f1(xn)→ y
for every sequence xn → 0 (with xn 6= 0.)

We sometimes say that f2 has a removable singularity at 0, and that the singularity
of f1 at 0 is not removable.

5.3. Supremum of a set

A set which is bounded above need not have a maximum member, but there
will always be a supremum. If the supremum belongs to the set then it is
just the maximum, if the supremum does not belong to the set then there is
no maximum. There is always a sequence of elements from the set which
converges to the supremum.

For the important results in the next section, and elsewhere, we need the idea of the
supremum of a set.

If we consider sets such as [1, 2] or (1, 2] or the set A = {2, 1, 0,−1, . . . } of integers
less than or equal to 2, we see that each of these sets contains a largest (or maximum)
member, namely 2.

On the other hand, the set (1, 2), or the set B of irrrationals less than 2, does not
contain a largest member. But we say that 2 is the supremum of the set. In the first three
examples we also say that 2 is the supremum of the set.

The precise definitions are a follows:

Definition 5.9. Let S be a set of real numbers.
We say a is the maximum member of S if

1. x ≤ a for every x ∈ S,
2. a ∈ S.

We write a = maxS.
We say a is the supremum (or sup) of S if

1. x ≤ a for every x ∈ S,
2. for every ε > 0 there is at least one member of S in the interval [a− ε, a].

We write a = supS.

First note that by the previous definition, 2 is the maximum element of [1, 2], (1, 2]
and A. Next note by the definition that 2 is the supremum of these three sets as well as
of the sets (1, 2) and B.

Note that if S has a maximum member a, then a is also the supremum of S. This is
immediate, since property 1 is the same in each case, and if a ∈ S then we can just take
a as the member of S in [a− ε, a].

Note that if the supremum a of S exists and is also a member of S, then it is the
maximum member of S (this is immediate from the definition of “maximum member”).

Note that there can be at most one maximum member of S. For if a1 and a2 were
both maximum elements7, then we would have from property 1 that a2 ≤ a1 and a1 ≤ a2,
which implies a1 = a2. Similarly, there can be at most one supremum of S, again by
property 1.

Theorem 5.10. Suppose S is a set of real numbers and a = supS. Then there exists
a sequence (xn) of elements of S such that xn → a.

Proof. From property 2 of the definition of supremum, for each ε > 0 there is a
member of S in the interval [a− ε, a].

For each natural number n there is thus a member of S in [a − 1
n
, a]. For each n,

choose one such member and denote it by xn. Then xn → a, and we are finished.

7A member of an element of a set means the same thing.
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Example 5.11. Going back to the five examples at the beginning of this section, we
can take xn = 2− 1

n
for each of the sets [1, 2], (1, 2] and (1, 2). For the sets [1, 2] and (1, 2]

we could also take the constant sequence xn = 2, and this sequence also works for the set

A. For the set B we could take xn = 2−
√

2
n

.

Although a set need not have a maximum member, even if it is bounded above8, the
following theorem shows that every set which is bounded above does have a supremum.
(although it may or may not be a member of S).

Theorem 5.12. Let S be set of real numbers which is bounded above. Then S has a
supremum.

Proof. F We use a bisection argument.
Since S is bounded above we can find an interval I = [a, b] such that x ≤ b for every

x ∈ S and such that there is at least one member of S in I.

Divide I into two closed bounded intervals of equal length, meeting only at the mid-
point of I. If the right interval contains at least one member of S, then we take I1 to be
this interval. Otherwise (if the right interval contains no members of S) we take I1 to be
the left interval. Let I1 = [a1, b1]. In either case it follows that x ≤ b1 for every x ∈ S and
there is at least one member of S in I1.

Divide I1 into two closed bounded intervals of equal length, meeting only at the
midpoint of I1. If the right interval contains at least one member of S, then we take I2 to
be this interval. Otherwise, (if the right interval contains no members of S) we take I2 to
be the left interval. Let I2 = [a2, b2]. In either case it follows that x ≤ b2 for every x ∈ S
and there is at least one member of S in I2.

Divide I2 into two closed bounded intervals of equal length, meeting only at the
midpoint of I2. If the right interval contains at least one member of S, then we take I3 to
be this interval. Otherwise, (if the right interval contains no members of S) we take I3 to
be the left interval. Let I3 = [a3, b3]. In either case it follows that x ≤ b3 for every x ∈ S
and there is at least one member of S in I3.

Etc.

In this way we construct a sequence of intervals (In), each containing the next. That
is

I1 ⊃ I2 ⊃ I3 ⊃ · · · .

Moreover,

a1 ≤ a2 ≤ a3 ≤ · · · . . . · · · ≥ b3 ≥ b2 ≥ b1.

Since (an) is increasing and bounded it follows that an → a∗, say. Similarly bn → b∗,
say.

It follows that a∗ = b∗. To see this, note that for every n we have an ≤ a∗ ≤ bn and
an ≤ b∗ ≤ bn, and so |a∗ − b∗| ≤ bn − an. But bn − an = (b − a)/2n and so a∗ = b∗,
as otherwise we would have a contradiction for sufficiently large n (by the Archimedean
Axiom).

We now define c = a∗ = b∗ and show it is the supremum of S.
To check property 1, suppose x ∈ S. Then x ≤ bn for every n, and so x ≤ lim bn (see

the following proposition). . That is, x ≤ c for all x ∈ S.

8Recall that a set S (of real numbers) is bounded above if there is a number K such that
x ≤ K for all x ∈ S.
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To check property 2, let ε > 0 be given. Since an → c and an is increasing, we can

choose n so an ∈ [c− ε, c]. . From before

we have an ≤ c ≤ bn. There is at least one member x ∈ S in In = [an, bn] by the way we
constructed the In, and every member of S is ≤ c by property 1. Hence this member of
S is in fact in [an, c] and hence in [c− ε, c]. This proves property 2.

In the previous theorem we used the following easy result, which is also useful else-
where.

Proposition 5.13. Suppose (xn) is a convergent sequence and xn ≤ c (xn ≥ c) for
all n. Then limxn ≤ c (limxn ≥ c ).

Proof. Let x = limxn and suppose xn ≤ c for all n. Suppose, in order to gain a
contradiction, that x > c.

Let ε be any positive number less than x− c . Then for all

suficiently large n, xn ∈ [x− ε, x+ ε]. This contradicts xn ≤ c.
Hence we must have x ≤ c.
A similar proof applies for the “≤” result.

Note that if xn < c for all n, then it does not necessarily follow limxn < c; we can
still only deduce in general that limxn ≤ c. For example, − 1

n
< 0 for all n, but lim 1

n
= 0.

Remark 5.14. We can also define the minimum member of a set and the infimum of
a set, and prove that if a set of real numbers is bounded below, then it has an infimum.

5.4. Three big theorems

A continuous function defined on a closed bounded interval is bounded above
and below, and takes a maximum and a minimum value. If a continuous
function defined on an interval takes two values, then it takes all values in
between.

The theorems in this section are global, in that they refer to properties of continuous
functions over their entire domain, or assert the existence of a point in the domain with a
particular property. The require the Bolzano Weierstrass Theorem in their proof, which
in turn uses the Cauchy Completeness Axiom.

The properties of continuous functions in Section 5.2 followed from the definitions in
a relatively straightforward way. They are local properties in that they essentially refer
to properties of continuous function near a prescribed point (although the point may be
an arbitrary one in the domain).

We say a function f defined on a set E is bounded on E iff there exists a real number
M such that

|f(x)| ≤M for all x ∈ S.

Theorem 5.15. Suppose f is a continuous function defined on a closed bounded in-
terval. Then f is bounded.

Proof. Suppose (in order to obtain a contradiction) that f is a continuous function
defined on an interval [a, b] but f is not bounded. This means that for each real number
M there must be some x ∈ [a, b] such that f(x) > M .

(In the following diagram, f is of course not continuous. The diagram is just to give
an indication of the argument used to obtain a contradiction.)
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In particular, for each n choose xn ∈ [a, b] such that |f(xn)| > n. (Note that |f(xn)|
diverges to infinity.)

By the Bolzano Weierstrass theorem (and the remark which follows it) there is a
subsequence (xnk )k≥1 which converges to some c ∈ [a, b]. By continuity of f , f(xnk ) →
f(c). But this contradicts the fact that for each n, |f(xn)| > n.

Hence f is bounded.

Remark 5.16.

1. The corresponding result is not true for open intervals or unbounded intervals.
For example, if f(x) = 1/x for x ∈ (0., 1], then f is continuous on (0, 1] but is not
bounded on (0, 1]. Also, if f(x) = x for x ∈ [0,∞) then f is continuous on [0,∞)
but is not bounded on [0,∞).

2. The result is not as obvious as might first appear; it is possible to construct some
pretty wild continuous functions.

F For example, there are continuous functions which are nowhere differen-
tiable. See Section 5.3 p 55 of the 1998 Calculus Notes

3. F The analogous result is not true for the rationals. For example, let f(x) =

1/(1 − x2) for 1 ≤ x ≤ 2. This is continuous at every point other than x =
√

2
(and in particular is continuous at every rational point) and it takes rational values
at rational points. However, it is not bounded.

This explains why we need the Cauchy Completeness Theorem in the proof of
the previous theorem (it was used to prove the Bolzano Weierstrass Theorem) —
if we only required the other axioms in the proof then because these axioms are
true for the rationals it would follow that the analogous result would also be true
for the rationals.

We say a function f defined on a set E takes its maximum value at c ∈ E and c is
a maximum point iff f(c) ≥ f(x) for all x ∈ [a, b]. We say f takes its minimum value at
d ∈ E and d is a minimum point iff f(d) ≤ f(x) for all x ∈ [a, b].

A function can take its maximum or minimum value at more than one point (a
constant function is a simple example).

A function can be bounded and not take a maximum or a minimum value. For
example, if

f(x) =

{
|x| −1 ≤ x ≤ 1, x 6= 0

1 x = 0,

then f is bounded on [−1, 1] but does not take a minimum value.

Theorem 5.17. Suppose f is a continuous function defined on a closed bounded in-
terval. Then f takes a maximum value and a minimum value.

Proof. F Suppose f is a continuous function defined on the closed bounded inter-
val [a, b].

Let S be the set of all values taken by f . This means S = { f(x) | x ∈ [a, b] }.
The function f is bounded by the previous theorem, and another way of expressing

this is to say that the set S is bounded. From Theorem 5.12 it follows that S has a
supremum α, say.
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We claim that α is a member of S, in other words that α = f(c) for some c ∈ [a, b].
This will imply that f(x) ≤ f(c) for all x ∈ [a, b] and so c is a maximum point.

Proof of claim. There exists a sequence (yn) of elements of S such that yn → α (by
Theorem 5.10).

For each yn there exists (at least one) xn ∈ [a, b] such that f(xn) = yn. By the
Bolzano Weierstrass Theorem there exists a subsequence (xnk ) of (xn) which converges
to some c ∈ [a, b]. By continuity of f , f(xnk )→ f(c), i.e. ynk → f(c). On the other hand,
(ynk ) is a subsequence of (yn) and so ynk → α.9

Because a sequence can have only one limit (Theorem 4.15) it follows that f(c) = α.
This proves the claim, and hence that c is a maximum point.

The proof that there is a minimum point is similar.

Remark 5.18. FWhile it may seem clear that there is a maximum point c, particu-
larly in the case of the diagram, there are some rather wild continuous functions as noted
before. Just from the definition of supS we can find for each ε > 0 a number x ∈ [a, b] such
that f(x) is within ε of α, even if f is not continuous but is merely bounded. However,
to show there is some c such that one actually has f(c) = α requires the continuity of f
and uses the Cauchy Completeness Axiom.

The last result implies that if a continuous function defined on an interval I (not
necessarily closed or bounded) takes two particular values, then it must take all values
between. In other words, for any two points a, b ∈ I and any γ between f(a) and f(b)
then f(c) = γ for some c ∈ [a, b].

Theorem 5.19. Suppose f is continuous on [a, b]. Then for any γ between f(a) and
f(b) there exists c ∈ [a, b] such that then f(c) = γ.

Proof. Suppose f(a) < γ < f(b) (the case f(a) > γ > f(b) is similar).
In order to prove there is some c ∈ [a, b] such that f(c) = γ, let

A = {x ∈ [a, b] | f(x) ≤ γ }.
(That is, A is the set of all x ∈ [a, b] such that f(x) ≤ γ.)

Since A is a bounded set it follows that it has a supremum c, say.

We want to show that f(c) = γ.

9It is clear, and not hard to prove, that if a sequence converges then any subsequence con-
verges to the same limit.
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There is a sequence xn ∈ A such that xn → c (Theorem 5.10). By continuity,
f(xn) → f(c). Since f(xn) ≤ γ for all n, it follows f(c) ≤ γ (Proposition 5.13). (So, in
particular, c ∈ A.)

Since c 6= b (because we now know that f(c) ≤ γ, while f(b) > γ), there is a sequence
x′n → c and c < x′n < b. But f(x′n) > γ (since otherwise x′n ∈ A, which contradicts
c = supA) and so f(c) ≥ γ (Proposition 5.13 again).

Because f(c) ≤ γ and f(c) ≥ γ it follows f(c) = γ.

.


