
      

AA1H Calculus Notes

Math1115, Honours 1

1998

John Hutchinson

Author address:

Department of Mathematics, School of Mathematical Sciences,
Australian National University

E-mail address : John.Hutchinson@anu.edu.au





    

Contents

Chapter 1. Introduction v

Chapter 2. The Real Number System 1
2.1. Introduction 1
2.2. Important sets of real numbers 2
2.3. Algebraic and order properties 4
2.4. Completeness property 8
2.5. Properties of the rational and irrationals 10
2.6. Functions 13
2.7. Mathematical induction 17
2.8. FFields 18
2.9. FDeductions from the axioms 18
2.10. FExistence and Uniqueness of the Real Number System 20

Chapter 3. Limits 23
3.1. Introduction 23
3.2. Definition of limit for a function 23
3.3. Properties of limits of functions 30
3.4. FFunctions of more than one variable 35

Chapter 4. Sequences 37
4.1. Examples of sequences 37
4.2. Limit of sequences 38
4.3. Monotone sequences 40
4.4. Limits for functions via limits for sequences 43

Chapter 5. Continuity 45
5.1. Introduction 45
5.2. Definition of continuity 45
5.3. Properties of continuous functions 47
5.4. Deeper properties of continuous functions 49
5.5. FPathology and continuity 53
5.6. FUniform continuity 54
5.7. FFunctions of two or more variables 57

Chapter 6. Differentiation 59
6.1. Introduction 59
6.2. The derivative of a function 59
6.3. Computing derivatives 61
6.4. Maximum and minimum values 64
6.5. Mean Value Theorem 65
6.6. FPartial derivatives 67

Chapter 7. Integration 69

iii



   

iv CONTENTS

7.1. Introduction 69
7.2. The Riemann integral 69
7.3. Riemann sums 76
7.4. Properties of the Riemann integral 77
7.5. Fundamental Theorem of Calculus 79

Chapter 8. Differential Equations 81
8.1. Outline of proof of the Existence and Uniqueness theorem 83
8.2. FRigorous proof of the Existence and Uniqueness theorem 85

Bibliography 91

Index 5



   

CHAPTER 1

Introduction

The aim of the AA1H course is to give an introduction to modern mathematics. In
the process you will prove the major results used in the AA1 course and thereby
obtain a more fundamental understanding of that material.

Mathematics is the study of pattern and structure. It is studied both for its
internal beauty and for its universal applicability. In mathematics we make certain
specific assumptions (or axioms) about the objects we study and then develop the
consequences of these assumptions in a precise and careful manner. The axioms
are chosen because they are “natural” in some sense; it usually happens that these
axioms also describe phenomena in other subjects, in which case the mathematical
conclusions we draw will also apply to these phenomena.

Areas of mathematics developed for “mathematical” reasons usually turn out
to be applicable to a wide variety of subjects; a spectacular recent example being
the applications of differential geometry to understanding the fundamental forces of
nature studied in physics, and another being the application of partial differential
equations and geometric measure theory to the study of visual perception in biology
and robotics. There are countless other examples in engineering, economics, and the
physical and biological sciences. On the other hand, the study of these disciplines
can usually only be done by applying the techniques and language of mathematics.
Mathematics is used as a tool in such investigations. But the study of these subjects
can also lead to the development of new fields of mathematics and insights into old
fields.

In this course we will study the real number system, the concepts of limit and
continuity, differentiability and integrability, and differential equations. While most
of these terms will be familiar from high school in a more or less informal setting, we
will study them in a much more precise way. This is necessary both for applications
and as a basis for generalising these concepts to other mathematical settings.

One very important question we investigate is: when do certain types of dif-
ferential equations have a solution, when is there exactly one solution, and when
is there more than one solution? The solution of this problem uses almost all the
material that is developed throughout the course. The study of differential equa-
tions is of tremendous importance in mathematics and for its applications. Any
phenomena that changes with position and/or time is usually represented by one
or more such equations.

The ideas we develop are basic to further developments in mathematics. The
concepts we study generalise in many ways, such as to functions of more than one
variable, and to functions whose variables are themselves functions (!); all these
generalisations are fundamental to further applications.

At the end of the first semester you should have a much better understanding
of all these ideas.

These Notes are intended so that you can concentrate on the lectures rather
than trying to write everything down. Occasionally there may be lecture material
not mentioned in the Notes, in which case I will indicate this precisely, but generally
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vi 1. INTRODUCTION

you should not take your own notes. So why come to the lectures? Because
the Notes are frequently rather formal (this is a consequence of the precision of
mathematics) and it is often very difficult to see the underlying concepts. In the
lectures I explain the material in a less formal manner, single out and discuss the
key and underlying ideas, and generally explain and discuss the subject in a manner
which it is not possible to do efficiently in print. It would be a very big mistake to
skip lectures. If you still do not believe me, ask students from my previous courses.

Do not think that you have covered any of this material in school; the topics
may not appear new, but the material certainly will be. Do the assigments, read the
lecture notes before class. Mathematics is not a body of isolated facts; each lecture
will depend on certain previous material and you will understand the lectures much
better if you keep up with the course. In the end this approach will be more efficient
as you will gain more from the lectures.

Throughout the course I will make various digressions and additional remarks,
marked clearly by a starF. This is non-examinable and generally more challenging
material. But you should still read and think about it. It is included to put
the subject in a broader perspective, to provide an overview, to indicate further
directions, and to generally “round out” the subject. In addition, studying this
more advanced material will help your understanding of the examinable material.

Moreover, you will need to know and understand the statements of the results
in the F Sections 3.4, 5.6, 5.7 and 6.6, for the proof of the Fundamental Existence
and Uniqueness Theorem in Section 8.2, and to a lesser extent in Section 8.1.

The other references for the course are the book [Adams] and the notes
[Ward]. Both of these supplement the material here, but are at a less theoret-
ical level. The book [Spivak] is excellent, but at a slightly higher level than the
current course. The book [Stromberg] is for the extremely dedicated; it is very
terse and essentially only appropriate for later year courses. For interesting discus-
sions and a host of examples on the beauty and utility of mathematics, see [Devlin],
[Hildebrandt and Tromba] and [Davis and Hersh].

All these books are on two-day loan through the reserve section of the Hancock
library.

If you are having difficulty with some of the concepts, ask your tutor or come
and see me during office hours. Do not let things slide!
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CHAPTER 2

The Real Number System

The reference for this chapter is [Adams, Chapter P], mainly P1, P2 to page 14, P4 to
page 29, and P5. But you should read all of this chapter; it gives a slightly different and
somewhat more elementary approach to the material covered here.

2.1. Introduction

Real numbers have decimal expansions. They can be represented as points
on an infinite line. The decimal expansions 1.000 . . . and .999 . . . represent
the same real number.

Real numbers have decimal expansions, for example:

2 = 2.000 . . .

1
1

2
= 1.5 = 1.5000 . . .

π = 3.1459 . . .

.45271̇46̇, also written .4527146

The “. . . ” indicate the expansions go on forever, and the 1̇46̇ indicate that the pattern
146 is repeated forever. In the first two case the expansion continues with zeros and in
the third case one can compute the expansion to any required degree of accuracy.

Real numbers can also be represented geometrically as points on an infinite line.

In this chapter we will give a careful analysis of what is meant by a real number.
(Sometimes we say “real number”, and sometimes we just say “number”. You will also
later meet the “complex numbers” (if you have not already done so), these include the
real numbers and allow one to give a meaning to

√
−1.)

There is one point that sometimes causes confusion. Is it the case that

1 = .9̇ ?,

or is it that .9̇ is a “little” less than one? By .9̇ we mean, as usual, .999 . . . , with the 9’s
repeated forever.

Any of the approximations to .9̇,

.9 =
9

10
, .99 =

99

100
, .999 =

999

1000
, .9999 =

9999

10000
, . . .

is certainly strictly less than one.
On the other hand, .9̇ is defined to be the “limit” of the above infinite sequence (we

discuss limits of sequences in a later chapter). Any mathematically useful way in which
we define the limit of this sequence will in fact imply that .9̇ = 1. To see this, let

a = .9̇ = .999 . . . .

Then, for any reasonable definition of infinite sequence and limit, we would want that

10a = 9.999 . . . .

Subtracting, gives 9a = 9, and hence a = 1.

1



          

2 2. THE REAL NUMBER SYSTEM

2.2. Important sets of real numbers

Beginning from the set R of real numbers we define the sets N of natural
numbers, Z of integers, Q of rationals, and the set of irrationals. We
discuss intervals. We introduce some general notation for describing sets.
Finally we discuss n-tuples of numbers and n-dimensional space.

2.2.1. Notation for sets. By a set (or class, or family) we mean a collection, often
infinite, of objects of some type.1 Members of a set are often called elements of the set.
If a is a member (i.e. element) of the set S, we write

a ∈ S.

If a is not a member of S we write

a 6∈ S.

If a set is finite, we may describe it by listing its members. For example,

A = { 1, 2, 3 }.

Note that {1, 2, 3}, {2, 3, 1}, {1, 1, 2, 2, 2, 3} are different descriptions of exactly the same
set. Some infinite sets can also be described by listing their members, provided the pattern
is clear. For example, the set of even positive integers is

E = { 2, 4, 6, 8, . . . }.

We often use the notation

S = {x : P (x) },

where P (x) is some statement, or “proposition”, involving x. We read this as “S is the set
of all (real numbers) x such that P (x) is true”. It is usually understood from the context
of the discussion that x is restricted to the real numbers. But if there is any possible
ambiguity, then we write

S = {x ∈ R : P (x) }.

Note that this is exactly the same set as

{ y : P (y) },

or

S = { y ∈ R : P (y) }.

The variables x and y are sometimes called “dummy” variables, they are meant to represent
any real number with the specified properties.

One also sometimes uses “ | ” instead of “ : ” when describing sets.

The union of two or more sets is the set of numbers belonging to at least one of the
sets. The intersection of two or more sets is the set of numbers belonging to all of the
sets. We use ∪ for union and ∩ for intersection.

For example

{x : 0 < x < 1 or 2 < x ≤ 3 } = (0, 1) ∪ (2, 3]

(0, 2) = (0, 1) ∪ [1, 2) = (0, 1] ∪ [1, 2) = (0, 1) ∪ (
1

2
, 2)

{x : 0 < x < 2 and 1 ≤ x ≤ 3 } = [1, 2)

1F There is a mathematical theory of sets, and in fact all of mathematics can be formulated
within the theory of sets. However, this is normally only useful or practical when considering
fundamental questions about the foundations of mathematics.
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2.2.2. Different types of real numbers. The set of real numbers is denoted by

R.

The set N of natural numbers is defined2 to by

N := {1, 2, 3, . . . }.

The set Z of integers is defined by

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

The set Q of rational numbers is defined by

Q := {m/n : m,n ∈ Z, n 6= 0}.

Rational numbers are those whose decimal expansion either terminates after a finite num-
ber of places, as for 2 and 1.5, or are recurring, as for .4527146 or 3/7. See [Adams, Ex.
1, page 4].
A real number is irrational if it is not rational. It can be proved that π and e are irrational,
see [Spivak].

2.2.3. Intervals. An interval is a set of real numbers with the property that it
contains at least two numbers, and moreover it contains all real numbers between any two
of its members. (It follows that an interval must contain an infinite number of members.3)

Bounded intervals are intervals of the following type:

[a, b] := {x : a ≤ x ≤ b },
(a, b) := {x : a < x < b },
(a, b] := {x : a < x ≤ b },
[a, b) := {x : a ≤ x < b }.

An interval may also be unbounded in either or both directions:

[a,∞) := {x : a ≤ x},
(a,∞) := {x : a < x},

(−∞, b] := {x : x ≤ b},
(−∞, b) := {x : x < b}.

Finally, R is also an interval, which we could write as (−∞,∞). Note that ∞ is not a
number, and by itself does not have any meaning here, just as { or : does not have any
meaning by itself.

An interval is open if it does not contain any of its endpoints, and is closed if it
contains all of its endpoints. Thus open intervals are those of the form (a, b), (a,∞),
(−∞, b) and R, while closed intervals are those of the form [a, b], [a,∞), (−∞, b] and R.
(If this seems confusing, remember that ±∞ are not numbers, and in particular cannot
be endpoints of intervals.) In particular, R is both open and closed.

The end-points or boundary points for the previous examples are the points a and b
(note that they may or may not belong to the respective interval). The interior points
are all other points in the interval. Thus in (1, 2] the endpoints are 1 and 2, of which only
2 belongs to the interval, and the interior points are all points in the open interval (1, 2).

2We often use the notation “:=” to mean “by definition is equal to”.
3If a, b are two numbers in the interval, then, for example.

a+
b− a

2
, a+

b− a
3

, a+
b− a

4
, . . .

is an infinite set of numbers between a and b which are distinct from one another.
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4 2. THE REAL NUMBER SYSTEM

2.2.4. n-tuples of real numbers. We will later work with pairs (x, y) of real num-
bers, triples of real numbers (x, y, z), and more generally n-tuples (x1, . . . , xn). Just as
real numbers can be represented geometrically by points on a line, so can pairs be rep-
resented as points in the plane and triples as points in space (we need to make a choice
of origin, coordinate axes, and scales on the axes). We could also “define” n-dimensional
space to be the set of n-tuples of real numbers!

2.3. Algebraic and order properties

We introduce the algebraic and order axioms for the real number system
and indicate very briefly how all the usual algebraic and order proper-
ties follow from these. The rational numbers also satisfy these axioms,
but this is not the case for the natural numbers, the integers, or the
irrationals.

The absolute value of a real number is defined and the basic proper-
ties are proved.

The real number system consists of the real numbers, together with the operations
addition (denoted by +) and multiplication (denoted by ×) and the less than relation
(denoted by <). One also singles out two particular real numbers, zero or 0 and one or 1.

If a and b are real numbers, then so are a+ b and a× b; and the relation a < b must
be either true or false. We will usually write

ab for a× b.
We will soon see that one can define subtraction and division in terms of + and ×;

and ≤, > etc. can be defined from <.
There are three categories of properties of the real number system: the algebraic

properties, the order properties and the completeness properties.

2.3.1. Algebraic properties. These are the properties of addition, multiplication,
subtraction and division. It turns out that there are certain basic properties, usually called
axioms, from which we can prove all the other algebraic properties. These axioms are:

Axioms (Addition). If a, b and c are real numbers then:

A1:

a+ b = b+ a;

A2:

(a+ b) + c = a+ (b+ c);

A3:

a+ 0 = 0 + a = a;

A4: there is exactly one real number, denoted by −a, such that

a+ (−a) = (−a) + a = 0.

Axioms (Multiplication). If a, b and c are real numbers then:

A5:

a× b = b× a;

A6:

(a× b)× c = a× (b× c);
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A7:

a× 1 = 1× a = a, 1 6= 0;

A8: if a 6= 0 there is exactly one real number, denoted by a−1, such that

a× a−1 = a−1 × a = 1.

Axioms (The Distributive Property). If a, b and c are real numbers then:

A9:

a× (b+ c) = a× b+ a× c.
Note 2.1.

1. We are not really using subtraction in axiom A4; we could just as well have written
a∗ for −a, but it is more consistent with standard notation to write −a. We
are merely asserting that a unique real number, with a certain property, exists.
Similarly, in A8, we could just as well have written a#, say, for a−1.

2. By the symbol “=” for equality we mean “denotes the same thing as”, or equiv-
alently, “is the same real number as”. We take = to be a logical notion and do
not write down axioms for it.4 Instead, we use any properties of “=” which follow
from its logical meaning. For example: a = a; if a = b then b = a; if a = b and
b = c then a = c; if a = b and something is true of a then it is also true of b (since
a and b denote the same real number!).

When we write a 6= b, we mean that a is not the same real number as b.
3. Some of the axioms are redundant. For example, from A1 and the property a+0 =
a it follows that 0 + a = a, (why? ). Similar comments apply to A4; and because
of A5 to A7 and A8.

4. F One can show that apart from these cases the axioms are not redundant; in
other words that no one axiom follows from the others. More precisely, one can
construct examples where, say, A8 is false but all the other axioms are true (see
the following section on Fields); and similarly for any of the other axioms.

2.3.2. More algebraic properties. All the usual algebraic properties of the real
numbers follow from A1–A9, in particular, one can solve simultaneous systems of linear
equations. We will not spend much time on indicating how one deduces other algebraic
properties from these axioms, but will continue to use all the usual properties of addition,
multiplication, subtraction and division that you have used in the past.

None-the-less, it is useful to have some idea of the methods involved in making de-
ductions from A1–A9. Later in this course, when we discuss vector spaces, you will have
more practice at making deductions from “algebraic” sets of axioms somewhat like those
above.

The first thing is to define subtraction and division. For this, suppose a and b are
any5 two real numbers (except that b 6= 0 in the definition of division). Then we define

a− b = a+ (−b)
a÷ b = a× b−1 for b 6= 0

This may look like a circular definition; it may appear that we are defining “subtraction”
in terms of “subtraction”. But this is not the case. Given b, from A4 there is a certain
real number, which we denoted by −b, with certain properties. We then define a − b to
be the sum of a and this real number −b.

Similar comments apply to the definition of division. We also write a/b or a
b

for a÷ b.
We can also now define other numbers and operations. For example, we define 2 =

1 + 1, 3 = 2 + 1, etc.

Also, we define x2 = x× x, x3 = x× x× x, x−2 =
(
x−1
)2

, etc. etc.

We define
√
b, for b ≥ 0, to be that number a ≥ 0 such that a2 = b. Similarly, if n

is a natural number, then
n
√
b is that number a ≥ 0 such that an = b. To prove there is

always such a number a requires the “completeness axiom” (see later).

4F One can write down basic properties, i.e. axioms, for “=” and the logic we use. See later
courses on the foundations of mathematics.

5We do not even assume a 6= b.
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As an example of the way in which one can use A1–A9 to derive other algebraic
properties, we prove the cancellation property of addition:

Theorem 2.2. If a, b and c are real numbers and a+ c = b+ c, then a = b.

Proof. Assume

a+ c = b+ c.

Since a + c and b + c denote the same real number, we obtain the same result if we add
−c to both; i.e.

(a+ c) + (−c) = (b+ c) + (−c).
(This used the existence of the number −c from A4.) Hence

a+ (c+ (−c)) = b+ (c+ (−c))
from A2 applied twice, once to each side of the equation. Hence

a+ 0 = b+ 0

from A4 again applied twice. Finally,

a = b

from A3.

We will not pursue this idea of making deductions from the axioms, but see Section 2.9
if you are interested in knowing more. In future we will forget about the axioms and just
use all the usual properties of addition, multiplication, subtraction and division. Here we
list a few:

Theorem 2.3. If a, b, c, d are real numbers and c 6= 0, d 6= 0 then

1. if ac = bc then a = b.
2. a0 = 0
3. −(−a) = a
4. (c−1)−1 = c
5. (−1)a = −a
6. a(−b) = −(ab) = (−a)b
7. (−a) + (−b) = −(a+ b)
8. (−a)(−b) = ab
9. (a/c)(b/d) = (ab)/(cd)

10. (a/c) + (b/d) = (ad+ bc)/cd

F For those who are interested, I indicate the proofs of these facts from the axioms
in Section 2.9.

2.3.3. Order properties. The real numbers have a natural ordering, denoted by
“<” which we read as “is less than”. Basic properties are:

Axioms (Less than). If a, b and c are real numbers then:

A10: one and only one of the following hold

a < b or a = b or b < a;

A11:

if a < b and b < c, then a < c;

A12:

if a < b then a+ c < b+ c;

A13:

if a < b and 0 < c, then ac < bc;

If 0 < a we say a is positive and if a < 0 we say a is negative.
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2.3.4. More order properties. One can define “>”, “≤” and “≥” in terms of <
as follows:

a > b if b < a,

a ≤ b if (a < b or a = b),

a ≥ b if (a > b or a = b).

(Note that the statement 1 ≤ 2, although it is not one we are likely to make, is indeed
true, why?)

All the usual properties of inequalities can in fact now be proved from A10–A13,
(together with A1–A9). For example,

Theorem 2.4. If a, b and c are real numbers then

1. a < b and c < 0 implies ac > bc
2. 0 < 1 and −1 < 0
3. a > 0 implies 1/a > 0
4. 0 < a < b implies 0 < 1/b < 1/a

Henceforth we will forget about the axioms and use all the properties of inequalities
and all the algebraic properties that you have used before.

Remark 2.5. It is a simple consequence of the standard properties of < that there is
no smallest positive number, because if s is any positive number then s/2 (for example)
is a smaller positive number.

Remark 2.6. The set Q of rational numbers, together with 0 and 1, the operations
of addition and multiplication, and the < relation, is also a model of the corresponding
versions of axioms A1–A13, with “real” replaced by “rational”. The main points to note
are that 0 and 1 are of course rational, if a is rational then so are −a and a−1 (assuming
a 6= 0), and the sum and product of rational numbers is rational. Apart from this,
the axioms A1–A13 are satisfied for rational numbers because they are satisfied for real
numbers (every rational number is certainly real).

The set of irrational numbers does not satisfy the corresponding versions of A1–A13.
For example, 0 and 1 are not irrational, and the sum and product of irrational numbers
need not be irrational (examples? ).

Which of the axioms A1–A13 are satisfied by N? By Z?

Definition 2.7. The absolute value of a real number a is defined by

|a| =
{
a if a ≥ 0

−a if a < 0

(If we wanted the definition to look more “symmetric” we could have considered the cases
a > 0 and a = 0 separately. But otherwise there is no real point to doing this.)

It follows by considering the cases a ≥ 0 and a < 0 separately that6

|a| =
√
a2, −|a| ≤ a ≤ |a|.(2.1)

Note also that

|a| < b if and only if
(
a < b and − a < b

)
.(2.2)

The following properties also follow from the properties of inequalities.

Theorem 2.8. If a and b are real numbers then:

1. |ab| = |a| |b|
2. |a± b| ≤ |a|+ |b| (triangle inequality)

3.
∣∣|a| − |b|

∣∣ ≤ |a− b|
Proof. (We can use any of the usual propeties of inequalities, together with the

definition of “| · |”.)

6When we write p ≤ q ≤ r we mean p ≤ q and q ≤ r. Similarly for p < q ≤ r etc.
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1. We consider the various possible cases. If either a or b (or both) are zero, then
both sides are zero. If a > 0 and b > 0 then also ab > 0 and both sides equal ab.
If a > 0 and b < 0 then ab < 0 and both sides equal −ab; similarly if a < 0 and
b > 0. Finally, if a < 0 and b < 0 then both sides equal ab. Hence one has equality
in all cases.

2. |a + b| is either a + b or −(a + b), while |a − b| is either a − b or −(a − b). Thus
|a± b| is one of a+ b, −a− b, a− b or −a+ b. The result now follows from (2.1),
since each of these four quantities is ≤ |a|+ |b|

3. From (2.2) it is sufficient to prove

|a| − |b| ≤ |a− b| and − (|a| − |b|) ≤ |a− b|.
From the triangle inequality we have

|a| = |(a− b) + b| ≤ |a− b|+ |b|,
and so

|a| − |b| ≤ |a− b|.(2.3)

Since this is true for any real numbers a and b, we can switch a and b to get

|b| − |a| ≤ |b− a| (= |a− b|),
i.e.

−(|a| − |b|) ≤ |a− b|.(2.4)

It follows from (2.3) and (2.4) that
∣∣|a| − |b|

∣∣ ≤ |a− b|.

By repeated applications of the triangle inequality it follows that

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|,(2.5)

for any natural number n.
See [Adams, pages 8–11] for more on inequalities.

2.4. Completeness property

The Completeness Axiom is introduced. It is true for the real numbers,
but the analogous result is not true for the rationals. We define the
notion of upper bound (lower bound) and least upper bound (greatest
lower bound) of a set of real numbers.

This is the final axiom for the real number system, and is probably not one you have
met before. It is more difficult to understand than the other properties, but it is essential
in proving many of the important results in calculus.

Axioms (Completeness).

A14: If A is any non-empty set of real numbers with the property that there is some
real number x such that a ≤ x for every a ∈ A, then there is a smallest (or least)
real number x with this same property.

A is non-empty means that A contains at least one number.
Note that the number x in the axiom need not belong to A. For example, if A is the

interval [0, 1) then the smallest (or “least”) number x as above is 1, but 1 6∈ A. On the
other hand, if A = [0, 1] then the smallest number x as above is again 1, but now 1 ∈ A.

There is some useful notation associated with the Completeness axiom.

Definition 2.9. If A is a set of real numbers and x is a real number such that a ≤ x
for every a ∈ A, then x is called an upper bound for A. If x is the smallest upper bound
then x is called the least upper bound or supremum of A. In this case one write

x = l. u. b. A or x = supA.



0
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If x ≤ a for every a ∈ A, then x is called an lower bound for A. If x is the largest
lower bound then x is called the greatest lower bound or infimum of A. In this case one
write

x = g. l. b. A or x = inf A.

Thus the Completeness Axiom say that if a non-empty set A has an upper bound
then it also has a least upper bound. (Remember that when we say A “has” a least upper
bound x we do not require that x ∈ A.)

There is an equivalent form of the axiom, which says: If A is any non-empty set of
real numbers with the property that there is some real number x such that x ≤ a for every
a ∈ A, then there is a largest real number x with this same property. In other words if a
non-empty set A has a lower bound then it also has a greatest lower bound.

It is not too hard to see that this form does indeed follow from the Completeness
axiom. The trick is to consider, instead of A, the set

A∗ := {−x : x ∈ A },
which is obtained by “reflecting” A about 0.

Lowerbounds for A correspond under reflection to upperbounds for A∗, and a g. l. b.
corresponds to a l. u. b.. If A is bounded below then A∗ is bounded above, and so by the
completeness axiom has a l. u. b.. After reflection, this l. u. b. for A∗ gives a g. l. b. for A.
(To actually write this out carefully needs some care—you need to just show check the
relevant definitions and the properties of inequalities that the first two sentences in this
paragraph are indeed correct.)

Similarly, the completeness axiom does follow from this equivalent form.

Unlike in the case of A1–A13, we will always indicate when we use the completeness
axiom (or “property”).

The completeness axiom implies there are no “gaps” in the real numbers.
For example, the rational numbers are not a model of the corresponding version of

A14. This is because there are sets of rational numbers A which have the property that
there is some rational number x such that a ≤ x for every a ∈ A, but there is no smallest
rational number x with this same property. For example, let

A = { a ∈ Q : 0 ≤ a and a2 < 2 } = { a ∈ Q : 0 ≤ a <
√

2 }.
(The first definition for A has the advantage that A is defined without actually referring

to the existence of
√

2, even as a real number.) There are certainly rational numbers x
such that a ≤ x for every a ∈ A, just take x = 23. But we claim there is no smallest such
rational number.

Proof. This claim basically follows from the fact that
√

2 is not rational, see Theo-
rem 2.11, and so cannot be the required rational number.

On the other hand, the required rational number x cannot be <
√

2, since there is
always a rational number between any such x and

√
2 (see Theorem 2.16), contradicting

the fact x ≥ a for every a ∈ A.
Finally, the required x cannot be >

√
2, since there is always a rational number

between
√

2 and any such x (see Theorem 2.16), and this rational number means we
have contradicted the fact x is the smallest rational number such that x ≥ a for every
a ∈ A.

Remark 2.10. FWe defined an interval to be a set of real numbers with the property
that it contains at least two numbers, and moreover it contains all real numbers between
any two of its members. It follows from the completeness axiom that any interval is indeed
one of the 9 types described in Section 2.2.3. While this may seem obvious, we do need
the completeness axiom to prove it, essentially since the uppper bound of an interval may
not be rational.
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For example, suppose the interval I is bounded. Then it has a g. l. b. a and a l. u. b.
b, say. If a ∈ I and b ∈ I then I = [a, b] since I contains all numbers between a and b,
and no others by definition of g. l. b. and l. u. b..

If a ∈ I and b 6∈ I then I = [a, b). The main point is to prove that if a ≤ x < b then
x ∈ I. But if x 6∈ I then neither can any number greater than x be in I (by definition of
“interval”) and hence x is an upper bound for I, contradicting the fact that b is the least
upper bound.

In a similar way, we establish that any interval is of one of the 9 given forms.

2.5. Properties of the rational and irrationals

We prove that
√

2 is irrational. We show the Completeness Axiom implies
that there is indeed a real number whose square is 2; that there is no real
number greater than every integer; and that for any positive number (no
matter how small) there is a smaller number of the form 1/n for some
natural number n. We prove that between any two real numbers there are
an infinite number of rationals and an infinite number of irrationals.

The ancient Greeks, in the school of Pythagoras, first discovered that not all real
numbers are rational. This was considered to be a very serious problem, since the Greeks
thought in terms of the natural numbers and ratios! They proved that

√
2 is irrational,

even though it arose in the very natural manner as the length of the hypotenuse of a
right-angled triangle whose other two sides were each of length 1.

Theorem 2.11.
√

2 is not rational.

Proof. We argue by contradiction. That is, we assume
√

2 = m/n

where m and n are integers.
Multiplying numerator and denominator by −1 if necessary, we can take m and n to

be positive. By canceling if necessary, we can reduce to the situation where m and n have
no common factors. Squaring both sides of the equation, we have for these new m and n
that

2 = m2/n2

and hence

m2 = 2n2.

It follows that m is even, since the square of an odd number is odd. (More precisely,
if m were odd we could write m = 2r + 1 for some integer r; but then m2 = (2r + 1)2 =
4r2 + 4r+ 1 = 2(2r2 + 2r) + 1, which is odd, not even.) But since m is even, we can write

m = 2p

for some integer p, and hence

m2 = 4p2.

Substituting this into m2 = 2n2 gives

4p2 = 2n2,

and hence

2p2 = n2.
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But now we can argue as we did before for m, and deduce that n is also even. Thus
m and n both have the common factor 2, which contradicts the fact they have no common
factors.

This contradiction implies that our original assumption was wrong, and so
√

2 is not
rational.

The fact that there is a real number
√

2, i.e. a positive real number x such that
x2 = 2, is hardly surprising, but it does not actually follow from A1–A13. This is because
the rational numbers themselves satisfy A1–A13, but the previous proof shows there is no
rational number x with this property.

Although we give the proof of the following theorem at this stage, it follows much
more easily later on from the Intermediate Value Theorem, see Theorem 5.17.

Theorem 2.12. There exists a positive number x with the property that x2 = 2. We
write x =

√
2.

Proof. Let

A = { a ∈ R : 0 ≤ a and a2 < 2 }.
Let x = supA, which exists by the Completeness axiom, since A is certainly bounded
above, by 23, say.⌈

The existence of such an x requires the completeness axiom. But once we know such

a number exists, it has the usual algebraic and order properties of any real number. It
is now just a matter of some messy manipulating of inequalities to rule out x2 < 2 and

x2 > 2, thereby showing that in fact x2 = 2.
⌋

There are three possibilities:

x2 < 2, x2 = 2, x2 > 2.

If x2 < 2, then by taking y to be a slightly bigger number than x, we still have y2 < 2.(
F This is not surprising, but to write it out carefully is a little tricky. To do it, let

y = x+ ε where ε > 0 is yet to be chosen. Then y2 = x2 + ε(2x+ ε). Now choose ε > 0 so

ε < min

{
1,

2− x2

2x+ 1

}
.

Because ε < 1, it follows that 2x+ ε < 2x+ 1.

Because also ε < 2−x2

2x+1
it then follows that

y2 = x2 + ε(2x+ ε) < x2 + ε(2x+ 1) < x2 + (2− x2) = 2,

and so

y2 < 2.

)

It follows that y ∈ A from the definition of A, but then we have a contradiction to y > x
since x ≥ any member of A.

If x2 > 2, then by taking y to be a slightly smaller number than x, we also have
y2 > 2 (the proof is similar to the above, exercise). But y2 > 2 implies y > a for every
a ∈ A (since if y ≤ a and y ≥ 0, then y2 ≤ a2, which in turn implies y2 < 2, contradiction).
Hence y is an upper bound for A, contradicting the fact that x is the smallest upper bound
for A.

Hence x2 = 2, since we have ruled out x2 < 2 and x2 > 2.

One very useful fact is that between any two distinct real numbers there is a rational
and an irrational number (in fact an infinite number of each type). We say the set of
rationals and the set of irrationals are both dense in R.
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But first we need Theorem 2.13, which is logically equivalent to the statement for
every real number x there exists a natural number n (which will depend on x) such that7

n > x.

1. Why does the theorem imply this fact?
2. Why does this fact imply the theorem?

Note that the assertion in Theorem 2.13 is not just an algebraic or inequality property.
It is an assertion about the non-existence of a real number with a certain property (or
equivalently, by the previous paragraph, to the existence — for each real number — of a
(natural) number with a certain property.) For this reason, it is not surprising that we
need the Completeness axiom to prove it.

The proof is a little unusual, but it is logically correct.

Theorem 2.13 (Archimidean Property). There is no real number x with the property
that x ≥ n for every natural number n.

Proof. F (This is another proof by contradiction.) Assume that there is some
number, which we denote by x, such that x ≥ n for every n ∈ N. By the Completeness
Axiom there is a smallest such x; consider this particular x.

Since n + 1 is a natural number if n is, we must also have that x ≥ n + 1 for every
natural number n. But this is the same as saying x− 1 ≥ n for every natural number n.

In other words, x has the property that x− 1 ≥ n for every n ∈ N!! This contradicts
the fact x was the least number with the property x ≥ n for every n ∈ N. Thus the
assumption at the beginning of the proof was wrong, and so there is no real number x
greater than or equal to every natural number.

The next result is also important. We could just as well have written x instead of ε,
but it is traditional to write ε or δ for a small positive number.

Corollary 2.14. For any real number ε > 0 there is a natural number n such that
1/n < ε.

Proof. Suppose ε > 0. From the previous remark, there is a natural number n such
that n > 1/ε. This implies 1/n < ε.

Remark 2.15. A theorem is an important result, and a corollary is something which
is a fairly straightforward consequence of a previous theorem.

Theorem 2.16. Assume a < b are real numbers. Then there is a rational number x
and an irrational number y such that a < x < b and a < y < b.

Proof. We have just seen that there is a natural number n such that

1

n
< b− a.

First assume a ≥ 0. Consider the sequence

1

n
,

2

n
,

3

n
,

4

n
, . . . .

Since 1/n is less than the difference between a and b, it follows that at least one
member m/n of this sequence must lie between a and b. This is the required rational
number x.8

7In fact, there exists an infinite number of such n.
8F To be more precise, use the Completeness Property to first choose x as the least real

number with the property that x ≥ p/n whenever p/n ≤ a p and n natural numbers. One then
shows that x must itself be of the form p/n for some p, and then deduces that a < (p+ 1)/n < b
for this particular p.
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If a < 0, then a similar proof works with the sequence

− 1

n
,− 2

n
,− 3

n
,− 4

n
, . . . .

To find an irrational number y between a and b, first choose a natural number n
such that

√
2/n < b − a (why is this possible? ). Then choose a natural number m as

before so that now a < m(
√

2/n) < b. Since m
√

2/n is irrational (if it were rational, and

equaled p/q, say, then it would follow that
√

2 = np/mq and so
√

2 would be rational,
contradicting Theorem 2.11) we can take this as the required irrational number y.

The proof is again similar if a < 0.

Remark 2.17. We can now choose another rational number x1 between a and the
rational number x of the theorem, and then another rational number between a and x2,
etc. This gives an infinite set of rational numbers between a and b.

Similarly there is an infinite number of irrational numbers between any two real
numbers.

2.6. Functions

We define the notion of a function, its domain and its range. We dis-
cuss the idea of a dependent and of an independent variable. We give a
number of examples of functions. We show how functions can be combined
algebraically and by composition to give new functions.

One of the most important ideas in mathematics is that of a function.

Definition 2.18. A function f from a set A into a set B is something which assigns
to every number x ∈ A a unique (i.e. exactly one) number f(x) ∈ B. We write

f : A→ B,

and say f maps (the set) A into (the set) B.

Note that each number in A is mapped to exactly one number in B. Different numbers
in A may be mapped to the same number in B, but a number in A cannot be mapped to
more than one number in B. There may be numbers in B which are not of the form f(a)
for any a ∈ A.

In this course, A and B will usually (but not always) be sets of numbers, but in later
work it is very important to take more general functions where A and B may be much
more general sets of objects.

The domain of f , written D(f), is the set A (the set of “input” values of f). The
range of f , written R(f), is the set of all numbers of the form f(x) for some x ∈ A (the
set of “output” values of f). Thus

D(f) = A, R(f) ⊂ B.
Here, R(f) = {p, r, s}. (By S ⊂ T , where S and T are two sets, we mean that every
member of S is also a member of T . Notice that if S and T are the same sets, which
means they have the same members, then it is also true that S ⊂ T .)

Many texts say a function from A to B is a “rule” which assigns to each member of A
a member of B. But it is necessary to interpret the meaning of the word “rule” in a very
broad sense—it is not necessary that a function be “described” by some sort of English or
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mathematical expression. All that is meant is that to each number x(say) in the domain
there corresponds exactly one number, denoted by f(x).

Often a function will only be described in an indirect manner; for example it may be
the limit of a sequence of other functions (see the proof of Theorem 8.2). In other cases
we may prove a function exists by using argument by contradiction to show that f(x) has
a value for every x in some given domain.

We adopt the convention that, unless indicated otherwise, the domain of a function is
the largest set of real numbers for which the definition of the function makes sense. Thus
the domain of the function f described by f(x) = 1/(x−2) is (unless stated otherwise) the
set of all real numbers other than 2. We write this set as {x : x 6= 2 }. See also Examples
2,3,5 below.

In order to describe a function completely, we need to give both the domain and the
rule.

Two functions f1 and f2 are said to be the same function, or to be equal, if they have
the same domain, and if f1(x) = f2(x) for all x in the domain.

The graph of f is the set of all points (x, f(x)) such that x ∈ D(f). For example, the
graph of the function f(x) = x2 is

Notation 2.19. If we denote an arbitrary input value of a function f by x and the
corresponding output value f(x) by y, we say x is the dependent variable and y is the
independent variable. We write

y = f(x)

and say “y equals f of x”.
Besides letting y denotes an output value as above, it is also often convenient in

computations and applications to let y denote the actual function f itself. In this case
we sometimes write y = y(x) to indicate that the “function” y has output value y(x)
for input value x. However, when we are looking at more theoretical questions, this can
lead to confusion and ambiguity, and so in those circumstances we will usually avoid this
practice.

Example 2.20.

1. Consider the function f defined by

f(x) = x2.

Unless we say otherwise the domain here is R and the range is then [0,∞). We
can write

f : R→ R, f : R→ [0,∞), or even f : R→ [−3,∞).

Note that the function f defined by f(x) = x2 is exactly the same as the
function f defined by f(y) = y2 or by f(a) = a2. We say x, y, a are dummy
variables. We call f the squaring function. It is also the same as the function g
defined by g(x) = x2.
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Consider the function h defined by

h(x) = x2, x ≥ 1.

This is the function whose domain is [1,∞) and which assigns to each x in the
domain the number x2. Thus the two functions f and h are not equal since their
domains are not equal.

2. The function f defined by

f(x) =
x2 + 1

x− 1

has domain {x : x 6= 1}. This is the same set as (−∞, 1) ∪ (1,∞), the union of
(−∞, 1) and (1,∞). It is also exactly the same set as {y : y 6= 1}

3. The function f defined by f(x) =
√
x has domain {x : x ≥ 0} = [0,∞), unless

otherwise indicated.
4. The function defined by

f(x) =

{
x x rational

−x x irrational

Its graph looks something like

Of course this is somewhat misleading, as both the rationals and the irrationals
are dense in R.

5. The function defined by

f(x) =
x2 − 1

x− 1

has domain {x : x 6= 1} according to our conventions. For each x in the domain
we see that f(x) = x+ 1. However, f is not the same as the function g defined by

g(x) = x+ 1,

since the domain of g, unless we specify otherwise, is all of R. Of course we could
“extend” the domain of f by defining f(1) = 2, and the extended function would
then be the same as g.

6.
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The function g with domain [0, 1] defined by

g(x) =





1/2 if x = 1/2

1/4 if x = 1/4, 3/4

1/8 if x = 1/8, 3/8, 5/8, 7/8
...

1/2k if x = 1/2k, 3/2k, 5/2k, . . . , (2k − 1)/2k

...

g(x) = 0 otherwise.

In other words,

g(x) =

{
1/2k if x = p/2k where k ∈ N, p odd and 1 ≤ p < 2k

0 otherwise, for 0 ≤ x ≤ 1.

We can add, subtract, divide and multiply functions to get new functions. We can
also multiply a function by a real number to get a new function.

Definition 2.21. Let f and g be functions and c be a real number. Then we define
functions f + g, f − g, fg, f/g and cf by

(f + g)(x) = f(x) + g(x)

(f − g)(x) = f(x)− g(x)

(fg)(x) = f(x)g(x)

(f/g)(x) = f(x)/g(x)

(cf)(x) = cf(x).

We restrict x in all cases to be a member of the domains of both f and g, and in the
fourth case we also require that g(x) 6= 0.

We can also combine two functions by taking the “output” of one to be the “input”
of the other.

Definition 2.22. If f and g are two functions, then the composition of f and g is
defined by

(f ◦ g)(x) = f(g(x))

for all x ∈ D(f) such that f(x) ∈ D(g).

For example, if h(x) = |g(x)| (for all x ∈ D(f)) then h is the composition of the
“absolute value” function f , given by f(y) = |y|, with g. See [Adams, pages 33–36] for
further discussion and examples.
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2.7. Mathematical induction

Suppose we want to prove some statment is true for every integer n greater than or
equal to some fixed integer n0. We often do this with the following.

Principle of Mathematical Induction. Suppose that for some statement P (n) about
integers n we know

• The statement P (n0) is true;
• if the statement P (n) is true for some integer n ≥ n0 then the statement P (n+ 1)

is also true.

In this case, the statement P (n) is true for all integers n ≥ n0.
For an example, see the proof of Theorem 6.6.

The Principle of Mathematical Induction is easy to justify informally. By the first
assumption, P (n0) is true. By the second assumption applied with n replaced by n0 it
follows P (n0 + 1) is true. By the second assumption applied with n replaced by n0 + 1 it
then follows P (n0 + 2) is true. eEtc.

Remark 2.23. F If one wants to give a more careful proof of the Principle of Math-
ematical Induction, then one first needs to give a more careful definition of the set N.

One can do this by defining N to be the set of all real numbers which belong to every
inductive set S, where a set S is defined to be inductive if it has the property that 1 ∈ S
and that if x ∈ S for some real number x, then also x + 1 ∈ S. One then shows that N
itself is inductive and so is the “smallest” inductive set.

In order now to prove the Principle of Mathematical Induction in case n0 = 1, suppose
the two assumptions of the Principle are true and let T be the set of all integers n for
which P (n) is true. Then T is inductive (why? ), and so every member of N is also in T
as N is the smallest inductive set (conversely, every member of T is in N as T was already
assumed to be a set of integers).

The proof in case n0 > 1 is now easy. Just take T to be the set of integers {1, . . . , n0−
1} together with the set of integers n ≥ n0 for which P (n) is true.

There is also a stronger version called the Principle of Complete Mathematical Induc-
tion, in which we may assume not only that P (n) is true, but also that P (n0), . . . , P (n−1)
are true.

Principle of Complete Mathematical Induction. Suppose that for some statement
P (n) about integers n we know

• The statement P (n0) is true;
• if the statements P (n0), . . . , P (n) are true for some integer n ≥ n0 then the state-

ment P (n+ 1) is also true.

In this case, the statement P (n) is true for all integers n ≥ n0.

Once again, it is easy to justify informally. By the first assumption, P (n0) is true.
By the second assumption applied with n replaced by n0 it follows P (n0 + 1) is true. By
the second assumption applied with n replaced by n0 + 1 it then follows P (n0 + 2) is true.
etc.

F The rigorous proof is similar to that in the case of ordinary induction.

Exercise 2.24. The Fibonacci sequence (see Section 4.1) is defined by

a1 = 1, a2 = 1, an = an−1 + an−2 if n ≥ 2.

Prove by complete induction that

an =

(
1+
√

5
2

)n
−
(

1−
√

5
2

)n
√

5
.

Fibonacci first came up with this sequence as a model for rabbit population growth. Let
an be the number of pairs born in the nth month. He assumed there was one pair born the
first month and one in the second. After that he assumed that in the nth month there is
one pair born for each pair born in the previous month and for each pair born two months
ago.
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The number of seeds in any ring (layer) of a pine cone is a member of the Fibonacci
sequence.

There is an entire journal devoted to Fibonacci sequences, The Fibonacci Quarterly.

2.8. FFields

The real numbers and the irrationals, as well as the integers modulo a fixed
prime number, form a field.

Any set S, together with two operations ⊕ and ⊗ and two members 0⊕ and 1⊗ of S,
which satisfies the corresponding versions of A1–A9, is called a field.

Thus R (together with the operations of addition and multiplication and the two real
numbers 0 and 1) is a field. The same is true for Q, but not for Z since the analogue of
axiom A8 does not hold, why? .

An interesting example of a field is the set

Fp = {0, 1, . . . , p− 1}
for any fixed prime p, together with addition and multiplication defined “modulo p”;
i.e. one performs the usual operations of addition and multiplication, but then takes the
“remainder” after dividing by p.

Thus for p = 5 one has:

⊕ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

⊗ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

It is not too hard to convince yourself that the analogues of axioms A1–A9 hold for
any prime p. The axiom which fails if p is not prime is A8, why?. Note that since Fp is a
field, we can solve simultaneous linear equations in Fp.

The fields Fp are very important in coding theory and cryptography.

2.9. FDeductions from the axioms

We sketch how the usual algebraic and order properties of the real numbers
follow rigorously from the axioms A1–A13.

Each line in the following proofs will

1. be an example of one (or occasionally more) of axioms A1–A9;
2. or be a previously proved result;
3. or follow from previously proved results by rules of logic9 including the properties

of equality.

Proof of Theorem 2.3. Fill in the missing steps, and go through the proofs line by
line and indicate what is used in each step.

1. Write out your own proof, following the ideas of the proof of the similar result for
addition.

2. The trick here is to use the fact 0+0 = 0 (from A3), together with the distributive
axiom A9. The proof is as follows:

Proof. One has a(0 + 0) = a0
But the left side equals a0 + a0
and the right side equals 0 + a0
Hence a0 + a0 = 0 + a0
Hence a0 = 0.

9For example, if we prove that some statement P implies another statement Q, and if we
also prove that P is true, then it follows from rules of logic that Q is true.
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3. Proof. We want to show −(−a) = a.
By −(−a) we mean the negative of −a, and hence by A4 we know that −(−a) is
the unique number which when added to −a gives 0.10 In other words,

(−a) + (−(−a)) = 0

and if

(−a) + x = 0

then we must have x = −(−a).
Thus if we can also show that

(−a) + a = 0(2.6)

then it will follow that a = −(−a) !!
But (2.6) is just A3, and so we are done.

The proof can be written more precisely as follows:

Proof. From the second equality in A4 one has

(−a) + a = 0.(2.7)

From the first equality in A4 with a there replaced by (−a) one has (−a) +
(−(−a)) = 0, and moreover,

if (−a) + x = 0 then x = −(−a).

Hence, from (2.7), a = −(−a).

4. Write out your own proof, along similar lines to the preceding proof.
5. (As in the proof of 2) it is sufficient to show (−1)a+ a = 0 (why?)

The proof is as follows:

Proof. (−1)a+ a = (−1)a+ 1a
= a((−1) + 1) (two axioms were used for this step)
= a0
= 0

Hence −a = (−1)a from the uniqueness part of A4.

6. Proof. a(−b) = a((−1)b)
= (a(−1))b
= ((−1)a)b
= (−1)(ab)
= −(ab)
Prove the second equality yourself.

7. Prove this yourself using, in particular, 4 and A9
8. Proof. (−a)(−b) = ((−1)a)(−b)

= (−1)(a(−b))
= −(a(−b))
= −(−(ab))
= ab

9. Proof. First note that (a/c)(b/d) = (ac−1)(bd−1)
and (ab)/(cd) = (ab)(cd)−1.
But (ac−1)(bd−1) = (ab)(c−1d−1)
(fill in the steps to prove this equality; which involve a number of applications of
A5 and A6).

If we can show that c−1d−1 = (cd)−1 then we are done.
Since, by A8, (cd)−1 is the unique real number such that (cd)(cd)−1 = 1, it is

10Since a can represent any number in A4, we can replace a in A4 by −a. This might seem
strange at first, but it is quite legitimate.
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sufficient to show11 that (cd)(c−1d−1) = 1.
Do this; use A5–A8

Important Remark : There is a tricky point in the preceding that is easy to
overlook; but will introduce some important ideas about logical reasoning.
We used the number (cd)−1.
To do this we need to know that cd 6= 0.
We know that c 6= 0 and d 6= 0 and we want to prove that cd 6= 0.
This is equivalent to proving that if cd 6= 0 is false, i.e. if cd = 0, then at least one
of c 6= 0 and d 6= 0 is false, i.e. at least one of c = 0 or d = 0 is true.
In other words, we want to show that if cd = 0 then either c = 0 or d = 0 (possibly
both).

The argument is written out as follows:
Claim: If c 6= 0 and d 6= 0 then cd 6= 0

Proof. We will establish the claim by proving that if cd = 0 then c = 0 or
d = 0.12

There are two possibilities concerning c;
either c = 0, in which case we are done
or c 6= 0. But in this case, since cd = 0, it follows

c−1(cd) = c−10 and so
d = 0
why?; fill in the steps

Thus we have shown that if cd = 0 then c = 0 or d = 0. Equivalently, if c 6= 0
and d 6= 0, then cd 6= 0.

10. Exercise
HINT: We want to prove

ac−1 + bd−1 = (ad+ bc)(cd)−1.

First prove that

(ac−1 + bd−1)(cd) = ad+ bc.

Then deduce the required result.

And now the proofs of Theorem 2.4

1.
2.
3.
4.

2.10. FExistence and Uniqueness of the Real Number System

We began by assuming that the real number system satisfies Axioms A1–A14. But it
is possible to go back even further and begin with axioms for set theory, and then prove
the existence of a set of objects satisfying Axioms A1–A14.

This is done by first constructing the natural numbers, then the integers, then the
rationals, and finally the reals. The natural numbers are constructed as certain types of
sets, the negative integers are constructed from the natural numbers, the rationals are con-
structed as sets of ordered pairs as in [Birkhoff and MacLane, Chapter II-2]. Finally,
the reals are then constructed by the method of Dedekind Cuts as in in [Birkhoff and MacLane,
Chapter IV-5] or the method of Cauchy Sequences as in [Spivak, Chapter 28].

The real number system is uniquely characterised by Axioms A1–A14, in the sense
that any two structures satisfying the axioms are essentially the same up to a renaming of

11When we say “it is sufficient to show . . . ” we mean that if we can show . . . then the result
we want will follow.

12Note; in mathematics, if we say “***” or ###” (is true) then we always include the
possibility that both “***” and “###” are true.
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the members. More precisely, the two systems are isomorphic, see [Birkhoff and MacLane,
Chapter IV-5] or [Spivak, Chapter 29].



 

22 2. THE REAL NUMBER SYSTEM



            

CHAPTER 3

Limits

The reference for this chapter is generally [Adams, Chapter 1]. In particular and more
precisely, Section 1.2, 1.5 to page 87, Appendix III page A-21, and Definition 4 page 644
and the preceding remarks.

3.1. Introduction

Calculus was first developed independently by Newton and Leibniz in the 1660’s and
1670’s.1 The notation dy

dx
is due to Leibniz. Both thought of y as depending on x via some

formula, and of dy
dx

as the ratio of “indefinitely small quantities” or as the “ultimate ratio
of evanescent increments”. They both had a very good intuition (obviously!), and they
and their successors developed much of the calculus over the next 150 years, even though
they could not fully understand why their methods worked.

To make their ideas precise and to proceed further, one needed to develop a theory
of the approximation process which was involved. Newton and Leibniz were unable to do
this, and it was not until 1821 that Cauchy introduced a theory of limits and showed how
calculus could be based on such a theory.

The difficulty Cauchy overcame was to capture a “dynamic” process by means of a
“static” formulation. We may describe a moving particle (a dynamic process) by means
of a formula or more generally by means of a function (both of which are static objects),
which give the particle’s position as a function of time. This was already understood by
Newton and Leibniz, but they were not able to “step back” and see that the dynamic
process of approximation itself was also one which could be explained in a static way by

means of a function. This was done by Cauchy, who worked with the ratio y(a+h)−y(a)
h

as

a function of h and defined the quantity dy
dx

at x = a to be the limit of this function as h
approached 0.

But Cauchy was unable to give a rigorous definition of the notion of a limit, and it
remained for Weierstrass to do this about 15 years later, along the lines of Definition 3.5.

3.2. Definition of limit for a function

We give some examples of limits in order to motivate the formal defini-
tion. The notion of a neighbourhood and of a deleted neighbourhood of a
number is defined. The definitions of a limit, and of a limit from the right
and from the left, are then given. The definition is discussed in terms of
always winning a certain game. The definitions are applied to a number of
examples.

In order to properly develop a theory of differentiation (as indicated in the previous
section), and also of integration and of many other mathematical notions, we need to have
a precise theory concerning the notion of limit of a function.

We begin with some examples in order to motivate the definition.

In this chapter and elsewhere, we will use the standard properties of the trigonometric,
and occasionally exponential and logarithmic functions, to provide interesting examples.
See [Adams, pp 40–52, 209–223] for somewhat informal discussions. But we will not use
these functions as part of the rigorous development of the theory.

One can in fact define these functions rigorously either as the limit of certain infinite
series (after one has developed the theory of infinite series) or as certain definite integrals

1See [Devlin, pages 79–90], from where I take these notes, and for more discussion.

23
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(after one has developed the theory of integration) or as solutions of certain differential
equations (after one has proved Theorem 8.2).

Example 3.1 (A Simple One). Let

f(x) = x2.

Then we certainly want

lim
x→2

f(x) = 4.

(We say that “the limit as x approaches 2 of f(x) is 4”, or that “f(x) approaches the limit
4 as x approaches 2”, or that “f has limit 4 at 2”.) Moreover, if

f(x) =

{
x2 x 6= 2

23 x = 0
,

or even if f(x) is defined only for x 6= 2, then we still want

lim
x→2

f(x) = 4.

The point is that the value of f at 2, or even whether or not f is defined at 2, is irrelevant
to the existence and/or value of the limit of f at 2.

Thus even though we speak of the limit of f at 2, the notion of the limit at 2 concerns
the behaviour of f(x) for x “near” 2 but not when x = 2!

Example 3.2 (A More Complicated One).

Let

f(x) =

{
sin 1

x
x 6= 0

0 x = 0

(In the diagram we have not shown the graph in the range (−.02, .02). Sorry about the
quality of the diagram!) In this case we want that

lim
x→0

f(x)

does not exist, even though there are values of x as close as we wish to 0 such that
f(x) = 0. (Of course, the same comments apply regardless of the actual value of f(0)).



( ) ( ( ))
a a

b bc c
a neighbourhood of  a a deleted neighbourhood of  a
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However, if

f(x) =

{
x sin 1

x
x 6= 0

0 x = 0
,

then we do want that

lim
x→0

f(x) = 0.

Moreover, even if f(0) = 23, say, we still want

lim
x→0

f(x) = 0.

Example 3.3 (An Even More Complicated One). If g is the final example of a func-
tion in Example 2.20 then we want that

lim
x→a

g(x) = 0

for any a such that 0 < a < 1 (and we also want that the corresponding one-sided limits
at a = 0, 1 both exist and equal zero). This may seem odd. But the point is that if we
take any fixed a, say a = 1/4, then (somewhat vaguely) f(x) is as small as we like for
all x sufficiently close to a (but not equal to a). More precisely, f(x) < 10−23 for all
x 6= a satisfying |x− a| < δ (where in this example we can take δ = 10−23 or any smaller
positive number), and f(x) < 10−100 for all x 6= a satisfying |x − a| < δ (where now, in
this example, δ = 10−100 or any smaller positive number).

Before proceeding to the definition of a limit, we need a little notation.

Notation 3.4. Let a be a real number. A neighbourhood of a is any open interval
(b, c) which contains a (thus b < a < c).



graph of f

a-δ a a+δ

L+εLL -ε
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A deleted neighbourhood of a is a neighbourhood of a with a removed. More precisely,
a deleted neighbourhood of a is a set of numbers of the form

N = {x : b < x < a or a < x < c } = (b, a) ∪ (a, c),

where again b < a < c.
If δ > 0 then the δ-neighbourhood and the δ-deleted-neighbourhood of a are

(a− δ, a+ δ) and (a− δ, a+ δ)′ := (a− δ, a) ∪ (a, a+ δ)

respectively.

The previous examples lead us to the following definition:

Definition 3.5. Suppose the function f(x) is defined for all x in some deleted neigh-
bourhood of a.2 Then we say that the limit as x approaches a of f(x) is L,3 and write

lim
x→a

f(x) = L,

if for every ε > 0 there exists a number δ > 0 (which may depend on ε)4 such that

0 < |x− a| < δ implies |f(x)− L| < ε.

The above diagram is a little misleading, because it is a very simple case. In particular,
f(a) = L. We could change the value of f(a) to any other number, or even leave f
undefined at a, and limx→a f(x) = L would be unaffected.

Moreover, in the diagram the function f is continuous and increasing in a neighbour-
hood of a. This is a very simple situation.

We put the statement “which may depend on ε” in the definition only for emphasis.
But it is not necessary to do so. In mathematics, when we assert that a number exists
(such as δ in the definition), we always allow the possibility that it may depend on any
previously introduced quantities (such as ε in the case of the definition) unless explicitly
stated to the contrary.

It is important to realise that δ must NOT depend on x.

Note 3.6. The inequalities 0 < |x − a| < δ in Definition 3.5 are equivalent to x
belonging to the deleted neighbourhood (a− δ, a+ δ)′. That is

0 < |x− a| < δ if and only of x ∈ (a− δ, a+ δ)′

if and only if
(
a− δ < x < a+ δ and x 6= a

)
.

Also

|f(x)− L| < ε if and only if f(x) ∈ (L− ε, L+ ε)

if and only if L− ε < f(x) < L+ ε.

Note also that in the definition we are implicitly assuming that x is contained in the
original deleted neighbourhood of a (which was part of the domain of f) as well as in

2Of course f may also be defined at a, but this is not required, and is not relevant to the
existence or value of the limit of f at a.

3Or “f(x) approaches L as x approaches a”, or “the limit of f at a is L, or “f(x) → L as
x→ a”.

4The smaller ε, the smaller δ will normally need to be.
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(a− δ, a+ δ)′. This is not a problem, since we can always take a smaller δ if necessary to
achieve this.

The definition is not easy to understand; after all it took almost two hundred years
to come up with the appropriate ideas.

Remark 3.7. Another way of thinking about the definition, which may or may not
help, is in terms of always being able to win a certain game.

More precisely, your friend sits on the vertical axis and you sit on the horizontal axis.
Your friend picks some positive number (let’s call it ε) and challenges you to find a positive
number (lets call it δ) such that

0 < |x− a| < δ implies |f(x)− L| < ε,

i.e.

x ∈ (a− δ, a+ δ)′ implies f(x) ∈ (L− ε, L+ ε).

In other words, such that the entire deleted interval (a− δ, a+ δ)′ is mapped by f into the
interval (L− ε, L+ ε). If you can always do this, i.e. no matter what positive number ε is
picked by your friend you can always find some positive number δ which works for that ε,
or in other words if you can always win the game, then we say that limx→a f(x) = L.

Remark 3.8. Suppose limx→a f(x) = L is false, in other words the limit does not
exist, or it does exist but equals some number other than L. From the definition, this
means that for some ε > 0 there is no δ > 0 such that

0 < |x− a| < δ implies |f(x)− L| < ε.

In other words for this “bad” ε, no matter which δ > 0 you choose, there will be some x
satisfying

0 < |x− a| < δ and |f(x)− L| ≥ ε.
To show limx→a f(x) = L is true, we need to show that every ε > 0 is “good”. To

show limx→a f(x) = L is false we need to find just one “bad” ε > 0.

Example 3.9. Consider the function f(x) = sin 1/x discussed before. Then limx→a f(x) =
0 is false.

To see this, let ε = 1/2 be our candidate for a “bad” ε (any number less than 1 will
do). No matter what δ > 0 is chosen (no matter how small!) there will be some x such
that

0 < |x| < δ and |f(x)| ≥ 1

2
.

This is clear from the diagram, just choose x = 1/(nπ + 1
2
) for some sufficiently large

integer n, in which case |f(x)| = 1.

One needs the precise definition of limit in order to prove general theorems about
limits, such as Theorem 3.21, which will apply in all circumstances. On the other hand,
once one has proved these theorems, it is usually not necessary in applications to go back
to the original definition. So even if you do not not completely understand the definition
of limit, that is O.K. Usually you will just need its consequences. As we proceed through
the course, the definition of limit will become clearer and your understanding of it will
increase.

Two very basic examples are the following. Of course they are not surprising. Indeed,
if they did not follow from the definition then there would be something wrong with the
definition!

Theorem 3.10.

lim
x→a

x = a and lim
x→a

k = k

(where k is constant).

Proof. In order to apply the definition, assume ε > 0.5

5Thus all we are assuming about ε is that it is a positive number. Anything we prove about
ε will hence apply to any postive number. (Although we are thinking of ε as being small, since
this is the important case, the proof will apply to any positive number ε.)
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We want to show there is some δ > 0 such that

0 < |x− a| < δ implies |x− a| < ε.

But of course this is true, just take δ to be the same as (or any positive number less than)
ε. It now follows from the definition that

lim
x→a

x = a.

For the second limit, again assume ε > 0. We want to show there is some δ > 0 such
that

0 < |x− a| < δ implies |k − k| < ε.

This looks silly, but it is in fact true no matter what δ we choose, since |k − k| = 0
(regardless of x). Thus it again follows from the definition that

lim
x→a

k = k.

Example 3.11. For the proof from the definition that

lim
x→2

x2 = 4

(c.f. Example 3.1), see [Adams, page 85].
The proof will probably seem confusing at first, but as indicated before, once we have

proved some general theorems, examples like this one are simple consequences.

Example 3.12. The fact (see the second diagram in Example 3.2) that

lim
x→0

x sin
1

x
= 0

is fairly easy to prove. Take careful note of how one sets out the following proof. I will
make certain footnotes about the proof. They would not normally be included, but I have
done so here to help understand some of the subtleties involved.

Proof. Suppose ε > 0.6

We want to show there is a δ > 0 such that

0 < |x| < δ implies

∣∣∣x sin
1

x

∣∣∣ < ε.

But in this example we can simply choose δ = ε, since if 0 < |x| < ε we have
∣∣∣x sin

1

x

∣∣∣ = |x|
∣∣∣sin 1

x

∣∣∣ ≤ ε · 1 = ε,

i.e. we have ∣∣∣x sin
1

x

∣∣∣ < ε.

To summarise, we have shown

0 < |x| < ε implies

∣∣∣x sin
1

x

∣∣∣ < ε.

This completes the proof.

A similar proof (Exercise) shows that

lim
x→2

x2 sin
1

x
= 0.

But here one can take δ =
√
ε.

One can define one-sided limits in a similar manner to ordinary limits.

6As before, all we are assuming about ε is that it is a positive number. Anything we prove
about ε will hence apply to any postive number.
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Definition 3.13. Suppose the function f(x) is defined for all x in some open interval
(a, c).7 The we say that the limit, as x approaches a from the right, of f(x) is L, and we
write

lim
x→a+

f(x) = L,

if for every ε > 0 there exists a number δ > 0 8 such that

a < x < a+ δ implies |f(x)− L| < ε.

Similarly, if the function f(x) is defined for all x in some open interval (b, a),

lim
x→a−

f(x) = L,

if for every ε > 0 there exists a number δ > 0 such that

a− δ < x < a implies |f(x)− L| < ε.

The symbol a+ does not mean some number “a little bit bigger than a”. In fact a+
has no meaning by itself, anymore than → has a meaning by itself. It is just a way of
reminding us that we are taking a limit from the right.

Example 3.14. Let

f(x) =

{
1 x ≤ 0

x2 x > 0,

Then by arguments similar to those from before

lim
x→0−

f(x) = 1, lim
x→0+

f(x) = 0.

The following examples can easily be modified to give limits in the usual sense (i.e.
not just one-sided).

Example 3.15. Consider the following five functions defined on the interval (0,∞).
(Of course we could extend these functions in many different ways to all x ∈ R.)

f1(x) = x

f2(x) = 2x

f3(x) = x2

f4(x) =
√
x

f5(x) =

{
2x/3 x rational

x/2 x irrational

7We are assuming a < c. Of course, f(x) may also be defined for other x.
Note that f(x) may also be defined for x = a, and for x < a, but this is not required, and is

not relevant to the existence or value of the right limit of f at a.
8As usual, since we do not say otherwise, δ may depend on ε.



f1f3
f4

f2

f5

ε √ε2ε

ε

ε2 ε/2 2ε/3
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The graph of f5 is, necessarily, somewhat misleading!
It is clear that

lim
x→0

fi(x) = 0

for each of the functions f1, . . . , f5, since for any given “tolerance” ε > 0 there is some
real number δ > 0 such that

0 < |x− 0| < δ ⇒ |f(x)− 0| < ε.

For f1 we take δ = ε, or any smaller positive number.
For f2 we take δ = ε/2, or any smaller positive number.
For f3 we take δ =

√
ε, or any smaller positive number.

For f4 we take δ = ε2, or any smaller positive number.
For f5 we take δ = 2ε, or any smaller positive number.
Why?

Remark 3.16. FWe can also give a formal definition of what it means for a function
to have an infinite limit at a, or to have a limit as x → ∞ (or −∞). See [Adams, pp
87,88]. This does not introduce any essentially new ideas, but you should have a look in
order to reinforce your understanding of the material here.

If we say a function has a limit at a, then we always mean that it has a finite limit
unless indicated otherwise.

3.3. Properties of limits of functions

We show that a limit exists if and only if both the two corresponding one-
sided limits exist and are equal; that there can be at most one limit at a
point; that if a limit is > K (say) then the function is > K in a neigh-
bourhood of the point. We show that limits behave as we expect under
addition, multiplication , subtraction and division. We give some simple
applications, and finally we prove the Squeeze Theorem.

We now use the formal definition of limit in order establish the standard properties
of limits. The proofs are a little tricky, but the main thing at this stage is to understand
the results.

We first show the connection between one-sided limits and ordinary limits.

Theorem 3.17. Suppose f(x) is defined for all x in some deleted neighbourhood of a.

1. If limx→a f(x) exists and equals L, then limx→a+ f(x) and limx→a− f(x) both exist
and equal L.

2. If limx→a+ f(x) and limx→a− f(x) both exist and equal L, then limx→a f(x) exists
and equals L.



L1
L2

a

d
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Proof. Assume

lim
x→a

f(x) = L.

In order to show that

lim
x→a+

f(x) = L,

we have to show that for every number ε > 0 there exists a positive number δ > 0 such
that

a < x < a+ δ implies |f(x)− L| < ε.

But the δ > 0 which works in Definition 3.5 will certainly make the above line true (why?).
This completes the proof for the limit from the right.

Similarly, (Exercise)

lim
x→a−

f(x) = L.

Next assume

lim
x→a+

f(x) = L, lim
x→a−

f(x) = L.

In order to show that

lim
x→a

f(x) = L

we have to prove that for every number ε > 0 there exists a positive number δ > 0 such
that

0 < |x− a| < δ implies |f(x)− L| < ε.

But if δ1, δ2 > 0 work in Definition 3.13 for the limits from the right and the left respec-
tively, then δ = min{δ1, δ2} will make the above implication true (why?). This completes
the proof.

But can a function have two different limits in the usual sense of limit (i.e. not just
one-sided). We do not want this, and another check that our definition correctly captures
the idea of a limit is that we can prove this fact.

As in the following proof, I frequently draw a diagram. This is to help construct or
understand the proof. But it is not part of the proof. The rigorous proof should always
be independent of any diagram.

Theorem 3.18. If

lim
x→a

f(x) = L1, lim
x→a

f(x) = L2,

then L1 = L2. A similar result applies to limits from the right and to limits form the left.

Proof. F This is an exercise in understanding the definition of limit.
Assume (in order to obtain a contradiction) that

lim
x→a

f(x) = L1, lim
x→a

f(x) = L2,

and L1 6= L2. Let d = |L1 − L2| > 0 be the distance between L1 and L2.



LK
L+(L-K)

a
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Let ε = d/3 in the definition of limit. It follows from the definition that for all x in
some deleted neighbourhood of the form

(a− δ1, a+ δ1)′

we have

|f(x)− L1| < d/3.

Similarly, for all x in some deleted neighbourhood of the form

(a− δ2, a+ δ2)′

we have

|f(x)− L2| < d/3.

Thus if we take δ to be the smaller of δ1 and δ2, then

x ∈ (a− δ, a+ δ)′ implies
(
|f(x)− L1| < d/3 and |f(x)− L2| < d/3

)
.

This is impossible (why? ). Hence our original assumption is false and there cannot be two
distinct limits.

Next we prove the following result.

Theorem 3.19. Suppose f is defined in some deleted neighbourhood of a and that
limx→a f(x) > K (limx→a f(x) < K). Then f(x) > K (f(x) < K) for all x in some
(possibly smaller) deleted neighbourhood of a.

Proof. Let L be the limit and first suppose L > K. Choose ε = L − K in the
definition of limit. Then there exists some number δ > 0 such that |f(x) − L| < L −K
whenever 0 < |x− a| < δ. In other words, L < f(x) < L+ (L−K) if x is in the deleted
neighbourhood (a− δ, a+ δ)′. This proves the result.

If L < K the proof is similar.

This theorem is a little more subtle than may at first appear. It requires that f have
a limit at a, but f does not need to have a limit anywhere else.

The theorem is not true if < is replaced by ≤, or > is replaced by ≥. For exam-
ple, limx→0 x sin(1/x) = 0. But there is no deleted neighbourhood N of 0 such that
x sin(1/x) ≥ 0, or x sin(1/x) ≤ 0, for all x ∈ N .

It follows from the theorem that

Corollary 3.20. If f is defined and f(x) ≥ K (≤ K) in some deleted neighbourhood
of a, and L = limx→a f(x) exists, then L ≥ K (L ≤ K).

Proof. If L < K (L > K) then we would get a contradiction by using Theorem 3.19.

The previous corollary is not true if ≥ (≤) is replaced by > (<). For example, x2 > 0
in any deleted neighbourhood of 0, but limx→0 x

2 = 0.

Theorem 3.19 is used in the following theorem in order to show that if limx→a g(x) =
M 6= 0 then g(x) is nonzero in some deleted neighbourhood of a, and hence the quotient
f(x)/g(x) is also defined in some deleted neighbourhood of a.
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Theorem 3.21. Suppose that f(x) and g(x) are defined in some common deleted
neighbourhood of a, and that c is a real number. Suppose that

lim
x→a

f(x) = L, lim
x→a

g(x) = M.

Then the following limits exist and have the given values:

lim
x→a

f(x)± g(x) = L±M

lim
x→a

cf(x) = cL

lim
x→a

f(x)g(x) = LM

lim
x→a

f(x)

g(x)
=

L

M

In the last case, we require that M 6= 0.

Proof. We begin with the result for the sum of two limits.
Suppose

lim
x→a

f(x) = L, lim
x→a

g(x) = M.

We want to prove that

lim
x→a

f(x) + g(x) = L+M.

In order to apply the definition of limit, assume ε > 0. From the definition of limit
applied to f and to g, we know there are numbers δ1, δ2 > 0 such that

0 < |x− a| < δ1 implies |f(x)− L| < ε/2,

0 < |x− a| < δ2 implies |g(x)−M | < ε/2.

(The reason for taking ε/2 instead of ε will be clear in a moment. But note that it is
OK to do this, since if ε > 0 also ε/2 > 0.) Using the triangle inequality we have, if
0 < |x− a| < δ where δ is the smaller of δ1, δ2, that9

|(f(x) + g(x))− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M | < ε/2 + ε/2 = ε.

Since ε was any positive number it follows from the definition of limit that

lim
x→a

f(x) + g(x) = L+M.

Exercise: Prove the analogous result for the difference of two limits.

The proof for cf(x) is easier; if δ works for f(x) then |c|δ works for cf(x). More
precisely, suppose

lim
x→a

f(x) = L.

If c = 0 then the result is immediate, since 0f(x) is the constant function which equals
zero, and in this case we already know

lim
x→a

0f(x) = lim
x→a

0 = 0 (= 0L).

Suppose now that c 6= 0. In order to apply the definition of limit, assume ε > 0.
From the definition of limit applied to f we know there is a number δ > 0 such that

0 < |x− a| < δ implies |f(x)− L| < ε/|c|.
(The reason for taking ε/|c| instead of ε will be clear in a moment. But note that it is
OK to do this, since if ε > 0 also ε/|c| > 0.) It follows that 0 < |x− a| < δ implies

|cf(x)− cL| = |c| |f(x)− L| < |c| ε/|c| = ε.

Since ε was any positive number it follows from the definition of limit that

lim
x→a

cf(x) = cL.

9Notice how we use “=”, “≤”, “<” etc. in the following. The first quantity = the second,
which is ≤ the third, which is < the fourth, which = the last; hence the first is < the last.
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The case for products is more complicated. So I am going to leave it as a tricky
exercise, but with hints. See [Adams, Exercises 32,33 page 89].

The case for quotients is even worse, so of course I will leave that also as an exercise;
again with hints. See [Adams, Exercises 34–36 page 89].

Remark 3.22. The previous theorem is also true for left and right limits at a, in
which case f and g need only be defined in an interval of the form (a, a+ δ) or (a− δ, a)
respectively.

After that, we can now compute many limits.

Theorem 3.23. Let P (x) and Q(x) be polynomials10 such that Q(a) 6= 0. Then

lim
x→a

P (x) = P (a)

lim
x→a

P (x)

Q(x)
=
P (a)

Q(a)

Proof. Let

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, Q(x) = b0 + b1x+ b2x
2 + · · ·+ bmx

m.

Then the theorem follows from repeated applications of Theorem 3.10 and Theorem 3.21.

Example 3.24. Compute the derivative of f(x) = x4 at x = a.
Solution: The derivative is defined to be (see Definition 6.1)

lim
x→a

x4 − a4

x− a = lim
x→a

(x− a)(x+ a)(x2 + a2)

x− a
= lim
x→a

(x+ a)(x2 + a2)

= 4a3

This is all that would usually be written down. But this time we will justify each step
carefully.

The first expression is just from the definition of the derivative (see later). The first
equality comes from factorising the numerator and denominator.

The second equality is valid because if x 6= a the two corresponding expressions
(following “limx→a”) are equal, and since the existence and value of the limit at a is
unaffected by the value of the corresponding functions at a. The equality should really
be read as saying that if the limit on the second line exists, then so does the limit on the
first line, and the two limits are moreover equal.

The third equality comes from Theorem 3.23. More precisely, by Theorem 3.23 the
limit on the second line exists (and hence, as just discussed, so does the limit on the first).

There is another important theorem for computing limits. See [Adams, pages 64,65].

Theorem 3.25 (Squeeze Theorem). Suppose that the functions f , g and h are all
defined in some deleted neighbourhood of a and that

f(x) ≤ g(x) ≤ h(x)

for every x in this deleted neighbourhood. Suppose also that limx→a f(x) and limx→a h(x)
exist and both equal L (say). Then limx→a g(x) exists and

lim
x→a

g(x) = L.

Proof. As usual, let ε > 0 be any positive number.
From the definition of limit applied to f and h, there exist δ1, δ2 > 0 such that

0 < |x− a| < δ1 implies |f(x)− L| < ε

0 < |x− a| < δ2 implies |h(x)− L| < ε

So if δ is the smaller of δ1 and δ2 then 0 < |x− a| < δ implies (see Note 3.6)

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε.

10A polynomial is a function of the form a0 + a1x+ a2x2 + · · ·+ anxn. A rational function
is a function of the form P (x)/Q(x) where P and Q are polynomials.
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In particular, L− ε < g(x) < L+ ε, i.e. |g(x)− L| < ε.
It follows from the definition of limit that

lim
x→a

g(x) = L.

For another proof, see [Adams, Exercise 38 page 89].

All the previous theorems have obvious analogues, with almost exactly the same
proofs, for one-sided limits. We will use such results as necessary.

3.4. FFunctions of more than one variable

See the Appropriate parts of [Adams, Section 13.2].

If (a, b) is a point in R2 and δ is a positive number, then the δ-neighbourhood of (a, b)
is the set of all points whose distance to a is less than δ. In other words, the set

{ (x, y) :
√
|x− a|2 + |y − b|2 < δ }.

The δ-deleted-neighbourhood is the set of all points, other than (a, b) itself, whose distance
to a is less than δ. In other words

{ (x, y) : 0 <
√
|x− a|2 + |y − b|2 < δ }.

If A is a set of points in R2 and (a, b) is a point in A, then (a, b) is an interior point
of A if all points in some δ-neighbourhood of (a, b) also belong to A.

For example, if (the open rectangle) A is the set of points (x, y) such that a < x < b
and c < y < d for some fixed a, b, c, d, then every point in A is an interior point.

If A is a subset of R2 then a (real-valued) function f with domain A assigns to each
pair (x, y) ∈ A a number which is denoted by f(x, y).

Sometimes such a function is given by a simple formula, such as f(x, y) = x2 + y2.
And it is often possible to sketch the graph, with the aid of Maple, etc., as in the following
diagram of this function.
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See [Adams, page 643] for further discussion.

Suppose the (real-valued) function f(x) is defined for all x in some deleted neighbour-
hood of (a, b). Then we say that the limit as (x, y) approaches (a, b) of f(x, y) is L and
write

lim
(x,y)→(a,b)

f(x) = L,

if for every ε > 0 there exists a number δ > 0 (which may depend on ε) such that

0 <
√
|x− a|2 + |y − b|2 < δ implies |f(x)− L| < ε.

(One could also consider functions whose values are n-tuples of real numbers for some
n ≥ 1.)

(This definition allows us to define the limit at any interior point of the domain of
f . One can extend the definition to apply to “boundary” points of the domain. This is
straightforward, but we do not need it.. See [Adams, page 647].)

The properties of limits in Theorems 3.18, 3.19, 3.21 and 3.23, Corollary 3.20 and
the Squeeze Theorem, are all true, with almost exactly the same proofs.



            

CHAPTER 4

Sequences

The reference for this chapter is [Adams, Section 10.1], but we do considerably more
material than this.

4.1. Examples of sequences

We introduce the idea of a sequence and give a few examples.

A sequence is an infinite list of numbers with a first, but no last, element. Simple
examples are

1, 2, 1, 3, 1, 4, . . .

1,
1

2
,

1

3
, . . .

A sequence can be written in the form

a1, a2, a3, . . . , an, . . . .

More precisely, a sequence is a function f whose domain is the set of natural numbers,
where in the above example f(n) = an. We often just write (an) or (an)n≥1 to represent
the sequence.

If the pattern is clear, we may just write the first few terms, as in

2, 4, 6, 8, . . . .

The general term an may instead be given by a formula, such as

an =
(

1 +
1

n

)n
,

which gives the sequence

1 + 1,
(

1 +
1

2

)2

,
(

1 +
1

3

)3

, . . . .

A sequence may be given may be given by a method for calculating each element of
the sequence in terms of the preceding elements. One example is the Fibonacci sequence

a1 = 1, a2 = 1, an = an−1 + an−2 if n ≥ 3.

Here the sequence is

1, 1, 2, 3, 5, 8, 13, 21, . . . .

Sometimes it is convenient to write a sequence in the form

ak, ak+1, ak+2, . . .

where k is some other integer than 1 (e.g. 0).

One can represent a sequence by its graph. For example the sequence
(
(−1)n+1/n2

)
,

i.e. (1,−1/4, 1/9,−1/16, . . . ) has graph

37



.
.

. . .. .1 2 3 4 5 6 7

0 1-1
a3

a6 a1
a5a4a2

            

38 4. SEQUENCES

where the vertical scale is somewhat distorted. However, this is not usually useful. It is
often more helpful to think of a sequence as labeled points on the real line.

4.2. Limit of sequences

We define the limit of a sequence and give some examples. We prove
that limits of sequences behave as we expect under addition, subtraction,
multiplication and division, and the Squeeze Theorem is true. If the terms
of a sequence are ≤ p then so is the limit. We note that infinite series are
also sequences.

We are usually interested in the behaviour of sequences (an) for large n. The idea is
that “the sequence (an) converges to the limit L as n approaches infinity” if the distance
between an and L approaches zero as n increases. More precisely, if your friend selects a
positive number (let’s call it ε) then you can always find an integer (let’s call it N , it may
depend on ε) such that every member of the sequence after the Nth is within ε of L.

For example, the sequence (1,−1/4, 1/9,−1/16, . . . ), discussed at the end of the pre-
vious section, converges to 0 as n approaches ∞.

Definition 4.1. We say that the sequence (an) converges to the limit L as n ap-
proaches infinity, and write

lim
n→∞

an = L,

if for every positive number ε there exists an integer N (which may depend on ε) such
that

n > N implies |an − L| < ε.

We sometimes just say an converges to L and write

an → L, or an → L as n→∞.
(Note that ∞ is not a number, and the symbol ∞ by itself here has no meaning, just as
→ has no meaning by itself.)

Remark 4.2. If an → 0 then |an| → 0, and conversely. This is clear since

|an − 0| = ||an| − 0|.
Example 4.3. Show that limn→∞ c

np
= 0 for any real number c and any p > 0.

Solution: (See [Adams, Example 4 page 522]). Let ε > 0 be given. Then

∣∣∣ c
np

∣∣∣ < ε if np >
|c|
ε
, i.e. if n >

(
|c|
ε

)1/p

.

Thus we can take any integer N >
( |c|
ε

)1/p
, and it follows that

∣∣∣ c
np

∣∣∣ < ε if n > N.
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This implies the required limit exists and equals zero.

One can prove the following theorem in the same way as for limits of functions. We
will do them in the assignments.

Theorem 4.4. Suppose

lim
n→∞

an = L, lim
n→∞

bn = M,

and c is a real number. Then the following limits exist and have the given values.

lim
n→∞

an ± bn = L±M
lim
n→∞

can = cL

lim
n→∞

anbn = LM

lim
n→∞

an
bn

=
L

M

In the last case we require M 6= 0.

In the quotient case, the fact M 6= 0 implies bn 6= 0 for all n > N (say). The proof
is similar to that in Theorem 3.19. This means the expression an/bn is defined for all
n > N , although it may not be defined for n ≤ N .

There is also a version of the Squeeze Theorem, proved in a similar manner to the
case for functions.

Theorem 4.5. Suppose an ≤ bn ≤ cn for all n (or at least for all n ≥ N for some
N). Suppose an → L and cn → L as n→∞. Then bn → L as n→∞

Suppose lim an = a and p < an < q for all n. Then it does not follow that p < a < q.
For example, let p = 0, q = 2, and an = 1/n. But it does follow that p ≤ a ≤ q. In fact
we only need assume p ≤ an ≤ q to draw the same conclusion, as we now see.

The following is the analogue of Theorem 3.19.

Theorem 4.6. Suppose lim an > K. Then an > K for all sufficiently large n (i.e.
there exists an integer N , which may depend on K, such that n > N implies an > K).
A similar result applies for lim an < K.

Proof. Let a be the limit and suppose a > K. Choose ε = a −K in the definition
of limit. Then there exists some integer N such that |an − a| < a−K whenever n > N .
In other words, a− (a−K) < an < a+ (a−K) if n > N , and in particular an > K. This
proves the result.

If a < K the proof is similar.

It follows from the theorem that

Corollary 4.7. Assume lim an = a and an ≥ K (an ≤ K) for all n. Then a ≥ K
(a ≤ K).

Proof. If a < K (a > K) then we gets a contradiction by using Theorem 3.19.

It is not true that an < p for all n implies lim an < p. (Consider the sequence
an = −1/n and p = 0.) But it is true from the previous theorem that lim an ≤ p.

Remark 4.8. You have probably seen infinite series before, such as the infinite geo-
metric series

∑

n≥0

rn (or

∞∑

n=0

rn) = 1 + r + r2 + r3 + . . . .

You probably know that the sum of the first n terms is (1 − rn)/(1 − r), see [Adams,
page 530], and the “sum” of the infinite series is 1

1−r provided |r| < 1.
In fact an infinite series is just a particular type of infinite sequence. More precisely,

we can replace the infinite geometric series by the sequence of its partial sums:

1, 1 + r, 1 + r + r2, . . . .
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When we say that a series such as
∑

n≥1
an converges, we mean that the sequence of

partial sums

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, . . .

converges.

4.3. Monotone sequences

Bounded monotone sequences are convergent. If the absolute value of the
difference between consecutive members of a sequence decreases at least
geometrically fast, then the sequence converges.

A sequence (an)n≥1 is increasing if

a1 ≤ a2 ≤ · · · ≤ · · · ≤ an ≤ . . . ,
and is decreasing if

a1 ≥ a2 ≥ · · · ≥ · · · ≥ an ≥ . . . .
A sequence is monotone if it is either increasing or decreasing.

A sequence (an)n≥1 is bounded above if there is some number K such that

an ≤ K for every n,

and bounded below if there is some number J such that

an ≤ J for every n.

Thus the sequence (1, 2, 3, . . . ) is bounded below, but not above.
We prove in the next theorem (using the completeness axiom) that every increasing

sequence which is bounded above converges to a limit. It is not surprising that we need
the completeness axiom, because the analogous result is not true for the rational numbers.
For example, consider the sequence

1, 1.4, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . . ,

which is obtained from the decimal expansion of
√

2. This is an increasing sequence of
rational numbers, but the limit is irrational.

Theorem 4.9. Let (an)n≥1 be an increasing sequence which is bounded above, or a
decreasing sequence which is bounded below. Then the sequence has a limit.

Proof. Let (an)n≥1 be an increasing sequence which is bounded above. The corre-
sponding set1 S of numbers is bounded above and so there is a l. u. b. K0, say.

We claim that

an → K0.

To prove the claim, let ε > 0 be any positive number.
Since K0 is the least upper bound for S, there is some aN ∈ S (depending on ε) such

that

aN > K0 − ε.
(Otherwise K0 − ε would also be an upper bound for S, contradicting the fact K0 is the
least upper bound.)

Since the sequence (an) is increasing, it follows that

n ≥ N implies an > K0 − ε.
But we also know that an ≤ K0 for all n, and so n ≥ N implies K0 − ε < an ≤ K0, and
in particular implies |an −K0| < ε.

It follows that an → K0. A similar proof applies if (an) is decreasing and bounded
below.

1There is a difference between a sequence and the corresponding set of numbers. In the
first case, the order is important, but not in the second. Thus the sequences (1, 2, 3, 4, 5, . . . ) and
(1, 2, 1, 3, 1, 4, 1, 5, . . . ) are different but have the same corresponding set of real numbers.
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It is not necessarily true that if the difference between consecutive members of a se-
quence converges to zero, then the sequence converges. For example, consider the sequence
an =

√
n, i.e.

1,
√

2,
√

3,
√

4, . . . .

The sequence is unbounded and it is clear from the graph that an+1 − an → 0 as
n→∞. To prove this analytically, write

lim
n→∞

√
n+ 1−√n = lim

n→∞
(
√
n+ 1−√n)

√
n+ 1 +

√
n√

n+ 1 +
√
n

= lim
n→∞

(n+ 1)− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

= 0.

The last limit is zero since, for any ε > 0, we can choose N (depending on ε) such that
1√

n+1+
√
n
< ε for all n > N (for example, any integer N > ε−2 will do, exercise).

However, if the difference between consecutive members of a sequence converges to
zero “sufficiently fast” then the sequence will converge. In particular, we have the following
theorem for sequences such that the absolute value of the difference between consecutive
terms approaches zero “geometrically” fast. The sequence is not required to be monotone,
but may “oscillate” around its limit.

Theorem 4.10. Suppose the sequence (an)n≥1 satisfies |an − an+1| ≤Mrn for some
real numbers M and r such that 0 ≤ r < 1. Then an → L for some real number L.

Moreover, |an − L| ≤Mrn 1
1−r .

Proof. The difficulty is that the sequence (an) may be neither inceasing nor de-
creasing. The (non-obvious) trick is to write

an = a1 + (a2 − a1) + · · ·+ (an − an−1).

Now consider the coresponding increasing sequence whose nth term is

cn = |a1|+ |a2 − a1|+ · · ·+ |an − an−1|.
Then (cn) is an increasing sequence as cn+1 is obtained from cn by adding the term
|an+1 − an|. Moreover the sequence is bounded above, since

cn ≤ |a1|+Mr +Mr2 + · · ·+Mrn−1

= |a1|+Mr(1 + r + · · ·+ rn−2) = |a1|+Mr
1− rn−1

1− r ≤ |a1|+Mr
1

1− r = K0,

say, where the second equality is from [Adams, page 530]. Since the sequence (cn) is
increasing and bounded above, it follows that cn → K, say.
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The idea is now to express the sequence (an) as the difference of two increasing
bounded sequences.

Write

an = a1 + (a2 − a1) + · · ·+ (an − an−1)

= |a1| −
(
|a1| − a1

)

+ |a2 − a1| −
(
|a2 − a1| − (a2 − a1)

)

+ |a3 − a2| −
(
|a3 − a2| − (a3 − a2)

)

...

+ |an − an−1| −
(
|an − an−1| − (an − an−1)

)

= cn − bn,
where

bn =
(
|a1| − a1

)
+
(
|a2 − a1| − (a2 − a1)

)
+ · · ·+

(
|an − an−1| − (an − an−1)

)
.

Since bn+1 is obtained from bn by adding the positive term
(
|an − an−1| − (an − an−1)

)
,

it follows that the sequence (bn) is increasing. It follows that bn → J , say.
Finally, since

an = cn − bn,
it follows that the sequence (an) also converges (to K − J).

Let lim an = L. To prove the estimate for |an − L|, suppose N > n and write
N = n+ k. Then

|an − aN | = |an − an+k|
= |(an − an+1) + (an+1 − an+2) + (an+2 − an+3) + · · ·+ (an+k−1 − an+k)|
≤ |an − an+1|+ |an+1 − an+2|+ |an+2 − an+3|+ · · ·+ |an+k−1 − an+k|
≤Mrn +Mrn+1 +Mrn+2 + · · ·+Mrn+k−1

= Mrn(1 + r + r2 + · · ·+ rk−1)

= Mrn
1− rk
1− r see [Adams, p. 530]

≤Mrn
1

1− r
Thus |an−aN | ≤Mrn/(1−r) for all N > n, and so |an−L| ≤Mrn/(1−r) by Corollary 4.7
applied to the sequence

|an − an+1|, |an+1 − an+2|, |an+2 − an+3|, . . . ,
(where n is fixed).

Remark 4.11. F There is a more general result, the Cauchy convergence criterion,
which implies Theorem 4.10.

Namely, if a sequence (an) has the property that for any ε > 0 there exists an integer
N (which may depend on ε) such that the difference between any two (not necessarily
consecutive) members of the sequence after the Nth is < ε, then an → L for some real
number L.

That is, suppose for every ε > 0 there exists an integer N (which may depend on ε)
such that

m,n > N implies |am − an| < ε.

Then am → L for some real number L. A sequence satisfying the above assumption is
called a Cauchy sequence.

The converse is also true: every convergent sequence is Cauchy.
The advantage of the Cauchy criterion is that we have a criterion for convergence for

an arbitrary sequence which does not depend on knowing the limit beforehand.
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See [Spivak] for a proof of these (very important) results. We will not give the proofs
here (except as a very challenging exercise) since the previous theorem is sufficient for our
purposes. We will give the proof next year in a more general setting. The proof that if
a sequence converges then it is Cauchy is fairly straightforward. The other direction is
tricky, and one needs the completeness axiom.

It is not too hard to check that if a sequence satisfies the hypothesis of the previous
theorem then it is Cauchy.

4.4. Limits for functions via limits for sequences

We show that we could have defined and developed the theory of limits for
functions in terms of limits of sequences.

It is perhaps easier to understand limits for sequences than it is to understand limits
for functions. As it happens, there is a nice way to understand limits for functions in
terms of limits for sequences.

Theorem 4.12. Suppose f(x) is defined for all x in some deleted neighbourhood of
a. Then the following two statements are equivalent:

lim
x→a

f(x) = L

an → a (and an 6= a for all n) implies f(an)→ L

Remark 4.13.

• For example, limx→0 x sin 1
x

= 0 because if an → 0 then an sin 1/an → 0. (But
to prove this, one essentially has to go through the same argument as in Exam-
ple 3.12.)

• The restriction in the theorem that an 6= a for all n is necessary, since f(a) may
not be defined. And even if f(a) were defined, it may not equal the limit L — in
this case f(an) would not converge to L if there were infinitely many an = a.

Proof.
⌈

Since we have to prove two statements are equivalent, we have to prove

that the first implies the second and that the second implies the first.
⌋

• Suppose first that

lim
x→a

f(x) = L.

We want to prove that

an → a (an 6= a) implies f(an)→ L.

Thus we assume that an → a, and an 6= a for each n. In order to use the definition
to prove the sequence f(an)→ L, let ε > 0 be any positive number.

Since limx→a f(x) = L, there exists some real number δ > 0 (which may depend on
ε) such that

0 < |x− a| < δ implies |f(x)− L| < ε,

and in particular

0 < |an − a| < δ implies |f(an)− L| < ε,

But since an → a and an 6= a, there exists an integer N (which may depend on δ and
hence on ε) such that

n > N implies 0 < |an − a| < δ.

Putting these last two implications together, there exists an integer N such that

n > N implies |f(an)− L| < ε.

This says f(an)→ L, and so we have shown

an → a (an 6= a) implies f(an)→ L.
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• F Next suppose that

an → a (an 6= a) implies f(an)→ L.(4.1)

We want to prove

lim
x→a

f(x) = L.

⌈
This is a little tricky; it turns out that the best way is to obtain a contradiction from

assuming that limx→a f(x) = L is false. In other words, we assume that the limit does

not exist, or that it does exist but is something other than L.
⌋

Assume limx→a f(x) = L is false. This means that there is some “bad” ε > 0 as
in Remark 3.8 for which there is no δ > 0 such that

0 < |x− a| < δ implies |f(x)− L| < ε.

Let ε > 0 be “bad”. Thus if we take δ = 1/n for each natural number n in the above
(false) implication, there is some x (which may depend on n) which we denote by an, such
that

0 < |an − a| < 1

n
and |f(an)− L| ≥ ε (n = 1, 2, 3, . . . ).

But this just means that the sequence (an) converges to a, an 6= a for each n, and the
sequence (f(an)) does not converge to L.

This contradicts (4.1), and so our assumption is incorrect.2 In other words, limx→a f(x) =
L is true.

2There is no logical difference between “supposing” something (as in (4.1)) or assuming
something (as in limx→a f(x) = L is false). But we are interested in what happens under the
circumstances that (4.1) is true, and so under this set of circumstances we have deduced by
contradiction that limx→a f(x) = L is also true.
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CHAPTER 5

Continuity

The references for this chapter are Section 1.4 and Appendix 3 of Adams. But we cover
somewhat more material.

5.1. Introduction

Intuitively, a function is continuous if its graph does not have any jumps, breaks, or
wild oscillations. Although many functions which arise in applications are continuous,
there are many which are not. For example, if an electric current is being switched on
and off, then it would probably be best modeled by a discontinuous function.

5.2. Definition of continuity

The notion of continuity is defined in terms of limits. Equivalent formu-
lations in terms of ε − δ’s and sequences are given. Some examples are
given.

In future, unless we say otherwise, we make the convention that all functions will be
defined on a domain which is a finite union of intervals,

I1 ∪ I2 ∪ · · · ∪ In.
The intervals may be finite or infinite, and open or closed at any finite endpoint. The
important case to keep in mind is when the domain is a single interval.

We assume that the intervals have no elements in common with one another. Moreover
if two intervals can be combined into a single interval then this is done. For example, we
write [0, 1] instead of [0, 1/2)∪ [1/2, 1]. But we do allow, for example, (−1, 0)∪(0, 1), since
the union of these intervals is not a single interval.

We also assume that our intervals do not consist of a single point.
It follows from our convention that if a is in the domain of the function f (say), then

there exists some δ > 0 such that f(x) will be defined for all x ∈ (a− δ, a+ δ) (in case a
is an interior point of the domain), or f(x) will be defined for all x in some interval of the
form [a, a + δ) or of the form (a − δ, a] (in case a is an end point of an interval from the
domain). We sometimes call [a, a+ δ) and (a− δ, a] a one-sided neighbourhood of a.

It is not difficult to define limits and continuity in a more general setting; the ideas are
essentially the same but the notation is a little messier. Moreover, once you understand
the ideas in the present setting, it is not difficult to extend them to the more general
setting.

Definition 5.1. Suppose a is an interior point of the domain of f . Then f is con-
tinuous at a if

lim
x→a

f(x) = f(a).

If a is a left (right) endpoint then f is continuous at a if

lim
x→a+

f(x) = f(a)

(
lim
x→a−

f(x) = f(a)

)
.
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Remark 5.2. In terms of epsilons and deltas the definition says (if a is an interior
point): for every ε > 0 there exists a number δ > 0 such that

|x− a| < δ implies |f(x)− f(a)| < ε.

If a is a left endpoint, the definition says that for every ε > 0 there exists a number δ > 0
such that

a ≤ x < a+ δ implies |f(x)− f(a)| < ε.

Similarly for a right endpoint.
This is a little simpler than Definition 3.5 for a limit, since we no longer require

|x− a| > 0, i.e. that x 6= a. The reason is that if x = a we trivially have f(x) = f(a) and
so |f(x)− f(a)| < ε is then trivially true in this case!

We emphasise, that as for limits, δ > 0 will normally depend on ε but must not depend
on x.

The following is a useful way to characterise continuity in terms of convergent se-
quences.

Theorem 5.3. The function f is continuous at a point a in its domain if and only if

an → a implies f(an)→ f(a)

whenever (an) is a sequence of points from the domain of f .

Proof. This essentially follows from the proof of Theorem 4.12.
Suppose f is continuous at a and an → a. We no longer need to exclude the case

an = a as in the proof of Theorem 4.12, and the proof that f(an)→ f(a) is otherwise the
same.

Next suppose that an → a implies f(an) → f(a). Then from Theorem 4.12 we have
limx→a f(x) = f(a), which means f is continuous at a.

We have defined what it means to be continuous at a point. But the more important
situation is for a function to be continuous everywhere on its domain.

Definition 5.4. A function f is continuous if it is continuous at every point in its
domain.

Example 5.5. The function

f(x) =

{
x sin 1

x
x 6= 0

0 x = 0

is continuous at 0, because limx→0 x sin 1
x

= f(0) (0 = 0). Since f is continuous at every
point in its domain (by the theorems in the next section), it follows that f is continuous.

However, the function

f(x) =

{
x sin 1

x
x 6= 0

23 x = 0

not continuous at 0 because limx→0 f(x) (= 0) 6= f(0). This function is said to have a
removable discontinuity at 0 because it is possible to re-define f(0) in such a way that the
new function is continuous at 0.

Example 5.6. The function 1/|x| is continuous on its domain (−∞, 0)∪ (0,∞). This
may seem surprising, but remember that 0 is not in the domain of the function. There is
no way we can extend this function by defining it at 0 so that it becomes continuous on
all of R.

Example 5.7. The function f(x) = |x| is continuous on its domain (which is R). The
only point we need to check is continuity at 0.

Here is another example, to show you the need to be cautious. Let (see Exam-
ple 2.20.4)

f(x) =

{
x x rational,

−x x irrational.
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Then f is continuous at 0, since

lim
x→0

f(x) = f(0) (= 0).

This can be seen directly from the ε− δ definition of limit; in fact one can just take δ = ε
(why? ).

Alternatively, one can apply the squeeze theorem; just note that

−|x| ≤ f(x) ≤ |x|
and use the fact

lim
x→0
−|x| = lim

x→0
|x| = 0.

However, limx→a f(x) does not exist if a 6= 0 (Exercise), and so f is not continuous
at a in this case.

Exercise 5.8.

1. For which value(s) of k is the function

f(x) =

{
x
|x| x 6= 0

k x = 0

continuous at 0?
2. Suppose f(x) = n if n ≤ x < n+ 1, for every integer n. Show that f is continuous

at all non-integer points but discontinuous at every integer point. (It helps to
sketch a graph of f .) Such a function is called a step function.

5.3. Properties of continuous functions

It is shown that continuity is preserved under under algebraic operations
and composition

Remark 5.9. Suppose f is continuous at an interior point a and f(a) > K. Then
f(x) > K for all x in some neighbourhood of a. This follows immediately from Theo-
rem 3.19. A similar remark applies if F (a) < K.

If f is continuous at a left end-point a and f(a) > K, then for some δ > 0 one has
f(x) > K for all a ≤ x < a + δ. Similarly for right endpoints and for f(a) < K. The
proofs follows from easily modified versions of Theorem 3.19.

Theorem 5.10 and Theorem 5.12 show that if we combine continuous functions in
various ways, then the results are also continuous.

Theorem 5.10. Suppose f and g are continuous at a, and c is a real number. Then
the following are continuous at a:

f ± g, cf, fg, f/g.
In the last case we require that g(a) 6= 0.

Proof. This follow directly from Theorem 3.21. For example, if a is an interior
point, then in the quotient case,

lim
x→a

f

g
(x) = lim

x→a

f(x)

g(x)
=
f(a)

g(a)
=
f

g
(a).

The first inequality comes from the fact that f/g(x) is defined to be f(x)/g(x), and
similarly for the third equality. The second equality comes from Theorem 3.21. (Recall
that if g is continuous at a and g(a) 6= 0 then g(x) 6= 0 for x in some neighbourhood of a.
It follows that the function is defined in some neighbourhood of a.)

If a is an endpoint the proof is essentially the same, using Example 3.22.

Note that if f(x)/g(x) is zero on a complicated set, such as if g(x) = x sin(1/x), then
the domain of f/g may not be a finite union of intervals.

The following is now immediate, but is worth stating separately, since we are usually
interested in functions which are continuous on a domain, not just at a point.
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Theorem 5.11. Suppose f and g are both defined and continuous on the common
domain D and c is a real number. Then the following are also continuous on D:

f ± g, cf, fg, f/g.
In the last case we require that g(x) 6= 0 for every x ∈ D.

The next theorem proves that the composition g◦f of two continuous functions f and
g is also continuous. For example, the function |f(x)| is continuous if the function f(x) is
continuous. This follows from the fact that |f(x)| is the composition of the absolute value
function, which we saw was continuous in Example 5.7, with the continuous function f .

In the following, f may be defined in a neighbourhood of a, or perhaps may only be
defined in a one-sided neighbourhood of a of the form [a, a+δ) or (a−δ, a]. But g must be
defined in an ordinary neighbourhood of f(a). Otherwise, for example, if f(x) = −x2 and

g(y) =
√
y, then (g ◦ f)(x) =

√
−x2 is only defined for x = 0, and the notion of continuity

at 0 is not even defined.

Theorem 5.12. Suppose f is a function continuous at a and g is a function contin-
uous at f(a) and which is defined everywhere in some neighbourhood of f(a). Then g ◦ f
is continuous at a.

Proof. To simplify the notation, assume first that a is not an endpoint of the domain
of f . Let ε > 0 be any positive number.⌈

We want to prove there is a δ > 0 (which may depend on ε) such that

|x− a| < δ implies |g(f(x))− g(f(a))| < ε.

Remember that (g ◦ f)(x) = g(f(x)).
⌋

We are given that g is continuous at f(x) and is defined everywhere in some neigh-
bourhood of f(a) (not just in an interval whose endpoint is f(a)). Thus there exists
η > 0 1 (which may depend on ε) such that

|y − f(a)| < η implies |g(y)− g(f(a))| < ε.
⌈
y is just a dummy variable; the meaning would be unchanged if we used z or x throughout.

But we do not use x since we are going to use it to represent a number in the domain of

f .
⌋

In particular, replacing y by f(a),

|f(x)− f(a)| < η implies |g(f(x))− g(f(a))| < ε.

But since f is continuous at a there exists δ > 0 (which may depend on η and hence
on ε) such that

|x− a| < δ implies |f(x)− f(a)| < η.

Putting these last two implications together, we have

|x− a| < δ implies |g(f(x))− g(f(a))| < ε.

Since ε was any positive number, it follows that g ◦ f is continuous at a.
If a is a left endpoint of an interval from the domain of f , we replace |x − a| < δ in

the proof everywhere by a ≤ x < a+ δ. Similarly for a right endpoint.

Remark 5.13. We have not yet defined the trigonometric, exponential or logarithmic
functions. If we assume that such functions are continuous on their domains (as is indeed
the case) then it it is easy to see from Theorem 5.11 and Theorem 5.12 that various
functions defined from them by composition, cases, and the usual algebraic operations,
are also continuous on their domains.

1η is the seventh letter of the Greek alphabet, spelt and pronounced “eta”
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5.4. Deeper properties of continuous functions

Continuous funcions defined on closed bounded intervals are bounded and
take maximum and minimum values. A continuous function defined on an
interval take all values between any two given values of the function.

We now can prove some of the most important properties of continuous functions.
These results are “global” rather than “local”, in that they say something about the be-
haviour of continuous functions on a fixed interval, rather than just in some neighbourhood
of a point.

Although they are not surprising, they are more subtle than may first appear. In
particular, they are true on closed bounded intervals and not on arbitrary intervals, as we
show by some simple examples. Moreover, they require the completeness axiom for their
proofs, since the analogous results are not true over the rationals, as we also explain.

The Max-Min Theorem says that a continuous function defined on a closed bounded
interval [a, b] has a maximum (and a minimum) value at some point in [a, b]. This is not
true on an interval that is open or is infinite at some end, as we see from the examples
f(x) = 1/x for 0 < x ≤ 1 and g(x) = x for 0 ≤ x < ∞. Moreover, even if the function is
bounded, it need not take a maximum value in the domain, as we see from the example
f(x) = x for 0 ≤ x < 1.

The analogous result to the Max-Min Theorem is not true for the rationals. For
example, let f(x) = 1/(1 − x2) for 0 ≤ x ≤ 2. This is continuous at every point other

than x =
√

2 (and in particular is continuous at every rational point) and it takes rational
values at rational points. However, it clearly does not have a maximum value, even when
x is restricted to be rational. Moreover, even if a function is bounded and takes rational
values at rational points, it need not take a maximum value at some rational point, as we
see from the function f(x) = −|x2 − 2|. Since all the axioms other than the completeness
axiom are true for the rationals, this indicates that we will need the completeness axiom
in the proof of the Max-Min Theorem.

The Intermediate Value Theorem says that if f is a continuous function defined on
[a, b] and s is a number between f(a) and f(b), then f(c) = s for some c ∈ [a, b]. The
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analogous result is not true for the rational numbers, as we see by considering the function
f(x) = x2 − 2. This function is continuous and takes rational values at rational points,
f(1) = −1 and f(2) = 2, but there is no rational number c such that f(c) = 0. So we will
need the completeness axiom in the proof of the Intermediate Value Theorem.

See [Adams, pages A-25,26] for other proofs of the Min-Max and Intermediate Value
Theorem. The proofs there are a little more conceptually difficult as one needs to work with
monotone sequences. However, now that we have proved Theorem 4.10 and Theorem 5.3
we can give slightly simpler proofs. We also incorporate the statement and proof of the
Boundedness Theorem from [Adams, page A-25] directly into the Min-Max theorem.

See [Spivak] for proofs which use the completeness axiom directly, without invoking
sequences at any stage.

Theorem 5.14 (Max-Min Theorem). If f is a continuous function defined on an in-
terval [a, b] then there exist numbers c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all
x ∈ [a, b]. In other words, f takes minimum and maximum values on [a, b]. In particular,
f is bounded above and below on [a, b].

Proof. We first show that f takes a maximum value. To begin, there are two possible
cases:

• If the set of numbers f(x) for x ∈ [a, b] is not bounded above, then we choose
points an ∈ [a, b] such that f(an) > n, for each natural number n.

• If the set of numbers f(x) for x ∈ [a, b] is bounded above, let K be the least upper
bound and choose points an ∈ [a, b] such that f(an) > K − 1/n, for each natural
number n. Notice that f(an)→ K.⌈

Our aim is to prove that the second of the above two alternatives holds, and that

f(c) = K for some c ∈ [a, b].
We need to be a bit careful in the proof, because there may be more than one maxi-

mum point, and the sequence (an) may “jump around” by, for example, having an infinite
number of terms near one maximum point and also an infinite number of terms near a
second maximum point. The sequence (an) need not converge, but we will construct a
“subsequence” of (an) that does converge. Moreover, if this subsequence has limit c, say,

it will follow that f(c) = K.
⌋

We will now constuct a “subsequence” of (an) by continually bisecting the interval
I = [a, b] as follows.

There must be an infinite number of terms from the sequence (an) in at least one of
the two intervals [a, (a + b)/2] and [(a + b)/2, b].2 Let I1 be one such interval and let b1
be the first (say) member of the sequence (an) which is in I1.

Now bisect I1 into two closed sub-intervals of equal length. Again, there must be an
infinite number of terms from the sequence (an) in at least one of these two sub-intervals.
Let I2 be one such interval and let b2 be the first (say) member of the sequence (an) after
b1 which is in I2.

Now bisect I2 into two closed sub-intervals of equal length. Again, there must be an
infinite number of terms from the sequence (an) in at least one of these two sub-intervals.
Let I3 be one such interval and let b3 be the first (say) member of the sequence (an) after
b2 which is in I3.

Etc., etc. This process will never stop, since at the kth stage we still have an interval
Ik containing an infinite number of terms from the original sequence. Thus we can choose
bk which occurs in the original sequence (an) after bk−1.

Notice that

I ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . ⊃ Ik ⊃ . . . ,
and that the length of Ik is (b− a)2−k.

Since both bk and bk+1 belong to Ik (in fact bk+1 belongs to Ik+1 ⊂ Ik), it follows
that |bk − bk+1| < (b− a)2−k. It follows from Theorem 4.10 that bk → c, say, as k →∞.

2Many of the terms in the sequence may have the same value, as for example in the sequence
(1, 2, 3, 1, 1, 1, 1, . . . ).
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Moreover c ∈ [a, b] from Theorem 4.6. By Theorem 4.12 f(bk)→ f(c). This implies that
the second of the two alternatives (from the beginning of the proof) must occur, and that
also K = f(c) since f(bk)→ K.(

If the first alternative occurs then the sequence (f(an)) is monotone increasing

with arbitrarily large values, and hence so is the “subsequence” (f(bk)). Thus the second
alternative occurs because we have seen that the sequence (f(bk)) converges.

Since f(an)→ K, then we also have that the “subsequence” f(bk)→ K. In general,
if a sequence converges to a limit, then any “subsequence” converges to the same limit.
This is clear enough, and the proof is just a matter of giving a precise definition of

“subsequence” and then using the definition of limit for a sequence.
)

The proof that f takes a minimum value is similar.

Theorem 5.15 (Intermediate Value Theorem). If f is a continuous function defined
on an interval [a, b] and s is a real number between f(a) and f(b), then there exists some
c ∈ [a, b] such that f(c) = s.

Proof. We do the case f(a) < s < f(b). If f(a) > s > f(b) the proof is similar, and
if f(a) = s or f(b) = s then there is nothing left to prove.

Bisect the interval I = [a, b] into the two intervals [a, (a + b)/2] and [(a + b)/2, b]. If
f((a+ b)/2) = s, we are done. If f((a+ b)/2) < s let I1 = [(a+ b)/2, b]. If f((a+ b)/2) > s
let I1 = [a, (a+ b)/2]. In either case, f takes a value < s at the left end-point of I1 and a
value > s at the right endpoint.

Next consider I1. Either f takes the value s at its midpoint, or one of the two (closed)
subintervals obtained by bisecting I1 has the property that f takes a value < s at the left
end-point and a value > s at the right endpoint. Call this interval I2.

Etc., etc. Either the process stops after a finite number of steps, giving a point where
f takes the value s, and we are done.

Or otherwise there is a sequence of closed bounded intervals

I ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . ⊃ Ik ⊃ . . . ,
with length of Ik equal to (b− a)2−k.

Let In = [an, bn] for each n. The sequence (an) of left endpoints is increasing, the
sequence (bn) of right endpoints is decreasing, and they both have the same limit c, say.(

This is fairly clear, but needs a bit of thought to write it out carefully.

Certainly the limits exist, as the sequences are increasing or decreasing, and bounded.
Since an < bn for all n it follows lim an ≤ lim bn (if c1 := lim an > c2 := lim bn, then
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from Theorem 4.6 all an will eventually be > (c1 + c2)/2 and all bn will eventually be
< (c1 + c2)/2), contradicting an < bn).

Thus for any n, an ≤ c1 ≤ c2 ≤ bn. Since bn − an → 0, it follows that c1 = c2.
)

Since f is continuous, an → c implies f(an) → f(c) from Theorem 4.12. Since
f(an) < s for all n, lim f(an) ≤ s from Corollary 4.7, i.e. f(c) ≤ s. Similarly, since
f(bn) > s for all n, f(c) ≥ s. It follows that f(c) = s.

A nice application is to show that any polynomial of odd degree must have a root.

Theorem 5.16. Let P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n where n is odd and an 6= 0.
Then P (c) = 0 for some real number c.

Proof. We consider the case an > 0. The case an < 0 follows by considering the
polynomial −P (x).

We claim that for some (large) b, P (b) > 0 and for some (large and negative) a,
P (a) < 0. It then follows from the Intermediate Value Theorem that P (c) = 0 for some
a < c < b.⌈

The main point in proving the claim is to note that for large x, either positive or

negative, the “dominant” term is anx
n.
⌋

Write

P (x) = anx
n
(

1 +
an−1

anx
+
an−2

anx2
+ + · · ·+ a0

anxn

)
, for x 6= 0.

By choosing x = b with b sufficiently large and positive, we can make each of the n fractions
as small in absolute value as we wish, and in particular we can choose b sufficiently large
that the term in parentheses is larger than .99, say. Since anb

n > 0 this means P (b) > 0.
Similarly, by choosing a large and negative, we can again make the term in parentheses

larger than .99, say. But since n is odd, anc
n < 0 and so P (c) < 0.

Another application is to show that for any a > 0 and any natural number n we can
now define n

√
a. See [Adams, pp 210, 211].

Theorem 5.17. For every a > 0 and every natural number n there is a unique number
b such that bn = a.
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Proof. Let f be the function given by f(x) = xn for x ≥ 0. We want to show there
is a unique number b such that f(b) = a.

Now f(0) = 0, and we can choose s large enough that sn > a (e.g. s = a+ 1 will do).
Since f is continuous, by the Intermediate Value Theorem there is a number b such that
f(b) = a, i.e. such that bn = a.

There is only one such number b because f is an increasing function. If x > b then
xn > bn = a and if x < b then xn < bn = a; in both cases xn 6= a.

Suppose a > 0. The b from the theorem is denoted by n
√
a or a1/n. For any positive

rational number r = m/n we define am/n = a1/n × . . . a1/n (m times). We also define
a−r = 1/ar. Finally, we define a0 = 1.

This defines ar for a > 0 and any rational number r. If x is an arbitrary real number,
we could define ax = lim arn for any sequence of rational numbers rn → x.

It is convenient to define 0r = 0 if r > 0, in particular 02 = 03 = · · · = 0. We can
also define an if a < 0 and n 6= 0 is an integer (positive or negative). More generally we
can define ar = −(−a)r if a < 0 and r 6= 0 is rational with an odd denominator, such as

(−5)1/3 = −51/3, but one does not define (−5)1/2 (at least until we introduce the complex
numbers.)

The laws for exponents [Adams, page 231] can be proved from these definitions, but
they are more difficult to establish in the case of irrational exponents. In particular, in
this case, we also would need to show that the definition is independent of the particular
sequence of rationals which is chosen.

F A better way is to first define the logarithmic function by integration and then to
define the exponential and power functions. Or one can define these functions as solutions
of certain differential equations.

F We could also show that the function f(x) = xr, where x ≥ 0 and r is a positive
rational number, or x > 0 and r is any rational number, is continuous. The main point is
to show that if a function is increasing and continuous (such as g(x) = x2 for x ≥ 0) then

its “inverse” function (such as f(y) = y1/2 for y ≥ 0) is also continuous and increasing.
This is not so difficult, but we will not do it here.

5.5. FPathology and continuity

It is easy to give examples of continuous functions that are not differentiable3 at many
points. For example, consider the “saw-tooth function”

f(x) =

{
x− n n ∈ Z and n ≤ x ≤ n+ 1

2

(n+ 1)− x n ∈ Z and n+ 1
2
≤ x ≤ n+ 1.

3We do not define differentiability formally until Chapter 6. But you already know at least
informally what it means.
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Then f is not differentiable at n and n+ 1
2

for every integer n.

There are continuous fuunctions which are nowhere differentiable. They are, natu-
rally, difficult to draw! But you can get an idea of what one looks like by considering the
following sequence of functions which approximate a continuous and nowhere differentiable
function.

The idea is that each straight line segment is replaced by a suitable segment of the form

or with the same endpoints, when passing to the next approximation.

Such functions actually arise in applications. White noise, Brownian motion, and
short term fluctuations on the money markets are best modelled by continuous and
nowhere differentiable functions.

5.6. FUniform continuity

Any continuous function defined on a closed bounded interval is in fact
uniformly continuous.

The function f(x) = x−1 is continuous on its domain (−∞, 0) ∪ (0,∞). Of course it
is not continuous at zero, since it is not even defined there; and there is no way to define
f(0) to make f continuous at 0.
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If you play the ε− δ game at points a near 0, something interesting happens. If your
friend gives you an ε, since f is continuous at a you can always find a δ such that

x ∈ (a− δ, a+ δ) implies x−1 ∈ (a−1 − ε, a−1 + ε),

i.e.

|x− a| < δ implies |x−1 − a−1| < ε.

It is clear from the diagram, however, that the closer a is to zero, the harder you will
have to work to win the game. In particular, the δ you need to win will depend on a as
well as ε; the closer a is to the origin, the smaller δ will need to be for any fixed ε > 0.
Given a particular ε > 0 there is no fixed δ > 0, independent of a, which will “win” the
game.

In fact, algebra shows

(a− δ)−1 = a−1 + ε if δ =
εa2

1 + εa

(a+ δ)−1 = a−1 − ε if δ =
εa2

1− εa
It is then clear from the graph, since a−1 − (a+ δ)−1 < (a− δ)−1 − a−1, that in order to
have

|x− a| < δ implies |x−1 − a−1| < ε.

you must choose δ = εa2

1+εa
or something smaller. In particular for fixed ε you will need to

choose δ > 0 closer to 0, the closer a is to 0.

However, when we work with functions f that are continuous on a closed bounded
interval the stuation is much “nicer”. For each ε > 0 there exists a δ > 0, which may
depend on ε, but is independent of a, such that

|x− a| < δ implies |f(x)− f(a)| < ε.

In other words, not only can you win the ε − δ game at any point a in the domain of
f , but you can do it with a δ (which may depend on ε) but will simultaneously work for
every a in the domain.

An equivalent but more “symmetric” way of expressing this is to say that for each
ε > 0 there exists a δ > 0 (which may depend on ε) such that

|x1 − x2| < δ implies |f(x1)− f(x2)| < ε.

In other words, whenever two points x1 and x2 are distance apart less than δ, then the
distance between f(x1) and f(x2) will be less than ε.

As usual, it is implicitly assumed that both x1, x2 are in the domain of f (so that
f(x1), f(x2) will be defined), and that δ will depend on neither x1 nor x2.
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Definition 5.18. A function f is uniformly continuous if for every ε > 0 there exists
a δ > 0 (which may depend on ε) such that

|x1 − x2| < δ implies |f(x1)− f(x2)| < ε.

Notice that it does not make sense to say that a function is uniformly continuous at a
point (or at least, if it does, then it just means the same as ordinary continuity). Uniform
continuity refers to behaviour on the entire domain.

Theorem 5.19. Suppose f is a continuous function on a closed bounded interval [b, c].
Then f is uniformly continuous on [b, c].

Proof. Suppose f is continuous on [b, c]. Suppose ε > 0.
We claim there is a finite strictly increasing sequence of points b = a0 < a1 < a2 <

· · · < aN = c (where N may depend on ε) such that on each of the intervals [an, an+1],

x ∈ [an, an+1] implies |f(x)− f(an)| < ε/3.(5.1)

Once we have proved the claim, we obtain the result as follows. Choose δ > 0 such
that

δ = min{a1 − a0, a2 − a1, a3 − a2, . . . , aN − aN−1}
Note that since we are taking the minimum of a finite set of positive numbers, the minimum
δ is also positive.4

Let x1 be any point in [b, c]. Then x1 ∈ [an, an+1] for some n. Suppose |x1 − x2| < δ.
It follows that x2 is in one of the intervals [an−1, an], [an, an+1], [an+1, an+2], since the
length of each interval is at least δ, x1 is in the middle interval, and the distance from x2

to x1 is less than δ. In other words, x2 is in the interval [ak, ak+1] where k = n− 1, n or
n+ 1.

Hence from (5.1)

|f(x1)− f(x2)| = |f(x1)− f(an) + f(an)− f(ak) + f(ak)− f(x2)|
≤ |f(x1)− f(an)|+ |f(an)− f(ak)|+ |f(ak)− f(x2)|
≤ ε

3
+
ε

3
+
ε

3
= ε.

In other words we have shown

|x1 − x2| < δ implies |f(x1)− f(x2)| < ε.

Since δ did not depend on x1 or x2 we have thus established uniform continuity, assuming
the claim.

F We next prove the claim.
Let a0 = b.
Let A1 be the interval consisting of all those numbers x ∈ [a0, c] with the property

that every number y, between b and x inclusive5, satisfies |f(y)− f(a0)| ≤ ε/3. That is

A1 = {x ∈ [a0, c] : y ∈ [a0, x] implies |f(y)− f(a0)| ≤ ε/3 }.
It is clear that A1 is an interval and has left endpoint a0 (the main point is that if x ∈ A1

then any number in [a0, x) is also in A1). Moreover A1 is bounded above (by c) and so is
of the form [a0, a1) or [a0, a1] for some number a1 by the discussion in Remark 2.10. But
we must have a1 ∈ A1, since if |f(a1)− f(a0)| > ε/3 then by continuity of f all numbers

4On the other hand, although there is no actual “minimum” of the infinite set 1, 1/2, 1/3, . . .
of positive numbers, the g. l. b. is zero, not positive.

5That is, every number y ∈ [a, x].
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x in some neighbourhood of a1 must also satisfy |f(x) − f(a0)| > ε/3, and this would
contradict the fact that a1 is the lub of A1.

Similarly, let A2 be the interval consisting of all those numbers x ∈ [a1, c] with the
property that every number y ∈ [a1, x] satisfies |f(y)− f(a1)| ≤ ε/3. That is

A2 = {x ∈ [a1, c] : y ∈ [a1, x] implies |f(y)− f(a1)| ≤ ε/3 }.
As before, A2 = [a1, a2] for some a2 > a1.

In this way we construct an increasing sequence b = a0 < a1 < a2 < . . . which either
stops after a finite number of steps, or is infinite.

But the sequence cannot be infinite. For if it were infinite, then because it is increasing
and bounded above (by c) it must converge to some number d, say. We have

a0 < a1 < a2 < · · · < an < · · · → d.

Since f is continuous at d, there is some neighbourhood J of d such that whenever x ∈ J
and x ∈ [b, c] then |f(x) − f(d)| < ε/6. Now choose aj so aj ∈ J (this is possible since
an → d). If x ∈ [aj , d] then also x ∈ J (since J is an interval) and so

|f(x)− f(aj)| = |f(x)− f(d) + f(d)− f(aj)|
≤ |f(x)− f(d)|+ |f(d)− f(aj)|
<
ε

6
+
ε

6
since x, d ∈ J

=
ε

3
.

But from the definition of Aj+1 this means d ∈ Aj+1, contradicting the fact that aj+1 < d
and aj+1 is the l. u. b. of Aj+1.

Hence the sequence is finite, and so we can write it as

b = a0 < a1 < a2 < · · · < aN ≤ c
for some natural number N . If aN < c then by continuity of f at aN we could continue
the sequence, and so we must have aN = c. This finally proves the claim, and hence the
theorem.

5.7. FFunctions of two or more variables

Suppose (a, b) is an interior point of the domain of f . Then we say that f is continuous
at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

We could also define continuity at boundary points in a similar manner, but we will
not need this.

The analogues of Remark 5.9, and Theorems 5.10, 5.11 and 5.12 hold, with similar
proofs. In particular, if h and g are functions of one variable which are continuous at a,
and f is a function of two variables which is continuous at (h(a), g(a)) and is defined in
a neighbourhood of (h(a), g(a)), then f(h(x), g(x)) is a function of one variables which is
continuous at a.

Analogues of the Max-Min Theorem and the Uniform Continuity Theorem hold for
continuous functions on any “closed bounded rectangle” A consisting of all points (x, y)
such that a ≤ x ≤ b and c ≤ y ≤ d. The proofs are similar. In particular, any continuous
function defined on a closed bounded rectangle is bounded above.
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CHAPTER 6

Differentiation

The main references in [Adams] are Sections 2.2, 2.3, 2.5, 5.1 and 5.2.

6.1. Introduction

The theory of differentiation allows us to analyse the concept of the slope of the
tangent to the graph of a function.

If we write the function in the form y = f(x) then we can interpret f ′(x) in the
following way:

y is changing f ′(x) times as fast as x is changing.

There are many other problems that can then be analysed using the techniques of
differentiation and extensions of these ideas — for example anything that changes with
time or position. Also optimisation problems (e.g. in economics or engineering) and ap-
proximation problems. See [Adams, Chapter 3] for a number of examples.

6.2. The derivative of a function

Derivtives are defined and the fact differentiability implies continuity is
proved.

Recall our convention that the domain of a function is a finite union of intervals.

The idea from the above diagram is that the derivative f ′(a) of f at a should be the
slope of the tangent to the graph of f at the point (a, f(a)) on the graph.

We make this precise by considering the slope of the line through the two points
(a, f(a)) and (a + h, f(a + h)) and considering the limit (if it exists) as h → 0. (h is
allowed to be either positive or negative, except at endpoints a of the domain of f .)

Definition 6.1. If a is an interior point of the domain of f and

lim
h→0

f(a+ h)− f(a)

h

exists, or if a is an endpoint and the corresponding one-sided limit

lim
h→0+

f(a+ h)− f(a)

h
or lim

h→0−

f(a+ h)− f(a)

h

exists, then we say f is differentiable at a. The limit is denoted by f ′(a) (sometimes f ′+(a)
or f ′+(a) in the case of endpoints) and is called the derivative of f at a.

The derivative of f is the function f ′ whose value at a is the number f ′(a) defined
above, with domain consisting of all a such that the derivative f ′(a) exists. We say f is
differentiable if it is differentiable at every point in its domain.
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The tangent to the graph of f at a has slope f ′(a). It follows that the equation of
this line is

y = f(a) + f ′(a)(x− a).

See [Adams, Examples 1,2 p.99] to see how the derivatives of the functions x2, 1/x
and
√
x can be calculated directly from the above definition. But we do not usually need

to do this. Instead we normally can use Theorem 6.5 and Theorem 6.7.

Notation 6.2. If y = f(x) then we use the dependent variable y to represent the
function, and the derivative is denoted in the following various ways:

y′,
dy

dx
,

d

dx
f(x), f ′(x),

which we read as “y prime”, “the derivative of y with respect to x” or “dy dx” for short,
“the derivative with respect to x of f(x) or “d dx of f(x)” for short, and “f prime of x”,
respectively.

In particular, we often write

d

dx
x3 = 3x2,

d

dt
t4 = 4t3,

etc., and regard d
dx

as a “differential operator” which maps one function to another func-

tion; such as the function f given by f(x) = x3 to the function g given by g(x) = 3x2.
(F Thus a differential operator is a function which sends functions to functions, rather

than numbers to numbers!)

The value of the derivative of a function at a particular number a can also be written
in various ways:

y′(a), y′
∣∣∣
a
,

dy

dx

∣∣∣
a
,

d

dx
f(x)

∣∣∣
a
, f ′(a).

The symbol

∣∣∣ is the evaluation symbol, and signifies that the function preceding it should

be evaluated at a. If there is any doubt as to what is the dependent variable, one replaces∣∣∣
a

by
∣∣∣
x=a

.

The dy
dx

type notation is called Leibniz notation after its inventor. It is very good for
computations and for motivating some results. If one thinks of

∆y = f(x+ h)− f(x)

as being the increment in y and

∆x = (x+ h)− h = h

as being the increment in x, then

dy

dx
= lim

∆x→0

∆y

∆x
.

However, the Leibniz notation should not be used when proving theorems rigorously.
It is often ambiguous in more complicated situations, and this can easily lead to logical
errors. See the discussion before Theorem 6.7 for a good example of what can go wrong.

See [Adams, pp 102,103] for more discussion of notation.

The following theorem is important.

Theorem 6.3. If f is differentiable at a then f is continuous at a.

Proof. Assume f is differentiable at a. We want to show1 that

lim
h→0

f(a+ h) = f(a).

1f is continuous at a means limx→a f(x) = f(a). This is the same as limh→0 f(a+h) = f(a).
The fact this is the same is not surprising, but to show it carefully is a matter of writing out the
corresponding ε− δ definition in each case and checking that each limit means the same thing.
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But

f(a+ h) = f(a) + h
f(a+ h)− f(a)

h
.

Taking the limit as h→ 0 of the right side, we see this limit exists and hence so does the
limit of the left side, and both are equal. That is

lim
h→0

f(a+ h) = f(a) + 0f ′(a) = f(a).

A similar proof applies if a is an endpoint of the domain of f .

6.3. Computing derivatives

The standard rules for differentiation, including the chain rule, are dis-
cussed. Examples are given.

The next result is easy to check from the definitons, and is obvious from the relevant
diagram. It implies that the slope of the straight line, which is the graph of the function
f(x) = cx+ d, is c.

Theorem 6.4. If f(x) = cx+ d then f ′(x) = c.

Proof.

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

(c(x+ h) + d)− (cx+ d)

h
= lim
h→0

ch

h
= c.

The next theorem follows in a fairly straightforward way from the properties of limits
given in Theorem 3.21.

Theorem 6.5. If f and g are differentiable at x and c is a real number, then the
following functions are differntiable at x with derivatives as shown.

(f ± g)′(x) = f ′(x)± g′(x)

(cf)′(x) = cf ′(x)

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)
(

1

g

)′
=
−g′(x)

(g(x))2

(
f

g

)′
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2

In the last two cases we also assume g(x) 6= 0.

Proof. The proof of the first two is given in [Adams, page 108]. The proof of the
product rule is in [Adams, page 109]. The proof of the reciprocal and quotients rules is
in [Adams, pp 111,112].

The following now follows from the product rule and the Principle of Induction.

Theorem 6.6. If f(x) = xn then f ′(x) = nxn−1.

Proof. The result is true for n = 1.
Assume it is true for some integer n, i.e. (xn)′ = nxn−1.
Then

(xn+1)′ = (xxn)′ = x′xn + xnxn−1 = xn + xnxn−1 = (n+ 1)xn.

Thus the corresponding result is true for n+ 1.
The result is hence true for all natural numbers n by the Principle of Induction.
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It now follows that

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n implies

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1.

We can also now compute derivatives of rational functions.
One can also show directly (as we noted before for

√
x), that the derivative of x1/n

for x > 0 and n a natural number, is 1
n
x

1
n
−1 , see [Adams, Question 56 p. 106]. By

using induction on m, one can then show that the derivative of xm/n for x > 0 and m,n
natural numbers, is m

n
x
m
n
−1.

One can also show directly by induction, using the derivative of 1/x, that for n a
natural number the derivative of x−n = (x−1)n is −nx−n−1, see [Adams, Question 56 p.
106].

In a similar way, one can prove the general rule (xr)′ = rxr−1 for any rational number
r wherever the function xr is defined. The same result is true for any real number r, as
we would expect by taking a sequence of rational numbers rn → r. But this is best proved
by first developing the theory of logarithms, exponential functions and then general power
functions. See [Adams, p. 220, before Example 6].

Natural (i.e. to base e) logarithms are defined as integrals in [Adams, page 215] and
then the derivative of loge x is proved to be 1/x. From this one can then derive the other
usual rules for derivatives of exponentials and other power functions such a ax and xa,
see [Adams, pp 214–222].

The proofs of the usual rules for the derivatives of the trigonometric functions are
given in [Adams, pp 115–120]. They are not completely rigorous, since the definition
of sin and the other trigonometric functions was only given informally, using diagrams,
in [Adams, pp 40–51].

At this stage, we will only use derivatives of such functions in the examples, but not
in the rigorous development of the subject.

In order to compute the derivatives of functions such as
√

1 + x2 we need the Chain
Rule. You have probably seen the chain rule in the form

dy

dx
=
dy

du

du

dx
.

Here we have y = f(u) and u = g(x), so y = f(g(x)). The rough idea is that

at u, y is changing
dy

du
times as fast as u

and

at x, u is changing
du

dx
times as fast as x,

so that

at x, y = f(u) = f(g(x)) is changing
dy

du
× du

dx
times as fast as x.

In functional notation

(f ◦ g)′(x)) = f ′(g(x)) g′(x).

An incorrect “proof” along these lines is often given for the chain rule by writing

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x
= lim

∆x→0

∆y

∆u
lim

∆x→0

∆u

∆x

= lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x
=
dy

du

dy

dx

The second last step is “justified” by saying that ∆u → 0 as ∆x → 0. This is all rather
sloppy, because it is not clear what depends on what.

When one tries to fix it up, there arises a very serious difficulty. Namely, the increment
∆u = u(x+ ∆x)− u(x) (which depends on ∆x) may be zero although ∆x 6= 0. A trivial
example is if u is the constant function. There is the same difficulty when u is not constant,
but there are points x + ∆x arbitrarily close to x such that u(x + ∆x) = u(x) (such as
with u(x) = x2 sin(1/x) for x 6= 0 — see Example 6.8).
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This difficulty is not clear with the Leibniz notation, but becomes clearer when we
write out the argument in a more precise functional notation. See [Adams, Question 68
p. 127].

We now state the Chain rule precisely, and refer to Adams for a (correct) proof.

Theorem 6.7 (Chain Rule). Assume the function f is differentiable at g(x) and the
function g is differentiable at x. Then the composite function f ◦ g is differentiable at x
and

(f ◦ g)′(x) = f ′(g(x)) g(x).

(We also assume that g is defined in a neighbourhood of x and f is defined in a neigh-
bourhood of g(x), although this can be generalised a bit.)

Proof. See [Adams, p. 126]. To help understand the proof, note that the “error”
function E(k) is the difference between the slope of the line through the points (u, f(u))
and (u+k, f(u+k)) on the graph of f , and the slope of the tangent at the point (u, f(u))
and (u+k, f(u+k)) on the graph of f . Draw a diagram like the first one in this chapter.

Example 6.8.

We can now compute the derivative of the function

f(x) =

{
x2 sin 1

x
x 6= 0

0 x = 0

If x 6= 0 then by the product and chain rules (and using the fact sin′ y = cos y)

f ′(x) = (x2)′ sin
1

x
+ x2

(
sin′

1

x

)(
1

x

)′

= 2x sin
1

x
+ x2

(
cos

1

x

)(
− 1

x2

)

= 2x sin
1

x
− cos

1

x

We see that f ′(x) has no limit as x→ 0, since the first term approaches zero but the
second “oscillates” between ±1.

However, f is differentiable at 0, and in fact f ′(0) = 0. This is in fact not surprising
if we look at the graph. Any line passing through the points (0, 0) and (h, h2 sin 1

h
) on

the graph lies in the region between the two parabolas corresponding to ±x2. it is thus
geometrically clear that the slope of this line approaches 0 as h→ 0.
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Analytically,

f ′(0) = lim
h→0

f(h)− f(0)

h

= lim
h→0

h2 sin 1
h
− 0

h

= lim
h→0

h sin
1

h
= 0

The last limit was shown in Example 3.12 (it followed easily from the Squeeze Theorem
applied with ±x).

Thus f is differentiable for all x, but the derivative is not continuous at 0.

6.4. Maximum and minimum values

The relationship bewteen derivatives and maximum and minimum points
is given.

Definition 6.9. A function f has a maximum value (minimum value) f(x0) at the
maximum point (minimum point) x0 ∈ D(f) if

f(x) ≤ f(x0) (f(x) ≥ f(x0))

for all x ∈ D(f).
The function has a local maximum value (local minimum value) f(x0) at the local

maximum point (local minimum point) x0 ∈ D(f) if there exists a neighbourhood N of
x0 such that

f(x) ≤ f(x0) (f(x) ≥ f(x0))

for all x in N ∩ D(f).

In the above diagram, f has a maximum at x3, a minimum at b, local maxima at
a, x1, x3 and local minima at x0, x2, b.

We saw in Theorem 5.14 that a continuous function f defined on a closed bounded
interval has a maximum and a minimum value.

If f has a local maximum or minimum at x then there are three possibilities

• x is an endpoint of the domain of f ;
• x is an interior point and f ′(x) does not exist
• x is an interior point and f ′(x) does exist

Theorem 6.10. Suppose f has a local maximum or minimum at an interior point x0

and that f ′(x0) exists. Then f ′(x0) = 0.

Proof. Suppose f has a local maximum at the interior point x0 (the proof for a local
minimum is similar). Then for some h0 > 0,

|h| < h0 implies f(x0) ≥ f(x0 + h).
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Hence,

f(x0 + h)− f(x0)

h
≤ 0 if 0 < h < h0.(6.1)

and

f(x0 + h)− f(x0)

h
≥ 0 if − h0 < h < 0.(6.2)

We know that the derivative at x0 exists and hence

lim
h→0+

f(x0 + h)− f(x0)

h
and lim

h→0−

f(x0 + h)− f(x0)

h

both exist and are equal. But the first limit is ≤ 0 from(6.2) and the second is ≥ 0
from(6.1). Hence the derivative must be 0.

It is not true that if f ′(x0) = 0 then f must have a local maximum or minimum at
x0. Consider f(x) = x3 at 0.

We say a function f has a critical value f(x0) at the critical point x0 ∈ D(f) if
f ′(x0) = 0

6.5. Mean Value Theorem

The Mean Value Theorem is proved. This is used to bound the difference
between values of a function, and to prove the Constancy Theorem and
Rolle’s Theorem. The relationship beteen the sign of the derivative and the
monotone behaviour of a function is developed.

The Mean Value Theorem says that the slope of the line joining two points (a, f(a))
and (b, f(b)) on the graph of a differentiable function is equal to the slope of the tangent at
the point (c, f(c)) for some c between a and b. This is geometrically clear for any reasonable
function whose graph we can draw. We want to show that it follows rigorously from
the definition of differentiable (this then will be another justification that our definition
correctly captures our informal notions of differentiability).

From the diagram, we expect that c will correspond to some point on the graph of
f at maximum vertical distance from the line joining (a, f(a)) and (b, f(b)). Since the

equation of this line is y = f(a) + f(b)−f(a)
b−a (x − a), this vertical distance is given by

f(x)− f(a)− f(b)−f(a)
b−a (x− a). This motivates the following proof.

Theorem 6.11 (Mean Value Theorem). Suppose f is continuous on the closed bounded
interval [a, b] and is differentiable on the open interval (a, b). Then there exists c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a .
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Proof. Consider the function g given by

g(x) = f(x)− f(a)− f(b)− f(a)

b− a (x− a).

This is continuous on [a, b] and so (by Theorem 5.14) has a maximum at some point
c ∈ (a, b). By Theorem 6.10 it follows

g′(c) = f ′(c)− f(b)− f(a)

b− a = 0,

which gives the result.

Corollary 6.12. Suppose f is continuous on an interval and |f ′(x)| ≤ K at every
interior point in the interval. (The interval may be open, closed or unbounded, at either
end.) Then

|f(x1)− f(x2)| ≤ K|x1 − x2|
for all x1, x2 in the interval.

Proof. Suppose x1 < x2. (The proof is similar if x2 < x1 and the result is trivial if
x1 = x2.)

By the Mean Value theorem there exists a number c between x1 and x2 such that

f(x1)− f(x2) = f ′(c)(x1 − x2),

and so

|f(x1)− f(x2)| = |f ′(c)| |x1 − x2| ≤ K |x1 − x2|.

Corollary 6.13 (Constancy Theorem). If f is continuous on an interval and f ′(x) =
0 at every interior point in the interval then f is constant on the interval. (The interval
I may be open, closed or unbounded, at either end.)

Proof. Choose a point c ∈ I and let C = f(c). We want to show f(x) = C for any
x ∈ I.

But |f(x)− f(c)| = 0 by the previous corollary, and so f(x) = C.

The corollary is not true if the domain of f is a finite union of more than one interval.
In this case the function is constant on each interval, but the constant may depend on the
interval.

Rolle’s Theorem says that if f is continuous on [a, b] and differentiable on (a, b), and
f(a) = f(b) = 0, then f ′(x0) = 0 for some x0 ∈ (a, b). It is just a particular case of the
Mean Value Theorem.

A useful application of Corollary 6.13 is to prove that complicated expressions are
equal. For example, to prove that f(x) = g(x) for all x in some interval, it is sufficient to
prove that the functions are equal at a single point c and that their derivatives are equal
everywhere.

To see this apply the corollary to the function f(x)− g(x). The derivative is zero and
so the function is constant; but the constant is zero since f(c)− g(c) = 0.

See [Adams, Example 2 p. 256] for an example.

The Mean Value Theorem leads to a result which enables us to decide where a function
is increasing or decreasing.

Definition 6.14. We say a function f is

increasing if x1 < x2 implies f(x1) < f(x2)

decreasing if x1 < x2 implies f(x1) > f(x2)

non-decreasing if x1 < x2 implies f(x1) ≤ f(x2)

non-increasing if x1 < x2 implies f(x1) ≥ f(x2)



increasing decreasing non-decreasing non-increasing
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Theorem 6.15. Suppose that f is continuous on an interval and differentiable at
every interior point. Then

f ′(x) > 0 for every interior point x implies f is increasing on J .

f ′(x) < 0 for every interior point ximplies f is decreasing on J .

f ′(x) ≥ 0 for every interior point x implies f is non-creasing on J .

f ′(x) ≤ 0 for every interior point x implies f is non-increasing on J .

Proof. Suppose x1 < x2 are points in J . By the Mean Value Theorem,

f(x2)− f(x1) = f ′(x0)(x2 − x1)

for some x0 between x1 and x2.
If f ′(x) > 0 for all x ∈ I then this implies f(x1) < f(x2), and similarly for the other

three cases.

Note that if a function is increasing on an interval then it does not follow that f ′(x) > 0
for every interior point x. For example, if f(x) = x3 then f is increasing, but f ′(0) = 0.
However, if f is increasing, or even just non-decreasing, then it does follow that f ′(x) ≥ 0
for all x. This also follows from the Mean value Theorem, (exercise).

6.6. FPartial derivatives

Suppose, for simplicity, we have a function f(x, y) defined on an open rectangle A as
in Section 3.4. The partial derivative with respect to y at (x0, y0) is defined by

∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
.

Think of the line parallel to the y-axis through the point (x0, y0), and think of f as
a function with domain restricted to this line, i.e. f is a function of y with x fixed to be
x0. Then ∂f/∂y(x0, y0) is just the ordinary derivative with respect to y.

If we know that ∣∣∣∣
∂f

∂y
(x, y)

∣∣∣∣ ≤ K

at every point (x, y) in the open rectangle A, then it follows from Corollary 6.12 that

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2|
for every (x, y1), (x, y2) ∈ A.

We will use this in the proof of Theorem 8.2.
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CHAPTER 7

Integration

The main references in [Adams] are Sections 6.1–6.5 and Appendix IV.

Integration allows us to find areas and volumes bounded by curves and surfaces.
It is rather surprising at first, but there is a close relationship between integration

and differentiation; each is the inverse of the other. This is known as the Fundamental
Theorem of Calculus. It allows us to find areas by doing the reverse of differentiation.

Integrals are also used to express lengths of curves, work, energy and force, probabil-
ities, and various quantities in economics, for example.

7.1. Introduction

The topic of this chapter is the concept of area in a quantitative sense and the eluci-
dation of some of its properties.

Everyone would be happy with the definition: “the area of a rectangle is the product
of its length and breadth”. The problem is more difficult with more complicated plane
figures. The circle, for example, has “area πr2”; but is this “area” the same concept as
that applied to rectangles?

In everyday life one often needs only an approximation to the area of, say, a country
or a field. If pressed one would calculate it approximately by filling it as nearly as possible
with rectangles and summing their area. This is very close to what we do here in giving
a precise definition of the concept of area.

7.2. The Riemann integral

The (definite) Riemann integral is defined in terms of upper and lower
sums. It is shown that continuous functions on closed bounded intervals
are integrable.

Throughout this section1 , unless stated otherwise, f is a continuous function defined
on a closed bounded interval [a, b].

We aim to define the “area under the graph of f”. That is we wish to attach a
number to the shaded region in the following diagram, which is its “area”, and which has
the properties that we normally associate with “area”.

The basic properties that we want of this “area” number are

• the area of a rectangle should be “length times breadth”;
• the area of non-overlapping regions is the sum of their areas;
• if one region is contained in another the area of the first is ≤ the area of the second.

1some of the material in this section closely follows notes of Bob Bryce from a previous first
year honours level course.
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Before we begin, a preliminary comment: a given function f on [a, b] may take values
both positive and negative, as in the next diagram.

The concept of area which we are about to define will treat the regions below the x-axis as
negative. The concept we define is in this sense not quite what one might expect, though
it agrees with our intuition in the case when f(x) ≥ 0 for all x ∈ [a, b].

We begin by defining a partition of [a, b]; this is simply a finite set of points in [a, b]
including a and b. Thus P = {0, 1/4, 1} is a partition of [0, 1], and P = {−1, − 1/2, −
1/4, 3/4, 1} is a partition of [−1, 1].



Lower rectanglesUpper rectangles
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The general notation for a partition P of [a, b] with n sub-intervals will be

P = {a = x0, x1, x2, . . . , xn = b }.

We will assume always that a = x0 < x1 < . . . < xn = b.
The length of the ith subinterval is denoted by

∆xi := xi − xi−1.

With each partition P of [a, b] we associate the so-called upper and lower sums. To
define these we need the following notation: write

Mi = max { f(x) : xi−1 ≤ x ≤ xi }, 1 ≤ i ≤ n
mi = min { f(x) : xi−1 ≤ x ≤ xi }, 1 ≤ i ≤ n.

That is, Mi is the maximum value and mi the minimum value of f on the ith sub-interval
[xi−1, xi] of the partition. These exist because f is continuous on the closed bounded
interval [xi−1, xi].

The upper sum of f over P is defined by

U(P, f) :=

n∑

i=1

Mi ∆xi,

and the lower sum of f over P is defined by

L(P, f) :=

n∑

i=1

mi ∆xi.

(See [Adams, pp. 294–7] for a discussion of the summation notation.) Roughly speaking
L(P, f) is the sum of the areas of all the rectangles whose bases are the sub-intervals
[xi−1, xi] and which just fit under the graph of f . Similarly U(P, f) is the sum of the areas
of all the rectangles whose bases are the sub-intervals [xi−1, xi] and which just contain the
graph of f . At least this is the case when f(x) ≥ 0. In other cases the interpretation is
less simple. Various possibilities are illustrated in the diagrams below.

In [Adams, page A-27] the graph of the function is missing from the diagram. Can
you work out what the function looks like?

Example 7.1. Let f(x) = 1 − 2x on [0, 1], and let P= {0, 1/4, 1/3, 2/3, 1}. Find
L(P, f) and U(P, f) .



graph of f(x) = 1-2x

          

72 7. INTEGRATION

Here

M1 = 1 m1 = 1/2 ∆x1 = 1/4

M2 = 1/2 m2 = 1/3 ∆x2 = 1/12

M3 = 1/3 m3 = −1/3 ∆x3 = 1/3

M4 = −1/3 m4 = −1 ∆x4 = 1/3

and so

L(P, f) =

4∑

i=1

mi ∆xi =
1

2
· 1

4
+

1

3
· 1

12
+
(−1

3

)
1

3
+
−1

3
= − 7

24

U(P, f) =

4∑

i=1

Mi ∆xi = 1 · 1

4
+

1

2
· 1

12
+

1

3
· 1

3
+
(
−1

3

)
1

3
=

7

24

Exercise 7.2. Let f(x) = cosx on [−π/2, π] and P = {−π/2,−π/4, 0, π/2, π}. Show
that

L(P, f) =
1√
2
· π

4
− π

2

and

U(P, f) =
1√
2
· π

4
+

3π

4
.

We now develop the properties of upper and lower sums that we need.

Lemma 7.3. Let f be a continuous function on [a, b] and P be a partition of [a, b].
Then L(P, f) ≤ U(P, f).

Proof. Since mi ≤Mi for all i, and since xi − xi−1 > 0,

mi(xi − xi−1) ≤Mi(xi − xi−1).

Adding,

L(P, f) ≤ U(P, f)

as required.

Draw a diagram and you will see how obvious this result is.

Lemma 7.4. Let f be a continu9ous function on [a, b]. Let P1, P2 be two partitions of
[a, b] with P1 ⊂ P2. (We say that P2 is a refinement of P1.) Then

L(P1, f) ≤ L(P2, f) and U(P2, f) ≤ U(P1, f).

Proof. We can get P2 from P1 by successively adding one new point at a time. If
therefore, we can show that adding one new point to a partition has the effect of not
decreasing the lower sum and not increasing the upper sum, we will be done. In other
words we might as well suppose that P2 is obtained from P1 by adding one more point.
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Suppose therefore that P1 = {a = x0, x1, x2, . . . , xn = b} and that P2 = P1 ∪ {x}
2 with x ∈ (xi−1, xi). Let Mj ,mj (1 ≤ j ≤ n) be the maximum and minimum values of
f on [xj−1, xj ]. Let M ′,m′ be the maximum and minimum values for f on [xi−1, x]; and
M ′′,m′′ be the maximum and minimum values for f on [x, xi]. Note that

m′ ≥ mi, m′′ ≥ mi

and

M ′ ≤Mi, M ′′ ≤Mi

because on a sub-interval the minimum value can only increase and the maximum value
can only decrease on a subinterval.

Then

L(P2, f)− L(P1, f) = m′(x− xi−1) +m′′(xi − x)−mi(xi − xi−1)

≥ mi(x− xi−1) +mi(xi − x)−mi(xi − xi−1)

= 0,

and

U(P1, f)− U(P2, f) = Mi(xi − xi−1)−M ′(x− xi−1)−M ′′(xi − x)

≥Mi(xi − xi−1)−Mi(xi − x)−Mi(xi − x)

= 0.

That is

L(P1, f) ≤ L(P2, f) and U(P2, f) ≤ U(P1, f).

In words: refining a partition increases lower sums and decreases upper sums.

Corollary 7.5. If f is continuous on [a, b] and if P1, P2 are arbitrary partitions of
[a, b], then L(P1, f) ≤ U(P2, f).

Proof. The partition P obtained by using all the points of P1 and P2 together, i.e.
P is the union of P1 and P2, is a refinement of both P1 and P2. Hence

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f),

by Lemmas Lemma 7.3 and Lemma 7.4, as required.

2Thus notation just means that P2 is the union of the set P1 and the set {x} containing the
single point x.
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In other words : every lower sum is less than or equal to every upper sum.

The important consequence we need is this : since the lower sums L(P , f) are all
bounded above (by every upper sum in fact) the set of lower sums has a least upper
bound. Similarly the set of upper sums is bounded below (by every lower sum) so the set
of upper sums has a greatest lower bound. We define the lower integral of f from a to b
and the upper integral of f from a to b by

L

∫ b

a

f := l. u. b.{L(P, f) : P is a partition of [a, b] }

U

∫ b

a

f := g. l. b.{U(P, f) : P is a partition of [a, b] }

respectively.

The next lemma just uses the fact that every lower sum is ≤ every upper sum. It
will soon be replaced by the stronger result that (for continuous functions) the lower and
upper integrals are in fact equal.

Lemma 7.6. Let f be a continuous function on [a, b]. Then L
∫ b
a
f ≤ U

∫ b
a
f .

Proof. Let P be a partition of [a, b].

Since U(P, f) is an upper bound for all lower sums, and since L
∫ b
a
f is the least upper

bound, it follows that

L

∫ b

a

f ≤ U(P, f).

Since this is true for every partition P , L
∫ b
a
f is thus a lower bound for the set of all upper

bounds. Since U
∫ b
a
f is the greatest lower bound, it follows that

L

∫ b

a

f ≤ U
∫ b

a

f.

Remark 7.7. F Everything we have done so far can also be done with an arbitrary
bounded3 function f defined on [a, b], except that we must define

Mi = l. u. b.{ f(x) : xi−1 ≤ x ≤ xi }, 1 ≤ i ≤ n,
mi = g. l. b.{ f(x) : xi−1 ≤ x ≤ xi }, 1 ≤ i ≤ n.

Lemma 7.3, Lemma 7.4, Corollary 7.5 and Lemma 7.6 are still valid, with similar proofs
as for continuous functions, but with “min” replaced by “g. l. b.” and “max” replaced by
“l. u. b.”.

Definition 7.8. A bounded function f defined on [a, b] is integrable (in the sense of
Riemann) if

L

∫ b

a

f = U

∫ b

a

f.

We call L
∫ b
a
f and U

∫ b
a
f respectively the lower and upper integral of f over [a, b]. For

an integrable function we denote the common value of upper and lower integral by
∫ b
a
f

and call it the (definite) integral of f over [a, b].

Note that L
∫ b
a
f and U

∫ b
a
f are numbers.

3A function is bounded if there exist numbers A and B such that A ≤ f(x) ≤ B for every x
in the domain of f . Thus any continuous function defined on [a, b] is bounded. But the function
f , with f(x) = 1/x for x 6= 0 and f(0) = 0, is not bounded on its domain R.
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Remark 7.9. F There is another type of integral called the Lebesgue integral. This is
much more difficult to define, but it is much more powerful (more functions are integrable)
and it has better properties (under very general conditions, if a sequence of functions fn(x)
converges to f(x) for every x, then the Lebesgue integrals of fn converge to the Lebesgue
integral of f). Such a convergence result is true for Riemann integration only if the
functions converge in a rather strong sense. If a function is Riemann integrable then it is
Lebesgue integrable (and the integrals agree), but the converse is not true.

For many applications, Riemann integration is sufficient, but for more sophisticated
applications one needs the Lebesgue integral. There is a course on the measure theory and
the Lebesgue integral in third year.

The case we will be mainly interested in is when f is continuous. In Theorem 7.10 we
prove the important result that every continuous function on a closed bounded interval is
integrable.

In general it is not the case that upper and lower integrals are equal. For example,
consider the function f defined on [0, 1] by

f(x) =

{
0 x is irrational,

1 x is irational.

Then, whatever partition P of [0, 1] we have, Mi = 1 and mi = 0 for every i, since every
interval [xi−1, xi] contains both rational and irrational points. Hence

L

∫ 1

0

f = 0 and U

∫ 1

0

f = 1.

Theorem 7.10. Let f be continuous on [a, b]. Then f is integrable.

Proof. Suppose f is continuous on [a, b]. Suppose ε > 0.

We will first show there exists some partition P (which may depend on ε) such that

U(P, f)− L(P, f) < ε.(7.1)

The main point in proving this is to use the fact that by Theorem 5.19, f is uniformly
continuous on [a, b]. Thus we may choose δ > 0 such that

|x1 − x2| < δ implies |f(x1)− f(x2)| < ε

b− a .
⌈

We will see the reason for taking ε/(b− a) in a moment.
⌋

Now let P = {a = a0, a1, a2, . . . , aN = b} be any partition of [a, b] such that the
difference between consecutive points in P is < δ. Then by the above implication the
difference between the maximum value Mi and the minimum mi on the ith interval must
be < ε/(b− a). Hence

U(P, f)− L(P, f) =

N∑

i=1

Mi ∆xi −
N∑

i=1

mi ∆xi

=

N∑

i=1

(Mi −mi) ∆xi

<
ε

b− a (∆x1 + · · ·+ ∆xN )

=
ε

b− a (b− a) = ε.

This proves (7.1)

From the definition of the lower and upper integrals, and Lemma 7.6,

L(P, f) ≤ L
∫ b

a

f ≤ U
∫ b

a

f ≤ U(P, f).
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Since the difference between the outer two terms is < ε by (7.1), the difference between
the inner two terms is also < ε. That is

U

∫ b

a

f − L
∫ b

a

f < ε.

Since this holds for every ε > 0 it follows that U
∫ b
a
f = L

∫ b
a
f .

7.3. Riemann sums

The connection between Riemann sums and the Riemann integral is estab-
lished.

If f is a continuous function on [a, b] and P is a partition, then the upper and lower
sums can be written in the form

U(P, f) =

n∑

i=1

f(ui) ∆xi,

L(P, f) =

n∑

i=1

f(li) ∆xi.

where ui and li are points in the ith interval [xi−1, xi] for which f takes its maximum
and minimum values respectively. More generally, we can define a general Riemann sum
corresponding to the partition P by

R(P, f) =

N∑

i=1

f(ci) ∆xi,

where each ci is an arbitrary point in [xi−1, xi]. Note that this notation is a little imprecise,
since R(P, f) depends not only on the partition P , but also on the points ci chosen in
each of the intervals given by P .

Note that

L(P, f) ≤ R(P, f) ≤ U(P, f).(7.2)

Let the maximum length of the intervals in a partition P be denoted by ‖P‖.
Theorem 7.11.

lim
‖P‖→0

R(P, f) =

∫ b

a

f.

More precisely, for any ε > 0 there exists a number δ > 0 (which may depend on ε) such
that

whenever ‖P‖ < δ then

∣∣∣∣R(P, f)−
∫ b

a

f

∣∣∣∣ < ε.

Proof. The proof of Theorem 7.10 in fact showed that if ‖P‖ < δ then

U(P, f)− L(P, f) < ε.

Since

L(P, f) ≤ R(P, f) ≤ U(P, f)

and

L(P, f) ≤
∫ b

a

f ≤ U(P, f)

it follows (algebra) that
∣∣∣∣R(P, f)−

∫ b

a

f

∣∣∣∣ < ε.
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Notation 7.12. We often use the notation
∫ b

a

f(x) dx for

∫ b

a

f.

Note that this is a number, not a function of x. It has exactly the same meaning as∫ b
a
f(y) dy, just as

∑N

i=1
f(ci) ∆xi and

∑N

j=1
f(cj) ∆xj mean the same thing. We say x

is a “dummy” variable.

You can informally think of
∫ b
a
f(x) dx as the sum of the “areas” of an infinite num-

ber of triangles of height f(x) and “infinitesimal” width “dx”. More precisely, from the
previous theorem,

∫ b

a

f(x) dx = lim
‖P‖→0

N(P )∑

i=1

f(ci) ∆xi.

(We write N(P ) to emphasise the fact that the number of points in the partition depends
on P .)

7.4. Properties of the Riemann integral

The basic linearity and order properties of the Riemann integal are devel-
oped. The mean value theorem for integrals is proved. The extension of
these results to piecewise continuous functions is noted.

In particular, if f, g are continuous functions on [a, b] and c, d are real numbers, then

∫ b

a

(cf + dg) = c

∫ b

a

f + d

∫ b

a

g(7.3)

f(x) ≤ g(x) for all x ∈ [a, b] implies

∫ b

a

≤
∫ b

a

g.(7.4)

The main point in the proofs is that similar properties are true for the Riemann sums
used to define the integrals.

We also have, if a < b,
∣∣∣∣
∫ b

a

f

∣∣∣∣ ≤
∫ b

a

|f |(7.5)

Proof.

−|f(x)| ≤ f(x) ≤ |f(x)|

for all x. From (7.4)

∫ b

a

−|f | ≤
∫ b

a

f ≤
∫ b

a

|f |.

From (7.3) this gives

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |.

This implies (7.5).

If f is continuous on [a, b] with minimum and maximum values m and M then

m(b− a) ≤
∫ b

a

f ≤M(b− a).(7.6)
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Proof. Consider the partition P = {a, b} containing just the two points a and b.
Since

L(P, f) = m(b− a), U(P, f) = M(b− a),

and

L(P, f) ≤ L
∫ b

a

f =

∫ b

a

f = U

∫ b

a

f ≤ U(P, f),

the result follows.

One also has, for a ≤ c ≤ b,
∫ a

b

f = −
∫ b

a

f(7.7)

∫ a

a

f = 0(7.8)

∫ c

a

f +

∫ b

c

f =

∫ b

a

f(7.9)

The first is really a definition. It also follows if we use the same definition of
∫ a
b
f

as in the case b < a, but allow “decreasing” partitions where ∆xi < 0. The second is
again by definition. It also follows if we use the same definition as when the endpoints are
distinct, except that now the points in any “partition” are all equal and so ∆xi = 0.

If we allow b ≤ a as well as a < b, then (7.5) should be replaced by

∣∣∣∣
∫ b

a

f

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

|f |
∣∣∣∣(7.10)

Exercise.

The Mean Value Theorem for Integrals says that if f is continuous on [a, b] then there
exists some c ∈ [a, b] such that

∫ b

a

f = (b− a)f(c).(7.11)

Proof. Choose l and u to be minimum and maximum points for f on [a, b]. Then
from (7.6) it follows that

f(l) ≤
∫ b
a
f

b− a ≤ f(u),

By the Intermediate Value Theorem applied to the function f on the interval [l, u] or [u, l]
(depending on whether l ≤ u or u ≤ l), there exists c between l and u such that

f(c) =

∫ b
a
f

b− a .

This gives the result.

Piecewise continuous functions (see [Adams, p. 316] for the definition) on a cloed
bounded interval are also integrable, and have the same properties as above. This essen-
tially follows from writing any integrals as a sum of integrals over intervals on which the
functions are all continuous.



x x+h

graph of  f
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7.5. Fundamental Theorem of Calculus

The relationship beteen integration and differentiation is developed.

The following theorem essentially says that differentiation and integration are reverse
processes.

In the first part of the theorem we consider the integral
∫ x
a
f 4 as a function of the

endpoint x (we allow x ≤ a as well as x > a) and prove: the derivative of the integral of
f gives back f .

In the second part, we are saying that in order to compute
∫ b
a
f it is sufficient to find

a function G whose derivative is f and then compute G(b)−G(a).
To put the second assertion in a form that looks more like the “reverse” of the first,

we could write it in the form
∫ x

a

G′ = G(x)−G(a),

provided G′ is a continuous function on I. We could even use f instead of G and then get
∫ x

a

f ′ = f(x)− f(a),

provided f ′ is continuous on I. The integral of the derivative of f gives back f (up to the
constant f(a)).

Theorem 7.13 (Fundamental Theorem of Calculus). Suppose that f is continuous
on some interval I (not necessarily closed and bounded) and that a ∈ I.

Then

d

dx

∫ x

a

f = f(x).

If G′(x) = f(x) for all x ∈ I then

∫ b

a

f = G(b)−G(a).

Proof.

4We could also write

d

dx

∫ x

a

f(t) dt = f(x).

The variable t is a dummy variable, and we could have used y or anything else instead. But it
is “good practice” not to use x in this case, since we are already using x here to represent the
endpoint of the interval of integration.
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For the first assertion we have

d

dx

∫ x

a

f = lim
h→0

∫ x+h

a
f −

∫ x
a
f

h

= lim
h→0

∫ x+h

x
f

h
from (7.9)

= lim
h→0

hf(c(h))

h
for some c = c(h) between x and x+ h,

depending on h, by the Mean Value Theorem

for integrals.

= lim
h→0

f(c(h))

= f(x) since f is continuous at x

and c lies between x and x+ h.

For the second assertion, suppose G′(x) = f(x) on the interval I.
But we have just seen that the derivative (with respect to the variable x) of the

function
∫ x
a
f is also f(x). It follows that the derivative of the function, given by

G(x)−
∫ x

a

f,

is G′(x)−f(x) = 0 on the interval I. Thus this function is constant on I by Corollary 6.13.
Setting x = 0 we see that the constant is G(a). Hence

G(x)−
∫ x

a

f = G(a)

for all x ∈ I. Taking x = b now gives the second assertion.



            

CHAPTER 8

Differential Equations

The differential equation

dy

dx
= f(x, y)(8.1)

requires that the gradient of the function y = y(x) at each point (x, y) on its graph should
equal f(x, y) for the given function f .

Suppose that at each point (x, y) on the x− y plane we draw a little line whose slope
is f(x, y), this is the slope field. Then at every point on the graph of any solution to (8.1),
the graph should be tangent to the corresponding little line. In the following diagram
we have shown the slope field for f(x, y) = y + cosx and the graph of three functions
satisfying the corresponding differential equation.

dy

dx
= y + cosx

It is plausible from the diagram that for any given point (x0, y0) there is exactly one
solution y = y(x) satisfying y(x0) = y0. This is indeed the case here, and is true under
fairly general conditions.

But it is not always true. For example, if f(x, y) = y2/3 then there is an infinite set
of solutions satisfying y(0) = 0. Namely, for any real numbers a ≤ 0 ≤ b,

y =





(x−a)3

27
x ≤ a

0 a ≤ x ≤ b
(x−b)3

27
x ≥ b

is a solution, (check it). See the following diagram. The problem here is that although

f(x, y) is continuous everywhere, (∂/∂y)f(x, y) = 2y−1/3/3 is not continuous on the x-
axis. Notice that the slope lines on the x-axis are horizontal.

81
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dy

dx
= y2/3.

If the function f has even worse behaviour, there may be no solution at all.

In the two simple examples we just gave, we could write out the solutions in terms
of standard functions. But in practice, this is almost never the case. The solutions of
differential equations almost invariably cannot be expressed in tems of standard functions.
In fact, one of the most useful ways to introduce new and useful functions is to define
them as the solutions of certain differential equations. But in order to do this, we first
need to know that the differential equations have unique solutions if we specify certain
“initial conditions”. This is the main result in this chapter.

The point to this chapter is to prove the Fundamental Existence and Uniqueness The-
orem for differential equations of the form (8.1). Such an equation is called first-order,
since only the first order derivative of y occurs in the differential equation. Differential
equations of the form (8.1) are essentially the most general first order differential equation.

The following remark justifies that we are about to prove a major result in mathe-
matics!!.

Remark 8.1. F A system of first order differential equations for the dependent vari-
ables y1, . . . , yn is a set of differential equations of the form

dy1

dx
= f1(x, y1, . . . , yn)

dy2

dx
= f2(x, y1, . . . , yn)

...

dyn
dx

= fn(x, y1, . . . , yn)

which are meant to be satisfied simultaneously by functions y1 = y1(x), y2 = y2(x), . . . , yn =
yn(x). Here the functions f1, f2, . . . , fn are given. If n = 2 you can visualise this as in
the one dimensional case, by considering three axes labeled x, y1, y2. The solution to a
differential equation in this case will be represented by the graph (curve) over the x axis
which for each point x gives the point (x, y1(x), y2(x)).

A very similar proof as for a single differential equation, gives the analogous Funda-
mental Existence and Uniqueness Theorem for a system of first-order differential equations.

A differential equation which involves higer drivatives can be reduced to a system
of differential equations of first order (essentially by introducing new variables for each
of the higher order derivatives). Thus the Existence and Uniqueness Theorem, suitably
modified, applies also to higher order differential equations. In fact it even applies to
systems of higher order differential equations in a similar manner!.



R

.
(x0, y0)

.
(x0, y0)
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8.1. Outline of proof of the Existence and Uniqueness theorem

Since I am realistic enough to know that not everyone is going to study the proof in
Section 8.2 in detail (but it is not that difficult to follow), I will provide you here with an
overview. (After that, hopefully you will then be inspired to work through the details.)

We want to prove that the the initial value problem

dy

dx
= f(x, y)(8.2)

y(x0) = y0(8.3)

has exactly one solution under certain (general) assumptions.
The assumptions are that f(x, y) and f2(x, y) = (∂/∂y)f(x, y) are both continuous

in some fixed (closed) rectangle R in the x − y plane. Note that in particular, we are
assuming that the partial derivative (∂/∂y)f(x, y) exists in R.

Slope field for f in the rectangle R

We want to prove there is a unique solution passing through any point (x0, y0) in R.
In fact the solution will go all the way to the boundary of R — top, bottom or one of the
sides.

We will prove there is a solution in some smaller (open) rectangle centred at (x0, y0),
which passes through both sides. By then taking a new small rectangle centred at some
point further along the solution for the first small rectangle, we can extend the solution.
In fact, one can continue this process all the way1 to the boundary of R.

6 small rectangles here get us all the way to the boundary of R

Thus the main point is to first show that in some (small) rectangle Rδ, whose base is
of length 2δ and which is centred at the point (x0, y0), there is a solution which extends
to both sides of this small rectangle.

The proof proceeds in 6 steps.

1F We will be able to compute the size of these small rectangles, and in this way one can
show that only a finite number of them are needed to “reach” the boundary of R.
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Step A The problem is equivalent to showing the “integral equation”

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt(8.4)

has a solution. One sees this by integrating both sides of (8.2) from x0 to x. Con-
versely, differentiating the integral equation gives back the differential equation, and clearly
y(x0) = x0 follows from the integral equation.

For our first example

dy

dx
= y + cosx, y(0) = 0,(8.5)

we get

y(x) =

∫ x

0

(y(t) + cos t) dt.(8.6)

Step B To find the solution of (8.4) we begin with the constant function

y(x) = y0

and plug it into the right side of (8.4) to get a new function of x. We plug this again into
the right side to get yet another function of x. And so on.

For example, with (8.5), substituting y = 0 in the right side of (8.6), and then
repeating, we get

∫ x

0

cos t dt −→ sinx

∫ x

0

(
sin t+ cos t

)
dt −→ − cosx+ 1 + sinx

∫ x

0

(
− cos t+ 1 + sin t+ cos t

)
dt −→ x− cosx+ 1

∫ x

0

(
t− cos t+ 1 + cos t

)
dt −→ 1

2
x2 + x

∫ x

0

(
1

2
t2 + t+ cos t

)
dt −→ 1

6
x3 +

1

2
x2 + sinx

∫ x

0

(
1

6
t3 +

1

2
t2 + sin t+ cos t

)
dt −→ 1

24
x4 +

1

6
x3 − cosx+ 1 + sinx

We call this sequence of functions a “sequence of approximate solutions”. We see from
the diagram that this sequence is converging, at least near (0, 0).



f1

f3f2
f2 f3

f

f
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In general, if yn(x) is the nth approximate solution, then

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t)) dt.(8.7)

Step C the next step is to show that on some small rectangle around (x0, y0) this
sequence of “approximate solutions” does indeed converge. The main point in the proof
is showing that if the rectangle is sufficiently small then the distance between the nth and
(n+ 1)th approximate solutions is < r times the distance between the (n− 1)th and the
nth approximate solutions, for some fixed r < 1.

Thus the distance between consecutive solutions is decreasing “geometrically” fast.
This is the main idea in the proof.

Step D Let the limit function for the approximate solutions be denoted by y = y(x). The
next step is to show that this limit function is continuous. This is not obvious, although
it is not hard to show that the approximate solutions are themselves continuous. The
problem is that a sequence of continuous functions can in fact converge to a non-continuous
function, as in the following diagram. But in our case the fact that the approximate
solutions converge “geometrically” fast is enough to ensure that the limit is continuous

Step E The next step is to show that the limit function y = y(x) satisfies the integral
equation. The fact it is continuous implies we can integrate the right side of (8.4). And
the fact that the approximate solutions converge to the function y = y(x) geometrically
fast enables us to prove that we can take the limit as n → ∞ on both sides of (8.7) and
deduce (8.4)

Step F The final step is to show that any two solutions are equal. We show that if d is
the distance between two solutions of (8.4) then d ≤ rd for some r < 1, by an argument
like the one in Step C. This implies that d = 0 and so the two solutions agree.

8.2. FRigorous proof of the Existence and Uniqueness theorem

Theorem 8.2. Suppose that f(x, y) and f2(x, y) = (∂/∂y)f(x, y) are both continuous
in the rectangle R consisting of all points (x, y) of the form a ≤ x ≤ b, c ≤ y ≤ d. Suppose
(x0, y0) is in the interior of R.

Then there exists a number δ > 0 and a unique function φ(x), defined and having a
continuous derivative on the interval (x0 − δ, x0 + δ), such that

φ′(x) = f(x, φ(x))(8.8)

φ(x0) = y0.(8.9)

In other words, φ(x) solves (i.e. satisfies) the initial value problem

dy

dx
= f(x, y)

y(x0) = y0

on the interval (x0 − δ, x0 + δ).



(x0,y0)
.

R

Rδ(x0,y0)

x0-δ x0+δ

graph of ϕ
continuation of solution

y0+Mδ

y0-Mδ
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Remark : Let

M = max{ |f(x, y)| : (x, y) ∈ R }, K = max

{∣∣∣ ∂
∂y
f(x, y)

∣∣∣∣ : (x, y) ∈ R
}
.

We will see in the proof that if we define Rδ(x0, y0) to be the (open) rectangle consisting
of all those (x, y) such that x0 − δ < x < x0 + δ and y0 −Mδ < y < y0 +Mδ, i.e.

Rδ(x0, y0) =
{

(x, y) : x ∈ (x0 − δ, x0 + δ), y ∈ (y0 −Mδ, y0 +Mδ)
}
,(8.10)

then any δ > 0 for which Rδ(x0, y0) ⊂ R and δ < K−1, will work for the above theorem.

Proof.

Step A We first claim that if φ(x) is a continuous function defined on some interval
(x0−δ, x0+δ), and (x, φ(x)) ∈ R for all x, then the following two statements are equivalent:

1. φ(x) has a continuous derivative on the interval (x0 − δ, x0 + δ) and solves the
given initial value problem there, i.e. (8.8) and (8.9) are true;

2. φ(x) satisfies the integral equation

φ(x) = y0 +

∫ x

x0

f(t, φ(t)) dt.(8.11)

Assume the first statement is true. Then both φ′(t), and f(t, φ(t)) by Section 5.7 ,
are continuous on (x0−δ, x0 +δ) (it is convenient to use t here instead of x for the dummy
variable). Thus for any x in the interval (x0 − δ, x0 + δ) the following integrals exist, and
from (8.8) they are equal:

∫ x

x0

φ′(t) dt =

∫ x

x0

f(t, φ(t)) dt.

From the Fundamental Theorem of Calculus it follows that

φ(x)− φ(x0) =

∫ x

x0

f(t, φ(t)) dt,

which implies the second statement (since we are assuming φ(x0) = y0).

Next assume the second statement is true. Note that since φ(t) is continuous, so is
f(t, φ(t)) by Section 5.7, and so the integral does exist. Setting x = x0 we immediately
get (8.9)

Since the right side of (8.11) is differentiable and the derivative equals f(x, φ(x))
(by the Fundamental Theorem of Calculus), the left side must also be differentiable and
have the same derivative. That is, (8.8) is true for any x in the interval (x0 − δ, x0 + δ).
Moreover, we see that the derivative φ′(x) is continuous since f(x, φ(x)) is continuous.

Thus the first statement is true.
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Step B We now define a sequence of approximations to a solution of (8.11) as follows:

φ0(x) = y0

φ1(x) = y0 +

∫ x

x0

f(t, φ0(t)) dt

φ2(x) = y0 +

∫ x

x0

f(t, φ1(t)) dt

...

φn+1(x) = y0 +

∫ x

x0

f(t, φn(t)) dt

...

The functions in the above sequence will be defined for all x in some interval (x0 −
δ, x0 + δ), where the δ has yet to be chosen. We will first impose the restriction on δ that

Rδ(x0, y0) ⊂ R,(8.12)

where Rδ(x0, y0) was defined in (8.10).
The function φ0(x) is just a constant function.
Since the points (t, φ0(t)) certainly lie in Rδ(x0, y0) if t ∈ (x0 − δ, x0 + δ), it follows

that f(t, φ0(t)) makes sense. Also, f(t, φ0(t)) is a continuous fnction of t from Section 5.7,
being a composition of continuous functions. It follows that the integral used to define
φ1(x) exists if x ∈ (x0 − δ, x0 + δ). In other words the definition of φ1(x) makes sense for
x ∈ (x0 − δ, x0 + δ).

Next, for x ∈ (x0 − δ, x0 + δ), we show that (x, φ1(x)) ∈ Rδ(x0, y0) and hence ∈ R.
This follows from the fact that

|φ1(x)− y0| =
∣∣∣∣
∫ x

x0

f(t, φ0(t)) dt

∣∣∣∣

≤
∣∣∣∣
∫ x

x0

|f(t, φ0(t))| dt
∣∣∣∣ from (7.10)

≤
∣∣∣∣
∫ x

x0

M dt

∣∣∣∣ since |f | ≤M in R

≤Mδ since |x− x0| ≤ δ.

It follows as before that the definition of φ2(x) makes sense for x ∈ (x0−δ, x0+δ). (We
also need the fact that f(t, φ1(t)) is continuous. This follows from the fact φ1(t) is in fact
differentiable by the Fundamental Theorem of Calculus, and hence continuous; and the
fact that f(t, φ1(t)) is thus a composition of continuous functions and hence continuous.)

Etc. etc. (or proof by induction, to be rigorous; but it is clear that it will work).
In this way we have a sequence of continuous functions φn(x) defined on the interval

(x0 − δ, x0 + δ), and for x in this interval we have (x, φn(x)) ∈ Rδ(x0, y0).

Step C The next step is to prove there exists a function φ(x) defined on the interval
(x0 − δ, x0 + δ) such that

φn(x)→ φ(x)

for all x ∈ (x0 − δ, x0 + δ). Let (for n ≥ 0)

dn = max |φn(x)− φn+1(x)|,
where the maximum is taken over the interval (x0 − δ, x0 + δ). 2

2There is a minor technical point here. Since the points (x, φn(x)) and (x, φn+1(x)) both lie
in Rδ(x0, y0), it follows that |φn(x) − φn+1(x)| < 2Mδ. But the maximum may be “achieved”
only when x = x0 ± δ, which is not actually a point in the (open) interval (x0 − δ, x0 + δ). To
make the argument rigorous, we should replace “max” by “l. u. b.” in Step C.



φn
φn+1

Rδ (x0,y0)

dn
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Then for n ≥ 1

dn = max
x∈(x0−δ,x0+δ)

|φn(x)− φn+1(x)|

= max
x∈(x0−δ,x0+δ)

∣∣∣∣
∫ x

x0

f(t, φn−1(t))− f(t, φn(t)) dt

∣∣∣∣

≤ max
x∈(x0−δ,x0+δ)

∣∣∣∣
∫ x

x0

∣∣f(t, φn−1(t))− f(t, φn(t))
∣∣ dt
∣∣∣∣

≤ max
x∈(x0−δ,x0+δ)

∣∣∣∣
∫ x

x0

K
∣∣φn−1(t)− φn(t)

∣∣ dt
∣∣∣∣ by Section 6.6

≤ max
x∈(x0−δ,x0+δ)

∣∣∣∣
∫ x

x0

Kdn−1 dt

∣∣∣∣ from the definition of dn−1

= Kδ dn−1

Repeating this argument we obtain

dn ≤ Kδ dn−1 ≤ (Kδ)2dn−2 ≤ (Kδ)3dn−3 ≤ · · · ≤ (Kδ)nd0.

We now make the further restriction on δ that

Kδ < 1.(8.13)

Since

|φn(x)− φn+1(x)| ≤ dn ≤ d0(Kδ)n,

it follows from Theorem 4.10 that the sequence φn(x) converges for each x ∈ (x0−δ, x0+δ).
We define the function φ(x) on (x0 − δ, x0 + δ) by

φ(x) = lim
n→∞

φn(x).

It also follows from Theorem 4.10 that

|φn(x)− φ(x)| ≤ d0

1−Kδ (Kδ)n = Arn.(8.14)

where A = d0/(1 −Kδ) and r = Kδ < 1. (Note that this is saying that the graph of φn
lies within distance Arn of the graph of φ.)

Step D We next claim that φ(x) is continuous on the interval (x0 − δ, x0 + δ).
To see this let a be any point in the interval (x0 − δ, x0 + δ); we will prove that φ is

continuous at a.
Let ε > 0 be an arbitrary positive number.
First choose n so that Arn < ε/3 and hence from (8.14)

x ∈ (x0 − δ, x0 + δ) implies |φn(x)− φ(x)| ≤ ε/3.(8.15)



φn
φ

Rδ (x0,y0)

x a

....
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By continuity of φn there exists η > 0 (which may depend on n and hence on ε) such
that

|x− a| < η implies |φn(x)− φn(a)| < ε/3.(8.16)

(We also choose η sufficiently small that if |x− a| < η then x ∈ (x0 − δ, x0 + δ).
From (8.15) (applied with x and again with x replaced by a) and (8.16) it follows

that if |x− a| < η then

|φ(x)− φ(a)| = |(φ(x)− φn(x)) + (φn(x)− φn(a)) + (φn(a)− φ(a))|
≤ |φ(x)− φn(x)|+ |φn(x)− φn(a)|+ |φn(a)− φ(a)|
≤ ε

3
+
ε

3
+
ε

3
= ε.

Since a was any point in (x0 − δ, x0 + δ), and ε was any positive number, this proves the
claim that φ is continuous on the interval (x0 − δ, x0 + δ).

Step E We defined

φn+1(x) = y0 +

∫ x

x0

f(t, φn(t)) dt.(8.17)

We have shown in Step C that3

φn+1(x)→ φ(x)

for each x in the interval (x0 − δ, x0 + δ). We next claim that for the right side of (8.16)
we have

y0 +

∫ x

x0

f(t, φn(t)) dt→ y0 +

∫ x

x0

f(t, φ(t)) dt.

It then follows from the claim that

φ(x) = y0 +

∫ x

x0

f(t, φ(t)) dt,

which establishes (8.11) and hence proves the theorem by Step A.

To prove the claim we compute∣∣∣∣
∫ x

x0

f(t, φn(t)) dt−
∫ x

x0

f(t, φ(t)) dt

∣∣∣∣ ≤
∣∣∣∣
∫ x

x0

∣∣f(t, φn(t))− f(t, φ(t))
∣∣ dt
∣∣∣∣

≤
∣∣∣∣
∫ x

x0

K
∣∣φn(t)− φ(t)

∣∣ dt
∣∣∣∣ by Section 6.6

≤
∣∣∣∣
∫ x

x0

KArn dt

∣∣∣∣ by (8.14)

≤ KδArn.

3If an → a for a sequence, then it follows that an+1 → a, why?
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Since 0 ≤ r < 1 this establishes the claim and hence the theorem.

Step F Finally, we must show that any two solutions of (8.8) and (8.9), or equivalently
of (8.11), are equal.

Suppose that φ(x) and ψ(x) are any two solutions. Then if

d = max |φ(x)− ψ(x)|,
where the maximum is taken over the interval (x0 − δ, x0 + δ).4 Then for any x ∈ (x0 −
δ, x0 + δ),

|φ(x)− ψ(x)| =
∣∣∣∣
∫ x

x0

(
f(t, φ(t))− f(t, ψ(t))

)
dt

∣∣∣∣

≤
∣∣∣∣
∫ x

x0

∣∣f(t, φ(t))− f(t, ψ(t))
∣∣ dt
∣∣∣∣

≤
∣∣∣∣
∫ x

x0

K|φ(t))− ψ(t)| dt
∣∣∣∣ from Section 6.6

≤ Kδd
Since this is true for any x ∈ (x0 − δ, x0 + δ), it follows that

d ≤ Kδd.
Since Kδ < 1, this implies d = 0!!

Hence φ(x) = ψ(x) for all x ∈ (x0 − δ, x0 + δ).

End of proof, end of chapter, end of semester. Have a good holiday.

4As in Step C we should really write “l. u. b.” instead of “max”. The proof is essentially
unchanged.
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