
Draft of Changes and Additions in a Projected 3rd Edition
of Data Analysis and Graphics Using R

J H Maindonald and W J Braun

NB: Section 13.2, on propensity scores, which has been substantially rewritten, is not included here. The
draft will be available separately.

c© J. H. Maindonald and W.J. Braun 2008. February 26, 2009

Languages shape the way we think, and determine what we can think about.
[Benjamin Whorf.]

S has forever altered the way people analyze, visualize, and manipulate data... S is an elegant, widely accepted,
and enduring software system, with conceptual integrity, thanks to the insight, taste, and effort of John Cham-
bers.
[From the citation for the 1998 Association for Computing Machinery Software award.]

1

2

Contents

1 Graphical User Interfaces to R 5
1.1 The R Commander Graphical User Interface . 5

1.1.1 Installing the R Commander . 5
1.1.2 Basics of the R Commander’s interface . 5

1.2 The rattle GUI . 6
1.3 Creating GUIs . 7

2 A Straight Line Regression Example 9
2.1 World record times for track and field events . 9

2.1.1 Summary information from model objects . 10
2.1.2 The model object . 11

3 Multiple Regression 13
3.1 Northern Irish hill race data – the regression coefficients . 13

3.1.1 Times for Northern Irish hill races . 13
3.2 Multiple Regression Models – Additional Points . 16

3.2.1 Errors in x . 16
3.2.2 Implications for variable selection . 19

4 Time Series Models 21
4.1 Time Series – Some Basic Ideas . 21

4.1.1 Preliminary graphical explorations . 21
4.1.2 The autocorrelation and partial autocorrelation function 22
4.1.3 Autoregressive (AR) models . 23
4.1.4 ∗ Autoregressive moving average (ARMA) models – theory 24
4.1.5 Automatic model selection? . 26
4.1.6 A time series forecast . 26

4.2 Regression modeling with moving average errors . 28

5 The R System – Additional Topics 37
5.1 Data Input and Data Manipulation . 37

5.1.1 Accessing Data from the Internet . 37
5.1.2 Changing the shape of data frames (or matrices) . 37

5.2 Creation of R Packages . 38
5.3 Lattice Graphics, and the grid Package . 39

5.3.1 Lattice Graphics vs Base Graphics . 39
5.3.2 Groups within data, and/or columns in parallel . 40
5.3.3 Lattice Parameters and Graphics Features . 41
5.3.4 A further example . 43

3

4 Contents

5.3.5 Keys – auto.key, key & legend . 43
5.3.6 Panel Functions and Interaction with Plots . 44
5.3.7 Interaction with lattice plots – focus, interact, unfocus 46
5.3.8 Multiple lattice graphs on a graphics page . 47

5.4 An Implementation of Wilkinson’s Grammar of Graphics . 48
5.4.1 Australian rain data . 48
5.4.2 Physical measurements of Australian athletes . 48

5.5 Dynamic Graphics – the rgl and rggobi packages . 49
5.6 Further Reading . 50

1

Graphical User Interfaces to R

The R Commander (Rcmdr) will be the main focus of discussion, with brief reference to other GUIs. The final
subsection discusses the use of the of the function gui, from the fgui package, to create simple GUIs.

The R Commander is strongly recommended for use for data input. Especially for novices or infrequent
users of R, there can be similar advantages for creating many types of graphs, for statistical testing, for simple
tabulation and summarization, and for fitting standard types of model.

Some tasks are best done from the command line, and some from a graphical user interface (GUI), with the
balance likely to change in favor of the command line as familiarity with R increases. The two modes of use
can be mixed. All the GUIs discussed here make available the commands used by R, for inspection and/or
modification and/or for audit trail purposes. The user can examine the help page for the relevant function(s),
modify the code as required, and re-execute it.

In addition to the R Commander, note:

- The rattle GUI interfaces to a range of multivariate graphics, regression and classification routines.
• The function (latticist()) (latticist package) should be invoked with a data frame or table as argument. It

then opens a GUI interface to the lattice package and vcd packages, allowing rapid creation of plots that
may be useful in their own right, or may be a first step in the creation of more carefully honed plots.

- The playwith package has extensive features for interacting with graphs, including the addition of annota-
tion. It includes an interface to latticist. The playwith package is further described in described further in
Subsection 5.3.6.

For rattle, both the Gtk+ system and Glade must be installed. Further brief details are in Subsection 1.2. The
playwith package requires Gtk+.

1.1 The R Commander Graphical User Interface

1.1.1 Installing the R Commander

To install the R Commander from the comamnd line, enter:

install.packages("Rcmdr", dependencies=TRUE)

Among the dependencies are the graphics packages rgl (3D dynamic graphics), scatterplot3d, vcd (visualiza-
tion of categorical data) and colorspace (for generation of color palettes, etc).

1.1.2 Basics of the R Commander’s interface

To start the R commander, start up R and enter:1

library(Rcmdr)

1At startup, the R Commander checks whether all the suggested packages, needed to use all its features, are available. If some are missing, then upon
starting up, the R commander offers to install them. For installing such packages, there must be a live internet connection.

5

6 1. Graphical User Interfaces to R

This opens an R Commander script window, with the output window underneath. This window can be closed
by clicking on the× in the top left corner. If thus closed, enter Commander() to reopen it again later in the
session.

Once the points that will now be noted are understood, use of the R Commander should for the most part be
straightforward.

From GUI to writing code: The R commander displays the code that it generates. Users can take this code,
modify it, and re-run it. The code can be run either from the R Commander script window or from the R
console window (if open).

The active data set: The R commander has the notion of an active data set. Here are alternative ways to make
a data set active. Start by clicking on the Data drop-down menu. Then

• Click on Active data set, and pick from among data sets, if any, in the workspace.
• Click on Import data, and follow instructions, to read in data from a file. The data set is read into the

workspace, at the same time becoming the active data set.
• Click on New data set . . . , then entering data via a spreadsheet-like interface.
• Click on Data in packages, click on Read Data from Package, then identify one of the attached packages

and choose a data set from among those that are included with the package.
• A further possibility is to load data from an R image (.RData) file; click on Load data set . . .

Creating graphs: To draw graphs, click on the Graphs drop-down menu. Then

• Click on Scatterplot . . . to obtain a scatterplot. This uses the function scatterplot() from the car
package, which is an option rich interface to functions that are in base graphics.

• Click on X Y conditioning plot . . . for lattice scatterplots and panels of scatterplots.
• Click on 3D graph to obtain a 3D scatterplot, using the R Commander function scatter3d() that is an

interface to functions in the rgl package.

Statistics (& fitting models): Click on the Statistics drop down menu to get submenus that give summary
statistics and/or carry out various statistical tests. This includes (under Contingency tables) tables of counts
and (under Means) One-way ANOVA. Also, click here to get access to the Fit models submenu.

*Models: Click here to extract information from model objects once they have been fitted. (NB: To fit a
model, go to the Statistics drop down menu, and click on Fit models).

1.2 The rattle GUI

A Windows binary that installs both Gtk+ and Glade, as required for rattle, is available from http:
//downloads.sourceforge.net/gladewin32/. Download gtk-dev-2.12.9-win32-1.exe
and click on the executable to start the installation.

To get started, type:

library(rattle}

rattle()

First click on the radio button that identifies the source of the data – CSV or ARFF (used by some data
mining packages); Library (from an R package); an RData file (a .RData image file); or ODBC. Click on the
relevant button and click on Execute. Selecting CSV and clicking on the Execute tab leads to an offer to load
the audit sample dataset, which can be used for experimenting with rattle’s abilities.

Once loaded, information will be displayed on the data columns, with a tentative specification as Input or
Target or Risk or Ident or Ignore. This specification can be changed as required.

1.3 Creating GUIs 7

Immediately below Execute is a row of tabs: Data (to load data), Explore (for data exploration), . . . Model
(fit a model), Evaluate (create a new column) and Log (examine code). Thus, to explore the data, click on
Explore, click on the type of information required (start maybe with Summary), and click on Execute. To fit a
model, click on Model, click maybe on the Forest button, and click on Execute.

1.3 Creating GUIs

The fgui package allows the rapid creation of a GUI interface to a user function. Here is a simple example that
uses the function gui() in this package:

library(fgui)

library(DAAGxtras)

Create function that does the smoothing

fitsmooth <-

function(x=bomregions$mdbRain, FUN=function(x)xˆ(1/3), span=2/3){

if(!is.null(FUN))x <- FUN(x)

scatter.smooth(x, span=span)

}

Create function that sets up a GUI interface to fitsmooth()

callsmooth <- function()gui(fitsmooth,

argSlider=list(span=c(0.1,1.5,0.025)), ## start,stop,stepsize

output=NULL, callback=guiExec, exec="Show graph")

callsmooth()

Click on "Show graph" to start the graphical display.

Move the slider to change the width of the smoothing window

Note that:

• The first argument to gui() is the function fitsmooth that is to be executed.
• The argument argSlider is used to specify a slider that will control the value of the argument span to

the function fitsmooth.
• The argument output=NULL suppresses the text box that would otherwise be created to hold function

output. (Here, there is no output to hold.)
• The argument callback=guiExec ensures that the function fitsmooth() is re-executed whenever

one of its arguments is changed, e.g., by moving the slider.
• The argument exec="Show graph" is used to label the button that the user should press in order to

execute the function.
• Text boxes are automatically created that can be used for entry of the x and FUN arguments. If these are

left blank, the defaults x=bomregions$mdRain and FUN=function(x)x(̂1/3) will be used

8

2

A Straight Line Regression Example

This worked example is parked here for convenience. It is not intended for inclusion in the 3rd edition.

2.1 World record times for track and field events

Data are world track and road record times, as at 9th August 2006. Data are from the web page http:
//www.gbrathletics.com/wrec.htm. Data are in the dataset worldRecords in the DAAGxtras
package.

Data exploration

First, check what data are in the data frame. The function str() is useful for this purpose:

> str(worldRecords)

’data.frame’: 40 obs. of 5 variables:

$ Distance : num 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 ...

$ roadORtrack: Factor w/ 2 levels "road","track": 2 2 2 2 2 2 2 2 2 2 ...

$ Place : chr "Athens" "Cassino" "Atlanta" "Pretoria" ...

$ Time : num 0.163 0.247 0.322 0.514 0.720 ...

$ Date :Class ’Date’ num [1:40] 12948 4889 9709 11040 10829 ...

A simple form of plot can be obtained thus:

library(DAAGxtras) # Version 0.6-6 or later of DAAGxtras

Plot with untransformed scales

plot(Time ˜ Distance, data=worldRecords)

Now use log scales

plot(Time ˜ Distance, data=worldRecords, log="xy")

Distinguishing points for track events from those for road events is easiest if we use lattice graphics. Figure
2.1 is an example: The labeling on the axes is the only difference between the two plots. On the left the labeling
is in the original units, but shown as a power of 10. On the right the logarithms of the values are shown. Notice
the use of auto.key to obtain a key. On a colour device, different colours, rather than different symbols, are
used to distinguish the groups.

The code is:

Attach lattice package

library(lattice)

Left panel

xyplot(Time ˜ Distance, groups=roadORtrack, data=worldRecords,

scales=list(log=10), auto.key=list(columns=2))

Right panel

xyplot(log(Time) ˜ log(Distance), groups=roadORtrack,

data=worldRecords, auto.key=list(columns=2))

9

10 2. A Straight Line Regression Example

Distance

T
im

e

10^0

10^1

10^2

10^3

10^−1 10^0 10^1 10^2

●
●

●●
●

●
●●

●
●

●●

●

●

●

●

road track●

log(Distance)
lo

g(
T

im
e)

−2

0

2

4

6

−2 0 2 4 6

●
●

●●
●

●
●●

●
●

●●

●

●

●

●

road track●

Figure 2.1: World record times versus distance, for field and road events.

Fitting a regression line

The plots made it clear that a line is a good fit, albeit with a small but noticeable lack of fit that for present
purposes will be ignored.

The regression will use the function lm(). The name is a mnemonic for linear model. The following fits a
straight line fit to the logged data:

> lm(log(Time) ˜ log(Distance), data=worldRecords)

Call:

lm(formula = log(Time) ˜ log(Distance), data = worldRecords)

Coefficients:

(Intercept) log(Distance)

0.7316 1.1248

There is no difference that can be detected visually between the track races and the road races.
The predicted times from the equation are

Time = e0.7316 × Distance1.1248

= 2.08× Distance1.1248

This implies, as would be expected, that kilometers per minute increase with increasing distance.
Fitting a line to points that are represented on a log scale thus allows an immediate interpretation, which is

a good reason for starting with a line.

2.1.1 Summary information from model objects

In order to avoid recalculation of the model information each time that some different information is required,
we store the result from the lm() calculation in the model object worldrec.lm. The choice of name for
the model object is arbitrary; any convenient name will do.

Store the result in worldrec.lm

worldrec.lm <- lm(log(Time) ˜ log(Distance), worldRecords)

2.1 World record times for track and field events 11

Three functions that are commonly used to get information about model objects are: print(),
summary() and plot(). These are all generic functions. The effect of the function depends on the class of
object that is printed (ie, by default, displayed on the screen) or or plotted, or summarized.

Additionally, the function abline() can be used with the model object as argument to add a line to the
plot of log(Time) against log(Distance), thus:

plot(log(Time) ˜ log(Distance), data = worldRecords)

abline(worldrec.lm)

The function print() typically displays relatively terse output, while summary() may display more
extensive output. This varies from one type of model object to another.

When used with lm objects, print() calls print.lm(), while summary() calls summary.lm().1

Compare the outputs from the following:

print(worldrec.lm) # Equivalent to typing wtvol.lm at the command line

summary(worldrec.lm)

Diagnostic plots

Insight into the adequacy of the line can be obtained by examining the “diagnostic” plots, obtained by “plotting”
the model object.

par(mfrow=c(1,2)) # Subsequent plots appear in a 1 x 2 layout

plot(worldrec.lm, which=1:2)

par(mfrow=c(1,1)) # Reset to 1 plot per page, for any later plots

Use of a 1 by 2 layout is convenient because the two plots can then be studied side by side.
By default, there are four “diagnostic” plots. Examination of the first two are adequate for present purposes.

The first plot can be used to get an indication of whether the relationship really is linear, or whether there is
some further systematic component that should perhaps be modeled. The second plot allows an assessment of
whether residuals follow an approximate normal distribution. If the distribution is normal, points should lie,
approximately, on a line.

The first plot does suggest a small systematic difference from a line. There are mechanisms for using a
smooth curve to account for this small difference from a line, if it is thought important enough to model.

2.1.2 The model object

The model object is actually a list. Here are the names of the list elements:

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

These different list elements hold all very different classes and dimensions (or lengths) of object. Hence the
use of a list; any collection of different R objects can be brought together into a list.

The following is a check on the model call:

> worldrec.lm$call

lm(formula = log(Time) ˜ log(Distance), data = worldRecords)

Commonly required information can be accessed using generic extractor functions. Above, attention was
drawn to print(), summary() and plot(). Other commonly used extractor functions are residuals(),
coefficients(), and fitted.values(). These can be abbreviated to resid(), coef(), and

1More precisely, summary(wtvol.lm) calls UseMethod("summary"), which notes that wtvol.lm is an lm object and therefore calls
summary.lm().

12 2. A Straight Line Regression Example

fitted(). Where one of these functions gives the information that is required, this is preferable to accessing
list elements directly.

The following demonstrates use of the extractor function coef():

> coef(worldrec.lm)

(Intercept) log(Distance)

0.7316019 1.1247534

3

Multiple Regression

3.1 Northern Irish hill race data – the regression coefficients

If an aim is a scientific understanding that involves interpretation of model coefficients, then it is important to
fit a model whose coefficients are open to the relevant interpretations. Different formulations of the regression
model, or different models, may serve different explanatory purposes. Predictive accuracy is in any case a
consideration, and is often the main interest.

Three examples will demonstrate issues for the interpretation of model coefficients. The first is a data set on
record times, distances and amonts of climb for Northern Irish hill races. The second has data on mouse brain
weight, litter size and body weight. The third has data on book dimensions and weight, from a highly biased
sample of books.

3.1.1 Times for Northern Irish hill races

The data set nihills, from which Table 3.1 has selected observations, gives distances (dist), heights
climbed (climb), male record times (time) and female record times (timef), for 23 Scottish hill races.

We begin with scatterplot matrices, both for the untransformed data (Figure 3.1A), and for for the log trans-
formed data (Figure 3.1B).) Attention is limited to the male results.1The diagonal panels give the x-variable
names for all plots in the column above or below, and the y-variable names for all plots in the row to the left
or right. Note that the vertical axis labels alternate between the axis on the extreme left and the axis on the
extreme right, and similarly for the horizontal axis labels. This avoids a proliferation of axis labels on the
extreme left and lower axes.

Apart from a possible outlier, the relationship between dist and climb seems approximately linear. The
same is true when logarithmic scales are used, and the outlier is now much less evident. Linear relationships
between explanatory are helpful, in part, because they make the interpretation of diagnostic and other plots

1## Scatterplot matrix: data frame nihills (DAAGxtras)
Panel A: untransformed data
library(lattice)
splom(˜ nihills[, c("dist","climb","time")], cex.labels=1.2,

varnames=c("dist\n(miles)","climb\n(feet)", "time\n(hours)"))
Panel B: log transformed data
splom(˜ log(nihills[, c("dist","climb","time")]), cex.labels=1.2,

varnames=c("dist\n(log miles)", "climb\n(log feet)", "time\n(log hours)"))

Table 3.1: Distance (dist), height climbed (climb), and record times (time),
for four of the 23 Northern Irish hill races.

Name dist (mi) climb (ft) time (h) timef (h)

1 Binevenagh 7.5 1740 0.86 1.06
2 Slieve Gullion 4.2 1110 0.47 0.62
3 Glenariff Mountain 5.9 1210 0.70 0.89
· · · · · · · · · · · · · · · · · ·
23 BARF Turkey Trot 5.7 1430 0.71 0.94

13

14 3. Multiple Regression

A: Untransformed scales: B: Logarithmic scales

dist
(miles)

15

20

15 20

5

10

5 10

●

●

●
●

●● ●
●●

●

● ●●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●●●
●●

●

●●●●
●

●

●

●

●

●
●

●
●

●
● ●

●

●●
●●●

●

●

●
●

●
●

● ●
●

●

●●

● ●

climb
(feet)

6000

8000 6000 8000

2000

4000

2000 4000 ●
● ●

●

●●
●●●

●

●

●
●

●
●

● ●
●

●

●●

●●

●

●
●

●

●●●●●

●

●
●
●●●

●

●

●

●

●●

● ●
●

●
●

●

●● ●●●

●

●
●

●●●

●

●

●

●

●●

●●

time
(hours)

3

4

3 4

1

2

1 2

dist
(log miles)

2.0

2.5

3.0

2.0 2.5 3.0

1.0

1.5

2.0

1.0 1.5 2.0

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

climb
(log feet)

8.0

8.5

9.0
8.0 8.5 9.0

6.5

7.0

7.5

6.5 7.0 7.5

●

●
●

●

●

●

●●●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

time
(log hours)

0.5

1.0

1.5

0.5 1.0 1.5

−1.0

−0.5

0.0

−1.0−0.5 0.0

Figure 3.1: Scatterplot matrix for the nihills data (Table 3.1). Panel A uses the untransformed scales, while panel B
uses logarithmic scales.

straightforward.
The following are reasons for investigating the taking of logarithms:

• The range of values of time is large (3.9:0.32, i.e., >10:1), and similarly for dist and climb. The
times are bunched up towards zero, with a long tail. In such instances, use of a logarithmic transformation
is likely to lead to a more symmetric distribution.

• One point in particular has a time that is more than twice that of the next largest time, as is evident in
Figure 3.1A. The values of dist and climb similarly stand out as much larger than for other points. In
a regression that uses the untransformed variables, this point will have a much greater say in determining
the regression equation than any other point. It has large leverage. Even after taking logarithms (Figure
3.1B), its leverage remains large, but not quite so dominating.

• It can be expected that time will increase more than linearly at very long times, and similarly for climb,
as physiological demands on the human athlete move closer to limits of human endurance.

• The relationship between the explanatory variables (dist and climb) is more nearly linear on the logarithmic
scale of Figure 3.1B.

Additionally, use of a logarithmic scale may help stabilize the variance.
These considerations suggest fitting the equation

log(time) = a+ b1 log(dist) + b2 log(climb),

This is equivalent to the power relationship

time = A(dist)b1(climb)b2 ,

where a = log(A).
Now fit the model and examine the diagnostic plots (shown in 3.2):

nihills.lm <- lm(log(time) ˜ log(dist) + log(climb), data = nihills)

plot(nihills.lm)

3.1 Northern Irish hill race data – the regression coefficients 15

−1.0 0.0 0.5 1.0

−
0.

20
−

0.
05

0.
05

0.
15

Fitted values

R
es

id
ua

ls

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

A: Resids vs Fitted

Meelbeg Meelmore

Hen & Cock

Donard Forest

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

B: Normal Q−Q

Meelbeg Meelmore

Hen & Cock
Seven Sevens

−1.0 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

C: Scale−Location
Meelbeg Meelmore

Hen & Cock
Seven Sevens

5 10 15 20

0.
0

0.
2

0.
4

0.
6

Obs. number

C
oo

k'
s

di
st

an
ce

D: Cook's distance
Seven Sevens

Hen & Cock

Meelbeg Meelmore

Figure 3.2: Diagnostic plots for the regression of log(time) on log(dist) and log(climb).

The diagnostic plots do not indicate serious problems, apart from the moderately large residual associated with
the Meelbeg Meelmore race.

The estimates of the coefficients (a, b1 and b2) are:

> summary(nihills.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.9611313 0.27387193 -18.11479 7.085048e-14

log(dist) 0.6813596 0.05517831 12.34832 8.186381e-11

log(climb) 0.4657575 0.04530181 10.28121 1.980592e-09

Interpreting the coefficients

The estimated equation is

log(time) = −4.96
[SE=0.27]

+0.68
[SE=0.055]

× log(dist)+ 0.47
[SE=0.045]

× log(climb)

Exponentiating both sides of this equation, and noting exp(−4.96) = 0.0070, gives

time = 0.00070× dist0.68 × climb0.0.47.

This equation implies that for a given height of climb, the time taken is smaller for the second three miles than
for the first three miles. (This follows because 0.68 < 1.) Is this plausible? An answer requires an examination
of the implications of holding climb constant. For a given value of climb, short races will be steep while
for long races the slope will be relatively gentle. Thus a coefficient that is less than 1.0 is unsurprising.

A meaningful coefficient for logdist

The coefficient for logdist will be more meaningful if we regress on logdist and log(climb/dist).
Then we find:

> lognihills$logGrad <- with(nihills, log(climb/dist))

> nihillsG.lm <- lm(logtime ˜ logdist + logGrad, data=lognihills)

> summary(nihillsG.lm)$coef

Estimate Std. Error t value Pr(>|t|)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.961 0.2739 -18.1 7.09e-14

logdist 1.147 0.0346 33.2 5.90e-19

logGrad 0.466 0.0453 10.3 1.98e-09

The coefficient of logdist is now, reassuringly, greater than 1. The coefficient of logdist depends,
critically, on what the other explanatory variables are used!

16 3. Multiple Regression

There is another, related, benefit. The correlation between logdist and logGradient, is -0.065,
negligible relative to the correlation of 0.78 between logdist logclimb.2Because the correlation be-
tween logdist and logGradient is so small, the coefficient of logdist (=1.124) in the regression
on logdist alone is almost identical to the coefficient of logdist (=1.147) in the regression on logdist
and logGradient.

The standard error of the coefficient of logdist is smaller – 0.035 as against 0.055 when the second
explanatory variable is logGradient rather than logclimb. Note that the predicted values do not change.
The models nihills.lm nihillsG.lm are different mathematical formulations of the same underlying
model.

3.2 Multiple Regression Models – Additional Points

The following notes should dispel any notion that this chapter’s account of multiple regression models has
covered everything of importance. They draw attention to issues of large practical importance. These have
received extensive attention in a literature where, without good guideposts, it is not easy to tease out practical
implications.

3.2.1 Errors in x

In the discussion so far, it has been assumed, either that the explanatory variables are measured with negligible
error or that the interest is in the regression relationship given the observed values of explanatory variables.

This subsection is designed to draw attention to the effect that errors in the explanatory variables can have
on regression slope. Discussion will be limited to a relatively simple “classical” errors in x model. For this
model the error in x, if large, reduces the chances that the estimated slope will appear statistically significant.
Additionally, it reduces the expected magnitude of the slope, i.e., the slope is attenuated. Even with just one
explanatory variable x, it is not possible to estimate the magnitude of the error or consequent attenuation from
the information shown in a scatterplot of y versus x. For estimating the magnitude of the error, there must be
a direct comparison with values that are measured with negligible error.

The discussion will now turn to as study on the measurement of dietary intake. The error in the explanatory
variable, as commonly measured, turned out to be larger and of greater consequence than most researchers had
been willing to contemplate.

Measurement of dietary intake

The 36-page Diet History Questionnaire is a Food Frequency Questionnaire (FFQ) that was developed and
evaluated at the U.S. National Cancer Institute. In large-scale trials that look for dietary effects on cancer and
on other diseases, it has been important to have an instrument for measuring food intake that is relatively cheap
and convenient. (There have been trials costing US$100,000,000 or more.)

The FFQ asks for details of food intake over the previous year for 124 food items. It queries frequency of
intake and, for most items, portion sizes. Supplementary questions query such matters as seasonal intake and
food type. More detailed food records may be collected at specific times, which can then be used to calibrate
the FFQ results. One such instrument is a 24-hour dietary recall, which questions participants on their dietary
intake in the previous 24 hours.

The study that is reported in Schatzkin et al. (2003) compared results from the FFQ with those from Doubly
Labeled Water, used as an accurate but highly expensive biomarker. Schatzkin et al. (2003) conclude that
the FFQ is too inaccurate for its intended purpose. The accuracy of the 24-hour dietary recall was a further
concern.

Schatzkin et al. (2003) reported measurement errors where the standard deviation for estimated energy intake
was seven times the standard deviation, between different individuals, of the reference. Additionally, Schatzkin

2with(lognihills, cor(logdist, logGrad))
with(lognihills, cor(logdist, logclimb))

3.2 Multiple Regression Models – Additional Points 17

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

18 19 20 21 22

50
60

70
80

No error in x
y ●

●
●

●
●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

17 18 19 20 21 22

50
60

70
80

ττ == 0.4sz

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

18 19 20 21 22

50
60

70
80

ττ == 0.8sz

●

●
●

●
●

●

●

●

●

●

●● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

17 19 21 23

50
60

70
80

ττ == 1.2sz

x

y ●

●
●

●
●

●

●

●

●

●

●●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

14 16 18 20 22 24

50
60

70
80

ττ == 1.6sz

x

●

●
●

●
●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

16 18 20 22 24

50
60

70
80

ττ == 2sz

x

Figure 3.3: The fitted solid lines show how the regression line for y on x change as the error in x changes. The underlying
relationship, shown with the dashed line, is in each instance y = 15 + 2.5 z. Note that s2z =

Pn
i=1(zi − z̄)2, and that τ is

the standard deviation of the independent errors that are added to the zi.

et al. (2003) found a bias in the relationship between FFQ and reference that further reduced the attenuation
factor, to 0.04 for women and to 0.08 for men. For the relationship between the 24 hour recalls and the
reference, the attenuation factors were 0.1 for women and 0.18 for men, though these can be improved by use
of repeated 24-hour recalls. These results raise serious questions about what such studies can achieve, using
presently available instruments that are sufficiently cheap and convenient that they can be used in large studies.
Carroll (2004) gives an accessible summary of the issues.

A simulation of the effect of measurement error

Suppose that the underlying regression relationship that is of interest is

yi = α+ βzi + εi (i = 1, . . . , n)

and that the measured values are

xi = zi + ηi

where

var[εi] = σ2; var[ηi] = τ2

Figure 3.3 shows the effect. If τ is 40% of the standard deviation in the x direction, i.e., τ = 0.4sz , the effect
on the slope is modest. If τ = 2sz , the attenuation is severe.

18 3. Multiple Regression

The expected value of the attenuation in the slope is, to a close approximation

λ =
1

1 + τ2/s2z

where sz =
√∑n

i=1(zi − z̄)2. If τ = 0.4sz , then λ ' 0.86.
Whether a reduction in slope by a factor of 0.86 is of consequence will depend on the nature of the applica-

tion. Often there will be more important concerns. Very small attenuation factors (large attenuations), e.g. less
than 0.1 such as were found in the Schatzkin et al. (2003) study, are likely to have serious consequences for the
use of analysis results.

Points to note are:

• From the data used in the panels of Figure 3.3, it is impossible to estimate τ , or to know the underlying
zi values. This can be determined only from an investigation that compares the xi with an accurate, i.e.,
for all practical purposes error-free, determination of the zi. The Schatzkin et al. (2003) study that will be
discussed below made use of a highly expensive reference instrument, too expensive for standard use, to
assess and calibrate the widely used cheaper measuring instruments.

• A test for β = 0 can be undertaken in the usual way, but with reduced power to detect an effect that may
be of interest.

• The t-statistic for testing β = 0 is affected in two ways; the numerator is reduced by an expected factor
of λ, while the standard error that appears in the numerator increases. Thus if λ = 0.1, the sample size
required to detect a non-zero slope is inflated by more than the factor of 100 that the effect on the slope
alone would suggest.

In social science, the ratio τ2/s2z has the name reliability. As Fuller (1987) points out, a better name is
reliability ratio.

Errors in variables – multiple regression∗

Attention will be limited to the case where one predictor is measured with error, and others without error.
Where more than one predictor is measured with error, the possibilities for spurious effects can only widen.

The coefficient of the variable that is measured with error is attenuated, as in the single variable case. The
coefficients of other variables may be reversed in sign, or show an effect when there is none. See Carroll (2004,
pp. 52-55) for summary comment.

Suppose that

y = βxx + βzz + ε

If w is unbiased for x and the measurement error u is independent of x and z, then least squares regression
yields a consistent estimate of λβx

λ =
σ2

x|z

σ2
x|z + σ2

u

The σ2
x that appears in the single predictor case is replaced by σ2

x|z .
A new feature is the bias in the least squares estimate of βz . The naive least squares estimator estimates

βz + βx(1− λ)γx|z (3.1)

where γx|z is the coefficient of z in the least squares regression of x on z. The estimate of βz may be non-zero,
even though βz = 0. Where βz 6= 0, the least squares estimate can be reversed in sign from βz . The bias
depends on the relative values of βz , βx and λ.

Where there are multiple explanatory variables that are measured without error, equation 3.1 can be applied
to each of them in turn.

3.2 Multiple Regression Models – Additional Points 19

Explanatory variable

y

15

20

25

30

5 10 15 20 25

x

5 10 15 20 25

xWITHerr

CTL TRT

Figure 3.4: Here, y is a linear function of x. The mean value of x is 2.5 for the first level of a, and 4.25 for the second level
of a. In the panel on the left, the values of x are measured without error. In the panel on the right, independent errors have
been added to x from a distribution with an SD that is 1.5 times that of the residual error SD in the the regression in the left
panel. The lines for the two levels of a now separate.

One predictor measured without error – a simulation

The function errorsINxGP(), available from http://www.maths.anu.edu.au/˜johnm/r/
functions/, simulates the effect when the variable that is measured without error code for a categorical
effect. Two lines appear, where there should be one line only.

3.2.2 Implications for variable selection

The implications are clearly damaging. If one predictor only is measured with substantial error has a non-zero
effect, then any variable that

• has a non-zero correlation with that predictor, and
• has no effect on the response

will have a non-zero expected least squares coefficient.
Where two or more variables are measured with substantial error, effects on other least squares coefficients

may in fortuitous circumstances cancel. More important, in most practical circumstances, is a widening of the
range of possibilities for obtaining least squares coefficients that are spuriously non-zero.

20 3. Multiple Regression

4

Time Series Models

Sections 9.1 and 9.2 of Data Analysis and Graphics Using R have been substantuallly rewritten. Drafts of the
rewrite are reproduced here.

4.1 Time Series – Some Basic Ideas

The time series object LakeHuron (datasets) has annual depth measurements at a specific site on Lake Huron.
The discussion of sequential dependence, and of the use of ARMA type models of this dependence, will use
these data for illustrative purposes.

4.1.1 Preliminary graphical explorations

Figure 4.1 is a trace plot, i.e. an unsmoothed plot of the data against time. The code is:

Plot depth measurements: ts object LakeHuron (datasets)

plot(LakeHuron, ylab="depth (in feet)", xlab = "Time (in years)")

There is a slight downward trend for the first half of the series. Observe also that, with some notable
exceptions, depth measurements that are close together in time are often close in value. This suggests that
these are not independent observations. Time series typically exhibit some form of sequential dependence, in
which observations that are close in time are more similar than those that are widely separated. A key challenge
for time series analysis is to find good ways to model this dependence.

Lag plots may give a useful visual impression of the dependence. Suppose that our observations are
x1, x2, . . . , xn. Then the lag 1 plot plots xi against xi−1 (i = 2, . . . , n), thus:

Time (in years)

D
ep

th
 (

in
 fe

et
)

1880 1900 1920 1940 1960

57
6

57
8

58
0

58
2

Figure 4.1: A trace plot of annual depth measurements of Lake Huron versus time.

21

22 4. Time Series Models

●

●

●
●

●

● ●

●

●●●
●

●

●

●●

● ●

●●

●
●

● ●
●

●

●
● ●

●●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

lag 1

La
ke

H
ur

on
57

6
57

8
58

0
58

2
576 578 580 582

●

●

●
●

●

● ●

●

●●●
●

●

●

●●

●●

●●

●
●

●●
●

●

●
●●

●●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

● ●

●

●

●

●

●

● ●

●

● ● ●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

lag 2
La

ke
H

ur
on

576 578 580 582

●

●

●
●

●

●●

●

●●●
●

●

●

● ●

●●

● ●

●
●

● ●
●

●

●
●●

●●●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

● ●

●

●

●

●

●

●●

●

● ●●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

lag 3

La
ke

H
ur

on

576 578 580 582

●

●

●
●

●

●●

●

●●●
●

●

●

●●

●●

●●

●
●

●●
●

●

●
●●

●●●
● ●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

lag 4

La
ke

H
ur

on

576 578 580 582

A: Lag plots

B: LakeHuron series

Lag

A
ut

oc
or

re
la

tio
n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

C: Theoretical AR1 process

Lag

A
ut

oc
or

re
la

tio
n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

Autocorrelation Partial autocorrelation

Figure 4.2: The top four panels (A) show the first four lag plots of the annual depth measurements of
Lake Huron. Panel B shows the estimated autocorrelations, with the partial autocorrelations shown in
gray. The dashed horizontal lines are approximate pointwise 95% confidence bounds for the autocorrela-
tions for a pure noise process, i.e., independent normal data with mean 0. Panel C shows the theoretical
autocorrelations for an AR1 process with ar1 = 0.8. Again the partial autocorrelation, with a single
spike at lag 1, is shown in gray.

y-value x2 x3 . . . xn

lag 1 (x-axis) x1 x2 . . . xn−1

For a lag 2 plot, xi is plotted against xi−2 (i = 3, . . . ,n), and so on for higher lags. Notice that the number
of points that are plotted is reduced by the number of lags.

Figure 4.2A shows the first four lag plots for the Lake Huron data. The code is:

lag.plot(LakeHuron, lags=3, do.lines=FALSE)

The scatter of points about a straight line in the first lag plot suggests that the dependence between consecutive
observations is linear. The increasing scatter observed in the second, third and fourth lag plots indicates that
points separated by two or three lags are successively less dependent. Note that the slopes, and therefore the
correlations, are all positive.

4.1.2 The autocorrelation and partial autocorrelation function

For each of the lag plots in Figure 4.2A, there is a correlation. Informally, such correlations are autocorrela-
tions (literally, self-correlations). The autocorrelation function (ACF), which gives the autocorrelations at all
possible lags, often gives useful insight. Figure 4.2B plots the first 19 lag autocorrelations. The code is:

acf(LakeHuron)

pacf(LakeHuron) gives the plot of partial autocorelations

4.1 Time Series – Some Basic Ideas 23

The autocorrelation at lag 0 is included by default; this always takes the value 1, since it represents the correla-
tion between the data and themselves. Of more interest are the autocorrelations at other lags. In particular, as
inferred from the lag plots, the autocorrelation at lag 1 (sometimes called the serial correlation) is fairly large.
Later autocorrelations (lags 2, 3, . . .) are successively smaller. There is no obvious linear association among
observations separated by lags of more than about 10.

The partial autocorrelation at a particular lag measures the strength of linear correlation between observa-
tions separated by that lag, after adjusting for correlations between observations separated by fewer lags. Fig-
ure 4.2B indicates partial autocorrelations that may be greater than statistical error at lags 1, 2 and 10. Other
autocorrelations are mostly a flow-on effect from the large autocorrelations at lag 1. Figure 4.2C shows the au-
tocorrelation function and partial autocorrelation function for a very simple theoretical model that accounts for
most of the correlation structure in Figure 4.2B. Notice however the very clear differences, especially evident
in the comparison between the partial autocorrelation plots in Figures 4.2B and 4.2C.

As discussed in the next subsection, autocorrelation in a time series complicates the estimation of such
quantities as the standard error of the mean. There must be appropriate modeling of the dependence structure.
If there are extensive data, it helps to group the data into sets of k successive values, and take averages. The
serial correlation then reduces to ρ1/k approximately. See Miller (1986) for further comment.

4.1.3 Autoregressive (AR) models

We have indicated earlier that, whenever possible, the rich regression framework provides additional insights,
beyond those available from the study of correlation structure. This is true also for time series. Autoregres-
sive models move beyond attention to correlation structure to the modeling of regressions relating successive
observations.

The AR(1) model

Figure 4.2C showed the theoretical autocorrelation and partial autocorrelation plots for an AR1 process. The
autoregressive model of order 1 (AR(1)) for a time series X1, X2, . . . , has the recursive formula

Xt = µ+ α(Xt−1 − µ) + εt, t = 1, 2, . . . ,

where µ and α are parameters. Figure 4.2C had α = 0.8.
Usually, α takes values in the interval (−1, 1); this is the so-called stationary case. Non-stationarity, in the

sense used here, implies that the series is evolving with time. The mean may be changing with time, and/or
the variances and covariances may depend on the time lag. Any such time dependence must be removed or
modeled.

For series of positive values, a logarithmic transformation will sometimes bring the series closer to station-
arity and/or make it simpler to model any trend. Discussion of standard ways to handle trends will be deferred
to Subsection 4.1.4.

The error term εt is the familiar independent noise term with constant variance σ2. The distribution of X0

is assumed fixed and will not be of immediate concern.
For the AR(1) model, the ACF at lag i is αi, for i = 1, 2, If α = .8, then the observed autocorrelations

should be .8, .64, .512, .410, .328, . . . , a geometrically decaying pattern, as in Figure 4.2C and not too unlike
that in Figure 4.2B.

To gain some appreciation for the importance of models like the AR(1) model, we consider estimation of
the standard error for the estimate of the mean µ. Under the AR(1) model, a large sample approximation to the
standard error for the mean is

σ√
n

1
(1− α)

.

For a sample of size 100 from an AR(1) model with σ = 1 and α = 0.5, the standard error of the mean is 0.2.
This is exactly twice the value that results from the use of the usual σ/

√
n formula. Use of the usual standard

24 4. Time Series Models

error formula will result in misleading and biased confidence intervals for time series where there is substantial
autocorrelation.

There are several alternative methods for estimating for the parameter α. The method of moments estimator
uses the autocorrelation at lag 1, here equal to .8319. The maximum likelihood estimator, equal to .8376, is an
alternative.1

The general AR(p) model

It is possible to include regression terms forXt against observations at greater lags than one. The autoregressive
model of order p (the AR(p) model regresses Xt against Xt−1, Xt−2, . . . , Xt−p:

Xt = µ+ α1(Xt−1 − µ) + · · ·+ αp(Xt−p − µ) + εt, t = 1, 2, . . . ,

where α1, α2, . . . , αp are additional parameters that would need to be estimated. The parameter αi is the partial
autocorrelation at lag i.

Assuming an AR process, how large p should be, i.e., how many AR parameters are required? The function
ar(), in the stats package, can be used to estimate the AR order. This uses the Akaike Information Criterion
(AIC), which was introduced in connection with regression. Use of this criterion, with models fitted using
maximum likelihood.

> ar(LakeHuron, method="mle")

Call:

ar(x = LakeHuron, method = "mle")

Coefficients:

1 2

1.0437 -0.2496

Order selected 2 sigmaˆ2 estimated as 0.4788

ar(LakeHuron, method="mle") # AIC is used by default if

order.max is not specified

This suggests an AR(2) model, with the parameter estimates given above. However it also has α1 (= 1.0437)
greater than one, i.e., a nonstationary process.

The search for a stationary AR process that will adequately model these data has failed. Indeed, while Fig-
ure 4.2B suggested that an AR process might be a good first approximation, it also had features that suggested
that an AR process was unlikely to account adequately for the whole of the correlation structure. The lag 2
spike in the plot of partial autocorrelations is not consistent with a pure low order AR process. Moving average
models, which will be discussed next, give the needed additional flexibility.

4.1.4∗ Autoregressive moving average (ARMA) models – theory

In a moving average (MA) process of order q, the error term is the sum of an innovation
εt that is specific to that term, and a linear combination of earlier innovations εt−1, εt−2, . . . ,

1LH.yw <- ar(x = LakeHuron, order.max = 1, method = "yw")
autocorrelation estimate
order.max = 1 for the AR(1) model

LH.yw$ar # autocorrelation estimate of alpha
LH.mle <- ar(x = LakeHuron, order.max = 1, method = "mle")

maximum likelihood estimate
LH.mle$ar # maximum likelihood estimate of alpha
Estimates of the series mean and of sigmaˆ2 can be obtained by typing
LH.mle$x.mean # estimated series mean
LH.mle$var.pred # estimated innovation variance

4.1 Time Series – Some Basic Ideas 25

Lag

A
ut

oc
or

re
la

tio
n 0.0

0.5

1.0
ma = 0.5 ma = c(0, 0, 0.5)

0.0

0.5

1.0

0 2 4 6 8 10

ma = c(0, 0, 0.5, 0, 0.5)

0 2 4 6 8 10

ma = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

Autocorrelation Partial autocorrelation● ●

Figure 4.3: Theoretical autocorrelations for a moving average process, with the parameters shown.
The thin gray lines are the partial autocorrelations.

εt−q . The equation is

Xt = µt + εt + b1εt−1 + · · ·+ bqεt−q (4.1)

where ε1, ε2, . . . , εq are independent random normal variables, all with mean 0. The autocorrelation between
terms that are more than q time units apart is zero. Moving average terms can be helpful for modeling autocor-
relation functions that are spiky, or that have a sharp cutoff.

An autoregressive moving average (ARMA) model is an extension of an autoregressive model to include
“moving average” terms. Autoregressive integrated moving average (ARIMA) models allow even greater
flexibility. (The model (AR or MA or ARMA) is applied, not to the series itself, but to a differenced series,
where the differencing process may be repeated more than once.) There are three parameters: the order p of
the autoregressive component, the order d of differencing (in our example 0) and the order q of the moving
average component.

Differencing of order 1 removes a linear trend. Differencing of order 2 removes a quadratic trend. The
downside of differencing is that it complicates the correlation structure. Thus, it turns an uncorrelated series
into an MA series of order 1. Differencing can be done explicitly prior to analysis.2However it is easiest to let
the arima() function do any differencing that is required, then reversing the process following the fitting of
an ARMA model to the differenced series. For details, see help(arima).

Figure 4.3 shows the autocorrelation functions for simulations of several different moving average models.
Notice that

• with b1 = 0.5 (q = 1) there is a spike at lag 1,
• with b1 = b2 = 0, b3 = 0.5 (q = 3) there is a spike at lag 3,
• with b1 = b2 = 0, b3 = 0.5, b4 = 0, b5 = 0.5 (q = 5) there are spikes at lags 2, 3 and 5,
• with bi = 0.5 (i = 1, . . . , 5), there are spikes at the first five lags.

2## Calculate differenced series
series.diff <- diff(series)

26 4. Time Series Models

4.1.5 Automatic model selection?

The function auto.arima(), from the forecast package uses the AIC criterion in a model selection process
that can proceed pretty much automatically. This takes some of the inevitable arbitrariness from the selection
process. Fortunately, in applications such as forecasting or the regression example in the next section, what is
important is to account for the major part of the correlation structure. A search for finesse in the detail may be
pointless, with scant practical consequence.

The algorithm looks for the optimum AR order p, the optimum order of differencing and the optimum MA
order q. Additionally, there is provision for seasonal terms and for for “drift”. Drift implies that there is a
constant term in a model that has d > 0. Seasonal terms, which are important in some applications, will not be
discussed further here.

An exhaustive (non-stepwise) search can be very slow. The auto.arima() default is a stepwise search.
At each iteration, the search is limited to a parameter space that is “close” to the parameter space of the current
model. Values of AR and MA parameters are allowed to change by at most one from their current values.
There are similar restrictions on the search space for seasonal and other parameters.

A good strategy may to be check the autocorrelation plot for “spikes” that may indicate high order MA
terms, before proceeding to a stepwise search. Note however that, in a plot that shows lags 1 to 20 of a pure
noise process, one can expect, on average, one spike that extends beyond the 95% pointwise limits,

In the call to auto.arima(), the parameter start.q should be set to the highest order of MA parameter
that seems likely to be present. The spike in the plot of partial autocorrelations in Figure 4.2B might suggest
trying start.q=10. Application of auto.arima() to the LakeHuron data gives the following:

> library(forecast)

Use auto.arima() to select model

NB: Use of the argument start.q=10 does not change the result.

> auto.arima(LakeHuron)

Series: LakeHuron

ARIMA(1,1,2)

Coefficients:

ar1 ma1 ma2

0.6475 -0.5837 -0.3279

s.e. 0.1292 0.1393 0.1082

sigmaˆ2 estimated as 0.4816: log likelihood = -102.56

AIC = 213.12 AICc = 213.55 BIC = 223.46

Now try

Check that model removes most of the correlation structure

acf(resid(arima(LakeHuron, order=c(p=1, d=1, q=2))))

The following achieves the same effect, for these data

acf(resid(auto.arima(LakeHuron)))

Observe that auto.arima() chose an ARIMA(1,1,2) model; i.e., the order of the autoregressive terms is
p = 1, the order of the differencing is d = 1, and the order of the moving average terms is q = 2.

4.1.6 A time series forecast

The function forecast() in the forecast package makes it easy to obtain forecasts,.

LH.arima <- auto.arima(LakeHuron)

fcast <- forecast(LH.arima)

plot(fcast)

4.1 Time Series – Some Basic Ideas 27

Forecasts from ARIMA(1,1,2)

1880 1900 1920 1940 1960 1980
57

6
57

8
58

0
58

2

Figure 4.4: Forecast levels for Lake Huron, based on the LakeHuron
data. The intervals shown are 80% and 95% prediction intervals.

Lag

A
ut

oc
or

re
la

tio
n 0.0

0.5

1.0
ma = c(0, 0, 0.125) ma = c(0, 0, 0.25)

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

ma = c(0, 0, 0.375)

0 1 2 3 4 5 6 7 8

ma = c(0, 0, 0.5)

Theoretical Simulation

Figure 4.5: Results of two simulation runs (in gray), for an MA process of order 3, with ma3 set
in turn to 0.125, 0.25, 0.375 and 0.5. In each case, coefficients other than ma3 were set to zero.
The theoretical autocorrelation is shown, in each case, in black.

Figure 4.4 shows the results.

Use of simulation as a check

Simulation can be used to provide a check on the magnitude of MA or other coefficients that may be detectable.
To simplify the discussion, we limit attention to a moving average process of order 3, with ma1=0 and ma2=0,
and ma3 taking one of the values 0.125, 0.25, 0.374 and 0.5. Below we will tabulate, for each of these values,
the level of MA process detected by auto.arima() over 20 simulation runs.

As an indication of the variation between different simulation runs, Figure 4.5 shows the autocorrelations
and partial autocorrelations from two simulation runs. Code that plots results from a single set of simulation
runs is:

oldpar <- par(mfrow=c(3,2), mar=c(3.1,4.6,2.6, 1.1))

for(i in 1:4){

ma3 <- 0.125*i

simts <- arima.sim(model=list(order=c(0,0,3), ma=c(0,0,ma3)),

28 4. Time Series Models

n=98)

acf(simts, main="", xlab="")

mtext(side=3, line=0.5, paste("ma3 =", ma3), adj=0)

}

par(oldpar)

Now do 20 simulation runs for each of the four values of ma5, recording in each case the order of MA
process that is detected:

set.seed(29) # Ensure that results are reproducible

estMAord <- matrix(0, nrow=4, ncol=20)

for(i in 1:4){

ma3 <- 0.125*i

for(j in 1:20){

simts <- arima.sim(n=98, model=list(ma=c(0,0,ma3)))

estMAord[i,j] <- auto.arima(simts, start.q=3)$arma[2]

}

}

detectedAs <- table(row(estMAord), estMAord)

dimnames(detectedAs) <- list(ma3=paste(0.125*(1:4)),

Order=paste(0:(dim(detectedAs)[2]-1)))

The following table summarizes the result of this calculation:

> print(detectedAs)

Order

ma3 0 1 2 3 4

0.125 12 4 3 1 0

0.25 7 3 2 8 0

0.375 3 1 2 11 3

0.5 1 1 0 15 3

Even with ma3=0.375, the chances are only around 50% that an MA component of order 3 will be detected.

4.2∗ Regression modeling with arima errors

The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between the Pacific
island of Tahiti and Darwin close to the northernmost tip of Australia. Annual SOI and rainfall data for various
parts of Australia, for the years 1900–2005, are in the data frame bomregions ((DAAGxtras package). (See
Nicholls et al. (1996) for background.) To what extent is the SOI useful for predicting rainfall in one or other
part of Australia?

This section will examine the relationship between rainfall in the Murray-Darling basin (mdRain) and SOI,
with a brief look also at the relationship in northern Australia (northRain). The Murray-Darling Basin takes
its name from its two major rivers, the Murray and the Darling. Over 70% of Australia’s irrigation resources
are concentrated there. It is Australia’s most significant agricultural area.3

Figure 4.6 plots the two series. The code is

library(DAAGxtras)

Plot time series mdRain and SOI: ts object bomregions (DAAGxtras)

plot(ts(bomregions[, c("mdRain","SOI")], start=1900),

panel=function(y,...)panel.smooth(bomregions$Year, y,...))

Trends that are evident in the separate curves are small relative to the variation of the data about the trend
curves.

3For a map, go to http://www.bom.gov.au/silo/products/cli_chg/rain_timeseries.shtml

4.2 Regression modeling with moving average errors 29

●
●

●

●

●●

●

●●
●
●●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●●●
●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●

●●●

●

●

●
●
●

●

●

6.
5

7.
5

8.
5

cu
be

ro
ot

R
ai

n

●

●●

●●

●

●
●●●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●
●

●

●●●●●

●

●

●●

●
●

●

●

●

●
●●

●

●●

●

●

●●

●●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●●
●

●

●●

●

●●●●

●

●

●

●

●●

●

●
●
●●

●
●

−
20

0
10

1900 1920 1940 1960 1980 2000

S
O

I

Year

Figure 4.6: Plots of mdRain (Australia’s Murray-Darling basin) and SOI
(Southern Oscillation Index), against year.

Note also that a cube root transformation has been used to reduce or remove the skewness in the data. Use of
a square root or cube root transformation (Stidd, 1953) is common for such data. The following code creates a
new data frame xbomsoi that has the cube root transformed rainfall data, together with trend estimates (over
time) for SOI and md3rootRain.

xbomsoi <-

with(bomregions, data.frame(SOI=SOI, mdRain=mdRain,

md3rootRain=mdRainˆ0.33))

xbomsoi$trendSOI <- lowess(xbomsoi$SOI, f=0.1)$y

xbomsoi$trendRain <- lowess(xbomsoi$md3rootRain, f=0.1)$y

For understanding the relationship between md3rootRain and SOI, it can be helpful to distinguish effects
that seem independent of time from effects that result from a steady pattern of change over time. Detrended
series, for md3rootRain and for SOI, can be obtained thus:

xbomsoi$detrendRain <-

with(xbomsoi, md3rootRain - trendRain + mean(trendRain))

xbomsoi$detrendSOI <-

with(xbomsoi, SOI - trendSOI + mean(trendSOI))

Figure 4.7A plots md3rootRain against SOI, while Figure 4.7B gives the equivalent plot for the detrended

30 4. Time Series Models

●
●

●

●

●●

●

●●
●
●●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●●●
●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●

●●●

●

●

●
●
●

●

●

6.
5

7.
5

8.
5

cu
be

ro
ot

R
ai

n

●

●●

●●

●

●
●●●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●
●

●

●●●●●

●

●

●●

●
●

●

●

●

●
●●

●

●●

●

●

●●

●●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●●
●

●

●●

●

●●●●

●

●

●

●

●●

●

●
●
●●

●
●

−
20

0
10

1900 1920 1940 1960 1980 2000

S
O

I

Year

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●
●● ●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

−20 −10 0 10 20

SOI

R
ai

nf
al

l (
cu

be
 r

oo
t s

ca
le

)

40
0

60
0

80
0

A

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●● ●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

−20 −10 0 10 20

Detrended SOI

D
et

re
nd

ed
 r

ai
nf

al
l

30
0

40
0

50
0

B

Figure 4.7: Plot of (A) rainfall (cube root scale) against SOI, and (B) detrended rainfall
against detrended SOI.

series.4

Both relationships seem acceptably close to linear. Here, we model the relationship without the detrending.
A linear relationship will be assumed. Figures 4.6 and 4.7 might suggest that the relationship for the detrended
series will not be much different. We can check this directly. A further matter to check is the suggestion, in

4oldpar <- par(mfrow=c(1,2), pty="s")
plot(md3rootRain ˜ SOI, data = xbomsoi,

ylab = "Rainfall (cube root scale)", yaxt="n")
rainpos <- pretty(xbomsoi$mdRain, 6)
axis(2, at = rainposˆ0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(md3rootRain ˜ SOI, f=0.1)))
plot(detrendRain ˜ detrendSOI, data = xbomsoi,
xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")

axis(2, at = rainposˆ0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ˜ detrendSOI, f=0.1)))
par(oldpar)

4.2 Regression modeling with moving average errors 31

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

A

5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

P
ar

tia
l A

C
F

B

Figure 4.8: Panel A shows autocorrelation function for the residuals from the regression of
md3rootRain (mdRain(̂1/3)) on SOI. Panel B shows the partial autocorrelation function.

Figure 4.7A, of a quadratic relationship.
The time series structure of the data will almost inevitably lead to correlated errors that should be modeled

or at least investigated, in order to obtain realistic standard errors for model parameters and to make accurate
inferences.

A first step may be to fit a line as for uncorrelated errors; then using the residuals to get an initial estimate
of the error structure. Figure 4.8 shows the autocorrelation structure and partial autocorrelation structure of the
residuals. The code is:

par(mfrow=c(1,2))

acf(resid(lm(md3rootRain ˜ SOI, data = xbomsoi)), main="")

pacf(resid(lm(md3rootRain ˜ SOI, data = xbomsoi)), main="")

par(mfrow=c(1,1))

These plots have a spike at a lag of 5; is this large enough to try including a moving average term of order
5? We run the analysis both with the default starting value of 2 for the moving average parameter, and with
start.q=5.

> ## Fit model with default start.q=2

> with(xbomsoi, auto.arima(md3rootRain, xreg=SOI))

Series: md3rootRain

ARIMA(0,1,1)

Call: auto.arima(x = md3rootRain, xreg = SOI)

Coefficients:

ma1 xreg

-0.9375 0.0427

s.e. 0.0398 0.0073

sigmaˆ2 estimated as 0.2735: log likelihood = -83.52

AIC = 173.03 AICc = 173.27 BIC = 181.05

> ## Not fit model setting start.q=5

> with(xbomsoi, auto.arima(md3rootRain, xreg=SOI, start.q=5))

Series: md3rootRain

ARIMA(3,1,4)

Call: auto.arima(x = md3rootRain, start.q = 5, xreg = SOI)

Coefficients:

ar1 ar2 ar3 ma1 ma2 ma3 ma4 xreg

32 4. Time Series Models

-0.0602 0.1032 -0.3938 -0.8360 -0.3284 0.6521 -0.3886 0.0471

s.e. 0.1698 0.1596 0.2059 0.1715 0.2267 0.2195 0.2135 0.0081

sigmaˆ2 estimated as 0.2501: log likelihood = -77.68

AIC = 174.52 AICc = 176.38 BIC = 198.58

Warning message:

In auto.arima(md3rootRain, xreg = SOI, start.q = 5) :

Unable to fit final model using maximum likelihood. AIC value approximated

Starting with q=5 leads to the choice of an ARIMA(3,1,4) model with AIC=174.52, while starting with the
default q=2 leads to an ARIMA(0,1,1) model with AIC=173.03. The default search strategy tests the result of
changing p, d and q in turn by 1 at each step. It tests also the inclusion of a drift term. For the calculations
above, there is no sequence of available steps, each improving on the current value of the AIC, that lead from
the starting model that had q=5 to the ARIMA(0,1,1) model.

Note that the model selection process had other restrictions also; see help(auto.arima). Note also that
there were problems in fitting the more complex model.

The coefficient and standard error of the regression variable SOI is very similar in the two models. Here
again, then, is the output from the simpler model:

> with(xbomsoi, arima(md3rootRain, xreg=SOI, order=c(0,1,1)))

Series: md3rootRain

ARIMA(0,1,1)

Call: arima(x = md3rootRain, order = c(0, 1, 1), xreg = SOI)

Coefficients:

ma1 SOI

-0.9375 0.0427

s.e. 0.0398 0.0073

sigmaˆ2 estimated as 0.2735: log likelihood = -83.52

AIC = 173.03 AICc = 173.27 BIC = 181.05

There is clear regression dependence of rainfall on SOI, with rainfall increasing, by about 0.047 in units of
mdRain0.33, for each unit increase in SOI. At the low end of the scale (a rainfall of about 256mm), a unit
increase in SOI increases the rainfall by about 5mm. At the high end of the scale (821mm), the estimated
increase is about 11.3mm.5

Figure 4.9 plots the residuals from this model against SOI, and shows also the autocorrelation plot of the
residuals. These plots seem unexceptional.

The variable SOI explains around 24% of the variation in md3rootRain. This is found by comparing the
estimate of σ2 from the model that was fitted above with that from the model:

> ## Fit a constant mean model with the same correlation structure

> with(xbomsoi, arima(x = md3rootRain, order = c(0, 1, 1)))

. . . .

sigmaˆ2 estimated as 0.358: log likelihood = -98

. . . .

Now calculate proportion of variance explained

> (.358-.273)/.358

[1] 0.2374

5

> range(xbomsoi$mdRain)
[1] 255.8 821.0
> (256ˆ(1/3) + 0.0427)ˆ3 - 256
[1] 5.2
> (821ˆ(1/3) + 0.0427)ˆ3 - 821
[1] 11.3

4.2 Regression modeling with moving average errors 33

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−20 −10 0 10 20

−
1.

0
0.

0
1.

0

SOI

R
es

id
ua

ls

A: Residuals

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

B: Autocorrelation plot; residuals

Figure 4.9: Panel A plots residuals from the arima model for mdRain against SOI. Panel B shows
the autocorrelation plot for the residuals.

●

●

●

●●

●

●●
●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

1900 1920 1940 1960 1980 2000

no
rt

hR
ai

n
(m

m
)

30
0

40
0

60
0

80
0

A: N. Aust. rainfall vs Year

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1900 1920 1940 1960 1980 2000

−
1.

0
0.

0
0.

5
1.

0
1.

5

R
es

id
ua

ls

B: resid(lqs(NA3rootRain ~ SOI))

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1900 1920 1940 1960 1980 2000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

R
es

id
ua

ls

C: resid(lqs(NA3rootRain ~ SOI+CO2))

1900 1920 1940 1960 1980 2000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

R
es

id
s,

 A
R

IM
A

(0
,1

,0
)

1

2

3

4

5

6

7
8
9
10

11
12
13

1415

16

17

18
19

20

21
22

2324

25

2627
28

29

30

31

32

33

34
35

36

37

38

39

40

41
42

43

44

45

46

47
48

49

50
51

52
53

54

55
56

57

58

59

60
61

62

63
64

65

6667

68

69

70

71

72

73

74

75

76

77

78

79
8081

8283
84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99100

101

102

103

104
105

106

107

108

D: ARIMA(0,1,0), xreg=cbind(SOI, CO2))

Figure 4.10: The x-ordinate in all four panels is Year. Panel A plots Northern Australian rain-
fall on a cube root scale. Panel B plots residuals from the regression of NA3rootRain (=
northRain(̂1/3)) on SOI. In panel C the residuals are from the regression on SOI and CO2.
Panel D plots residuals, from an ARIMA(0,1,0) model for NA3rootRain, with SOI and CO2 as
regressors.

*The northRain series

The plot of northRainˆ(1/3) against Year, shown in Figure 4.10A, is flat until about 1950, after which it
trends upwards. The plot against time of residuals from the regression of northRainˆ(1/3) against SOI,
shown in Figure 4.10B shows a similar trend. It is tempting to use atmospheric carbon dioxide levels as a
second covariate. This is indeed able, as Figure 4.10C shows, to account for most of the trend. Note that any
variable that remained pretty much constant until 1950, thereafter trending upwards, would do just as well.

Note that the residuals in Figures 4.10B and C are from resistant regression. Code for Figures A, B and C is:

par(mfrow=C(2,2))

Panel A

34 4. Time Series Models

NA3rootRain <- bomregions$northRainˆ(1/3)

with(bomregions, plot(NA3rootRain ˜ Year, yaxt="n",

xlab="", ylab="northRain (mm)"))

with(bomregions, lines(lowess(NA3rootRain ˜ Year, f=0.75)))

yloc <- pretty(bomregions$northRain)

axis(2, at=ylocˆ(1/3), labels=paste(yloc))

Panel B

north.lqs <- lqs(NA3rootRain ˜ SOI, data=bomregions)

plot(resid(north.lqs) ˜ Year, type="p", data=bomregions,

xlab="", ylab="Residuals")

with(bomregions, lines(lowess(resid(north.lqs) ˜ Year, f=0.5)))

Panel C

north2.lqs <- lqs(NA3rootRain ˜ SOI+CO2,

data= bomregions)

plot(resid(north2.lqs) ˜ Year, type="p", data= bomregions,

xlab="", ylab="Residuals")

with(bomregions, lines(lowess(resid(north2.lqs) ˜ Year, f=0.75)))

Code for fitting the arima model, with output is:

> north.arima <- with(bomregions, auto.arima(NA3rootRain,

+ xreg=cbind(SOI, CO2)))

> print(north.arima)

Series: NA3rootRain

ARIMA(0,0,1) with non-zero mean

Call: auto.arima(x = NA3rootRain, xreg = cbind(SOI, CO2))

Coefficients:

ma1 intercept SOI CO2

0.194 5.148 0.036 0.009

s.e. 0.099 0.711 0.007 0.002

sigmaˆ2 estimated as 0.204: log likelihood = -67.36

AIC = 144.7 AICc = 145.3 BIC = 158.1

> ## Now plot the residuals, as in Panel D

> plot(resid(north.arima) ˜ Year, type="p", data= bomregions)

Other checks and computations

The calculations below use as a starting point the model that was derived above for the rainfall in the Murray-
Darling basin:

> (md.arima <- with(xbomsoi, auto.arima(md3rootRain, xreg=SOI)))

Series: md3rootRain

ARIMA(0,1,1)

. . . .

AIC = 173.0 AICc = 173.3 BIC = 181.1

Checking the autocorrelations among the residuals is recommended. The Box.test() function provides
a so-called portmanteau test of whiteness (i.e. lack of autocorrelation) of the residuals. The Box-Ljung test
statistic essentially adds up the squares of the first m sample autocorrelation estimates. Properly normalized,
this statistic has an approximate chi-squared distribution on m degrees of freedom, provided there really is no
autocorrelation among the residuals.

4.2 Regression modeling with moving average errors 35

> Box.test(resid(md.arima), lag=20)

Box-Pierce test

data: resid(md.arima)

X-squared = 14.19, df = 20, p-value = 0.8208

Figure 4.7 suggested that a straight line regression model was adequate. We may however wish to carry out
a formal check on whether a squared (SOIˆ2) term is justified. The code is

> (md2.arima <- with(xbomsoi, auto.arima(md3rootRain,

+ xreg=poly(SOI,2))))

Series: md3rootRain

ARIMA(0,1,3)

Call: auto.arima(x = md3rootRain, xreg = poly(SOI, 2))

Coefficients:

ma1 ma2 ma3 1 2

-0.972 -0.035 0.074 2.991 0.96

s.e. 0.109 0.168 0.115 0.518 0.55

sigmaˆ2 estimated as 0.264: log likelihood = -81.63

AIC = 175.3 AICc = 176.1 BIC = 191.3

The quadratic orthogonal polynomial term falls short of the conventional 5% level of statistical significance.
THe AIC statistic is slightly larger than before. Additionally, a different model has been chosen.

As well as checking that most of the sequential correlation has been removed from the residuals, a check on
normality may be desirable:

Examine normality of estimates of "residuals" ("innovations")

qqnorm(resid(md.arima, type="normalized"))

36 4. Time Series Models

5

The R System – Additional Topics

The following add to or modify the discussion in Chapter 14 of the 3rd edition of Data Analysis and Graphics
Using R.

5.1 Data Input and Data Manipulation

5.1.1 Accessing Data from the Internet

Data can be input directly from text files that are on the web. The following function accesses historical climate
data from the Australian Bureau of Meteorology’s web page:

‘getbom‘ <-

function(suffix=c("AVt","Rain"), loc="eaus"){

webroot <- "http://www.bom.gov.au/web01/ncc/www/cli_chg/timeseries/"

midfix <- switch(suffix[1], AVt="tmean/0112/", Rain="rain/0112/")

webpage <- paste(webroot, midfix, loc, "/latest.txt", sep="")

print(webpage)

nam <- switch(loc, seaus="se", saus="south", eaus="east",

naus="north", swaus="sw",

qld="QLD", nsw="NSW", nt="NT",sa="SA",

tas="TAS", vic="VIC", wa="WA")

x <- read.table(url(webpage))$V2

if(suffix[1]%in%c("avt","AVt")){

off <- switch(loc, seaus=14.72, saus=18.58, eaus=20.51, qld=23.23,

naus=24.71,swaus=16.3,nsw=17.33,nt=25.17,sa=19.45,

tas=10.35,vic=14.10,wa=22.47)

x <- c(rep(NA,10), x+off)

}

x

}

##

Example of use

seRain <- getbom(suffix="Rain", loc="seaus")

The function htmlParse() in the XML package can be used to parse the XML/HTML content of
web pages. Use the function xpathSApply() to find the nodes that are of interest. The help page for
htmlParse() has extensive examples.

5.1.2 Changing the shape of data frames (or matrices)

The manipulations that will be described use the functions melt() and cast() in the reshape package.
There are methods for both data frames and matrices

37

38 5. The R System – Additional Topics

Melting and casting

The melt() function is a counterpart of stack() (discussed in Subsection 1.4.2) that has the advantage of
carrying along other columns of the data frame.

> library(reshape)

> Jobs <- melt(jobs, measure.vars=names(jobs)[1:6],

variable_name="Region", id.vars="Date")

> head(Jobs, 3)

Date Region value

1 95.00000 BC 1752

2 95.08333 BC 1737

3 95.16667 BC 1765

The explicit use of the argument id.vars="Date" was unnecessary. If the argument measure.vars is
given, the default is to carry along all other columns in the data frame.

The following returns the data frame Jobs that was created above, to the wide format:

jobsBack <- cast(Jobs, Date ˜ Region)

> head(jobsBack,3)

Date BC Alberta Prairies Ontario Quebec Atlantic

1 95.00000 1752 1366 982 5239 3196 947

2 95.08333 1737 1369 981 5233 3205 946

3 95.16667 1765 1380 984 5212 3191 954

In the casting formula Date Region, Date and Region uniquely identified a row of the data frame
Jobs. In the data frame (jobsBack) that results, values of Date identify rows, and elements of Region
identify columns. Where the casting formula does not uniquely specify rows, the argument fun.aggregate
must be supplied.

5.2 Creation of R Packages

Much of the functionality of R, for many important tasks, comes from the packages that are built on top of base
R. Users who make extenive use of R may soon find a need to document and organize both their own functions
and associated data. Packages are the preferred vehicle for making functions and/or data available to others, or
for use by posterity.

Organisation of data and functions into a package may have the following benefits:

• Where the package relates to a project, it should be straightforward to return to the project at some later
time, and/or to pass the project across to someone else.

• Attaching the packages give immediate access to functions, data and associated documentation.
• Where a package is submitted to CRAN (Comprehensive R Archive Network) and used by others, this

extends opportunities for testing and/or getting contributions from other workers. Checks that are required
by CRAN ensure that the package (code and documentation) meets certain formal standards, including
some modest level of consistency between code and documentation.

It is relatively straightforward to create packages that make no calls to externally compiled C or Fortran
code. The following description applies to Unix, Linux and MacOS X systems. For Windows, tools that are
needed for package construction must first be installed. See the manual “Writing R Extensions”. See also
http://www.murdoch-sutherland.com/Rtools.

1. Ensure that the workspace has only the functions and data objects that are to be included in the package.
Thus, to create a package from the functions and data set from the image file viewtemps.RData
that holds objects functions plotD, plotT, plotTofD (all functions) and housetemps (a data
frame), start with an empty workspace and load the image file viewtemps.RData. There should the

5.3 Lattice Graphics, and the grid Package 39

be four objects in the workspace – the functions plotD, plotT and plotTofD, and the data frame
housetemps.

2. Type, e.g.
package.skeleton(name = "viewtemps")

This creates all the needed directories and files or file skeletons, in a subdirectory viewtemps in the working
directory. Instructions for proceeding further are placed in a file Read-and-delete-me in this directory; the
following is a synopsis.

3. Consider setting aside a folder for use when creating new packages, e.g.
package.skeleton(name = "viewtemps", path="˜/packages")

4. Edit the DESCRIPTION file in the directory viewtemps, as required. (This is not absolutely necessary, if
the file is for your own use.)

5. Edit the help file skeletons in viewtemps/man. (Optionally, combine help files for two or more functions.)
6. Go the parent directory of textbfviewtemps, and type

R CMD check viewtemps

Once this runs without error, go to the next step.
7. To builds the package tarball, type

R CMD build viewtemps

To compile the package into a zip file on a Windows system, go to a DOS prompt in the parent directory and
type:

Rcmd build --binary viewtemps

This assumes that the necessary tools have been installed.

Namespaces

Packages can have their own namespaces, with private functions and classes that are not ordinarily visible from
the command line, or from other packages. For example, the function intervals.lme() that is part of the
nlme package must be called via the generic function intervals().

5.3 Lattice Graphics, and the grid Package

Details of lattice plots that will now be discussed include: customization of arguments, creation of keys or
legends, interaction with plots, the use of grid functions to supplement plots, and the ”printing” of multiple
lattice plots on the one graphics page.

5.3.1 Lattice Graphics vs Base Graphics

Note an important difference between the effects of base and lattice graphics functions:

• In base graphics, plots go to a graphics page (possibly the first of a sequence of pages), on whatever device
is open to receive them. For a screen device, plots go to the screen. For a hardcopy device plots go, in the
first place, to a file.

• Lattice functions create trellis objects. Objects can be created even if no device is open. Such objects can
be updated. Objects are plotted (by this time, a device must be open), either when output from a lattice
function goes to the command line (thus implicitly invoking the print() command), or by the explicit
use of print().

40 5. The R System – Additional Topics

The updating feature makes it possible to build up and/or modify the graphics object in steps. While it is
possible to add new features to a “printed” page, this is in the nature of an afterthought in the design.

5.3.2 Groups within data, and/or columns in parallel

Here are selected lines from the data set grog (DAAGxtras package):

Beer Wine Spirit Country Year
1 5.24 2.86 1.81 Australia 1998
2 5.15 2.87 1.77 Australia 1999

. . . .
9 4.57 3.11 2.15 Australia 2006

10 4.50 2.59 1.77 NewZealand 1998
11 4.28 2.65 1.64 NewZealand 1999

. . . .
18 3.96 3.09 2.20 NewZealand 2006

There are three liquor products (drinks), in different columns, and two countries, occupying different rows
that are indexed by the factor Country. The function xyplot() can accommodate any of the following:

• Different symbols and/or colors are used for different drinks, within the one panel. Different panels must
then be used for different countries, as in Figure 5.1.1 Or if different countries are in the same panel, then
drinks must be separated across different panels.

• Use a 3 drinks × 2 countries, or 2 countries × 3 drinks layout of panels.

Where plots are superposed in the one panel and, e.g., regression lines or smooth curves are fitted, this is
done separately for each different set of points. Different colors, and/or by different symbols and/or line styles,
can be used to make the necessary distinctions.

Code for Figure 5.1 is:

Simple version of plot

grogplot <- xyplot(Beer+Spirit+Wine ˜ Year | Country, data=grog,

outer=FALSE, auto.key=list(columns=3))

Enhance, and print enhanced code

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

The footnote2has alternative code that updates the object, then uses an explicit print().
Observe that:

• Use of Beer+Spirit+Wine gives plots for each of Beer, Spirit and Wine. The effect of
outer=FALSE is that these appear in the same panel.

• Conditioning by country (| Country) gives separate panels for separate countries.
• The function simpleTheme() is convenient for setting or changing point and line settings.

For separate panels for the three liquor products (different levels of Country can now use the same panel),
specify outer=TRUE:

1The data (dataset grog, from DAAGxtras) are 1998 – 2006 Australian and New Zealand apparent per person annual consumption (in liters) of the pure
alcohol content of Beer, Wine and Spirit. Data, based on Australian Bureau of Statistics and Statistics New Zealand figures, are obtained by dividing
estimates of total available alcohol by number of persons aged 15 or more.

2## Update trellis object, then print
frillyplot <-
update(grogplot, ylim=c(0,5.5), xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))
print(frillyplot)

5.3 Lattice Graphics, and the grid Package 41

A
m

ou
nt

 c
on

su
m

ed
 (

pe
r

pe
rs

on
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ● ● ● ● ● ●

●

NewZealand

Beer Spirit Wine●

Figure 5.1: Australian and New Zealand apparent per person annual consumption (in liters) of the pure alcohol content of
liquor products, for 1998 to 2006.

xyplot(Beer+Spirit+Wine ˜ Year, groups=Country, outer=TRUE,

data=grog, auto.key=list(columns=2))

For breaking data down according to levels of a factor, options are:

Overplot (a single panel) Separate panels (conditioning)
Beer ∼ Year, groups=Country Beer ∼ Year | Country

For plotting columns in parallel, as in Beer+Wine+Spirit ∼ Year, options are:

Overplot (a single panel) Separate panels (conditioning)
outer=FALSE outer=TRUE

5.3.3 Lattice Parameters and Graphics Features

Point, line and fill color settings, using simpleTheme()

The function simpleTheme() creates a “theme”, i.e., a list of parameter settings, in a form that can be sup-
plied: (i) in the argument par.settings in the graphics function call; or (ii) in the argument theme in a call
to trellis.par.set(), prior to calling the graphics function. A further possibility is to include an argu-
ment theme when using trellis.device() to start a new device. This has the default retain=FALSE,
with the result that unless otherwise specified, parameters are reset to their defaults for the relevant device.

The following creates two “themes”:

settings1 <- simpleTheme(pch = c(1,3,4), cex=1.25)

settings2 <- simpleTheme(pch = c(1,3,4), alpha=0.5)

Use of settings1 may be appropriate when the number of points is small, while settings2 may be
appropriate when there are many points and there is extensive over-plotting. Here, alpha controls the back-

42 5. The R System – Additional Topics

ground transparency (c.f., also, alpha.points and alpha.line). Use of a value less than 1 helps in
showing the density of points in regions where there is extensive overlapping.

The following gives the symbols and size of symbol used in Figure 5.1:

grogplot0 <- xyplot(Beer+Spirit+Wine ˜ Year | Country, outer=FALSE,

data=grog, ylim=c(0,5.5))

grogplot <- update(grogplot0, par.settings=settings1)

print(grogplot)

The settings are stored as part of the graphics object grogplot.
Consider now the use of trellis.par.set() to change the settings globally, os that they remain in

place until there is a further change or a new device is opened.

trellis.par.set(settings2)

Then print(grogplot) will use settings1 which are stored as part of the object, while
print(grogplot0) will use the global settings2.

Beyond simpleTheme()

For changes that go beyond what simpleTheme() allows, it is necessary to know the names under which
settings are stored. To inspect these, type:

> names(trellis.par.get())

[1] "fontsize" "background" "clip"

. . .

[28] "par.sub.text"

For a visual display that shows default settings for points, lines and fill colour, try the following:

trellis.device(color=FALSE)

show.settings()

trellis.device(color=TRUE)

show.settings()

The following sets the fontsize. Notice the separate settings for text and symbols:

trellis.par.set(list(fontsize = list(text = 7, points = 4)))

Parameters that affect axes, tick marks, and axis labels

These are readily manipulated by use of the scales argument to the lattice function. Consider data (in jobs,
from DAAG) on quarterly labor force numbers, in six regions of Canada, over 1995-1996. The code is:

Create a simplified version of the graphics object

jobs.xyplot <-

xyplot(Ontario+Quebec+BC+Alberta+Prairies+Atlantic ˜ Date,

data=jobs, type="b", layout=c(3,2), ylab="Number of jobs",

scales=list(y=list(relation="sliced", log=TRUE)),

outer=TRUE)

Update jobs.xyplot, with various enhancements

ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 100))

ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")

Create a date object ’startofmonth’; use this instead of ’Date’

atdates <- seq(from=95, by=0.5, length=5)

datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=5), "%b%y")

update(jobs.xyplot, xlab="", between=list(x=0.5, y=0.5),

5.3 Lattice Graphics, and the grid Package 43

scales=list(x=list(at=atdates, labels=datelabs),

y=list(at=ylabpos, labels=ylabels), tck=0.6))

The enhancements are:

• The y-axis labels show number of jobs, with log(number) in parentheses underneath.
• Dates of the form Jan95 label the x-axis.
• Tick marks are reduced in length (tck=0.6, i.e., 60% of the default).

Notice also the use of between=list(x=0.5, y=0.5) to add horizontal and vertical space between the
panels, ensuring that the tick labels do not overlap.

5.3.4 A further example

Data in the dataset ais (DAAG) were collected with a view to studying possible differences in blood char-
acteristics, between athletes in endurance-related events and those in power-related events. The help page for
ais for details of the measurements, including a variety of blood cell counts. Here is a breakdown, by sex and
sport, of numbers:

> with(ais, table(sex,sport))

sport

sex B_Ball Field Gym Netball Row Swim T_400m T_Sprnt Tennis W_Polo

f 13 7 4 23 22 9 11 4 7 0

m 12 12 0 0 15 13 18 11 4 17

There are 202 athletes in total, all from the Australian Institute of Sport.
Figure 5.2 plots blood cell to plasma ratio (%) against red cell count, for two sports only. The two sports

appear in the one panel, distinguished by different symbols and/or colours. Females and males are in separate
panels. Figure 5.2 shows a suitable plot, adding also regression lines. Again, an initial basic plot is updated to
give the desired result.

Code is:

basic1 <- xyplot(hc ˜ rcc | sex, groups=sport[drop=TRUE],

data=subset(ais, sport %in% c("B_Ball", "Swim")),

ylab="Blood cell to plasma ratio (%)")

parSet <- simpleTheme(pch = c(1,3), lty=1:2, lwd=1.5)

xaxlab <- expression("Red cell count (10"ˆ{12}*"."*Lˆ{-1}*")")

basic2 <- update(basic1, par.settings=parSet,

auto.key=list(columns=2, lines=TRUE),

scales=list(tck=0.5), xlab=xaxlab)

print(update(basic2, type=c("p", "r")))

Again, there are details that require explanation:

• Omission of drop=TRUE from groups=sport[drop=TRUE], will result in one legend item for each
of the 10 sports, usually not what is required. Subsetting a factor leaves the levels attribute unchanged,
even if some levels are no longer present in the data.

• As in base graphics, graphical annotation (tick labels, axis labels, labels on points, etc.) can be given using
the function expression(). In this context,“expression” is broadly defined. Thus expressions can have
terms that are character strings. See help(plotmath).

• The argument type=c("p","r") gives both points and fitted regression lines.

5.3.5 Keys – auto.key, key & legend

The argument auto.key=TRUE gives a basic key that identifies colors, plotting symbols and names for the
groups. For greater flexibility, auto.key can be a list. Settings that are often useful are:

44 5. The R System – Additional Topics

Red cell count (1012.L−−1)

B
lo

od
 c

el
l t

o
pl

as
m

a
ra

tio
 (

%
)

36

38

40

42

44

46

48

4.0 4.5 5.0

●

●

●

●

●

●

●
●

●
● ●

●

●

f

4.0 4.5 5.0

●

●

●

●

●

●

●

●

●

●

●

●

m

B_Ball Swim●

Figure 5.2: Blood cell to plasma ratio (hc) versus red cell count (rcc), by sex (different panels) and sport (distin-
guished within each panel). The argument type=c("p", "r") displays both points ("p") and regression lines ("r").

• points, lines: in each case set to TRUE or FALSE.
• columns: number of columns of keys.
• x and y, which are coordinates with respect to the whole display area. Use these with corner, which is

one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1) and c(0,1).
• space: one of "top", "bottom", "left", "right".

Use of auto.key sets up the call key=simpleKey(). If not otherwise specified, colors, plotting sym-
bols, and line type use the current trellis settings for the device. Unless text is supplied as a parameter,
levels(groups) provides the legends. If necessary, use legend=NULL when updating, to remove an
existing key as a preliminary to adding a different key.

5.3.6 Panel Functions and Interaction with Plots

Each lattice command that creates a graph has its own panel function. Thus xyplot() has the panel function
panel.xyplot(). The following are equivalent:

xyplot(ACT ˜ year, data=austpop)

xyplot(ACT ˜ year, data=austpop, panel=panel.xyplot)

The user’s own function can be substituted for panel.xyplot(). Panel functions that may be used,
either in combination with functions such as panel.xyplot() or separately, include:

• panel.points, panel.lines() and a number of other such functions that are documented on the
same help page as panel.points);

5.3 Lattice Graphics, and the grid Package 45

• panel.abline(), panel.curve(), panel.rug(), panel.average() and a number of other
functions that are documented on the same help page as panel.abline().

In the following update of basic2, used for Figure 5.2, the lines for the two sports are parallel:

update(basic2,

strip=strip.custom(factor.levels=c("Female","Male")),

In place of level names c("f", "m"), use c("Female", "Male")

panel=function(x, y, groups, subscripts, ...){

panel.superpose(x,y, groups=groups,

subscripts=subscripts, ...)

b <- coef(lm(y ˜ groups[subscripts] + x))

lcol <- trellis.par.get()$superpose.line$col

lty <- trellis.par.get()$superpose.line$lty

panel.abline(b[1], b[3], col=lcol[1], lty=lty[1])

panel.abline(b[1]+b[2], b[3], col=lcol[2], lty=lty[2])

})

When there are groups within panels, panel.xyplot() calls panel.superpose(). The customized
panel function has the structure:

panel=function(x, y, groups, subscripts, ...){

panel.superpose(x,y, groups=groups,

subscripts=subscripts, ...)

. . . .

panel.abline(b[1], b[3], col=lcol[1], lty=lty[1])

panel.abline(b[1]+b[2], b[3], col=lcol[2],

lty=lty[2])

})

As the function panel.superpose() lacks an option to fit and display multiple parallel lines, the user
must supply the needed code. The following calculates the regression slope estimates:

b <- coef(lm(y ˜ groups[subscripts] + x))

NB: groups (but not x and y) must be subscripted

The lines are then drawn one at a time, taking care that the line settings agree with those that will appear in the
key.

Interaction with lattice plots – the playwith package

For using playwith, the GTK+ toolkit must be installed. For details, go to the website http://playwith.
googlecode.com/.

For installing the playwith package type, from the command line:

install.packages("playwith", dependencies=TRUE)

Now type, for example

library(DAAGxtras)

library(playwith)

playwith(xyplot(age ˜ distance, data=hotspots),

labels=hotspots$name)

An alternative is

gph <- xyplot(age ˜ distance, data=hotspots)

playwith(update(gph), labels=hotspots$name)

46 5. The R System – Additional Topics

The menu that appears to the left of the graph can be used to initiate single click identification, to add
annotation or arrows, or to mark out a rectangle on the graph for zooming in or out. If labels are not specified,
row names are used.

Note also the function latticist() in the latticist package. When called with a data frame as argument,
this opens a window that has graphical summary information on the columns of the data frame. Additionally,
the window gives a graphical user interface to the creation of further lattice plots from the data frame. As when
playwith() is used as a wrapper for a call to a lattice function, various annotation features are available.

5.3.7 Interaction with lattice plots – focus, interact, unfocus

As described here, interaction starts with the use of trellis.focus() to focus down to the relevant “view-
port”, by default a panel. It may be called without arguments. If there is only one panel, it is then selected
immediately. If there is more than one panel, the user chooses a panel by clicking on it.

Other choices of name include "panel", "strip", name="legend" and "toplevel". For
name="legend"; side should be indicated. See below (Subsection 5.3.8) for an example.

Use of panel.identify() to label points interactively

Here is an example of interactive labeling.

Use of xyplot(): data frame tinting (DAAG)

library(lattice)

xyplot(it ˜ csoa | sex, data=tinting)

trellis.focus("panel", column=1, row=1)

panel.identify(labels=as.character(tinting$target))

Now click near points as required.

Terminate by right clicking inside the panel.

Now interact with panel 2

trellis.focus("panel", row=1, column=2)

panel.identify(labels=as.character(tinting$target))

Click, ..., and right click

By default, the x and y arguments to the function panel.identify() are taken to be those that were
supplied to the lattice function, here xyplot().

Use of panel.text() to label points

Following a call to trellis.focus(), grid functions can be used to supplement plots. The following adds
text labels:

xyplot(Brainwt ˜ Bodywt, data=primates)

trellis.focus("panel", row=1, column=1, clip.off=TRUE)

xyetc <- trellis.panelArgs()

panel.text(x=xyetc$x, y=xyetc$y, labels=row.names(primates), pos=3)

trellis.unfocus()

Use the call trellis.panelArgs() to extract arguments that are available to panel functions following a
call to trellis.focus().

Functions that may be called include panel.lines() and related functions, and panel.abline()
and related functions, as described earlier.

5.3 Lattice Graphics, and the grid Package 47

Non-interactive use of trellis.focus()

For non-interactive use, turn off highlighting, i.e., the call becomes
trellis.focus(highlight=FALSE).

5.3.8 Multiple lattice graphs on a graphics page

The function print.trellis() takes an argument position that controls the positioning of a graph on
the graphics page. The following demonstrates its use. Note also the placing of text on the "toplevel"
viewport.

Two lattice graphs on one page: data frame cuckoos (DAAG)

trellis.par.set(layout.heights=list(key.top=0.25, axis.top=0.5,

bottom.padding=0.15))

cuckoos.strip <- stripplot(species ˜ length, xlab="", data=cuckoos)

print(cuckoos.strip, position=c(0,.475,1,1))

Left bottom corner is (0,.475); right upper corner is (1,1)

trellis.focus(name="toplevel")

panel.text("A", x=0.05, y=0.95)

Here, x=0.05 translates to x=unit(0.05,"npc"); the range is (0,1)

trellis.unfocus()

cuckoos.bw <- bwplot(species˜length, xlab="Egg length (mm)",

data=cuckoos)

print(cuckoos.bw, newpage=FALSE, position=c(0,0,1,.525))

trellis.focus(name="toplevel")

panel.text("B", x=0.05, y=0.95)

trellis.unfocus()

Note that conventions for positioning a graph differ between base graphics and lattice graphics.

Use of textGrob() in the legend argument

The following shows an alternative way to position the label, using the function textGrob(), from the grid
package, to control the detailed content and placing of a “legend”.

library(grid)

stripplot(species ˜ length, xlab="", data=cuckoos,

legend=list(top=list(fun=textGrob,

args=list(label="A", x=0))))

Here, x=0 is equivalent to x=unit(0,"npc"); the range is (0,1)

Overlaid plots with different scales

The dataset edcT holds estimates of temperature anomalies dT (i.e., differences from the average of approxi-
mately -54.5degC over the past 1000 years), from the EPICA (European Project for Ice Coring in Antarctica)
Dome C ice cores that cover 0 to 800,000 years before the present. The dataset edcCO2 (DAAGxtras) holds
estimates of carbon dioxide levels, over the same time period. Figure 5.3 overlays mildly smoothed versions
of the two data series.

The plot uses the function doubleYScale() from the latticeExtra package. Here is the code:

library(latticeExtra)

library(DAAGxtras)

CO2smu <- with(edcCO2, supsmu(age, co2, span=.005))

tempsmu <- with(edcT, supsmu(Age, dT, span=.001))

co2_layer <- xyplot(y ˜ I(-x), data=CO2smu, type="l",

48 5. The R System – Additional Topics

xlab="Years Before Present",

ylab = expression(CO[2]*" (ppm)"))

temp_layer <- xyplot(I(y+54.5) ˜ I(-x), data=tempsmu, type="l",

ylab=expression("Temperature ("*degree*C*")"))

doubleYScale(co2_layer, temp_layer, add.ylab2 = TRUE)

Two separate graphics objects, co2 layer and temp layer, are created. The function doubleYScale()
superposes the two graphs. The argument add.ylab2=TRUE ensures that the y-label for the second object
will appear in the right margin.

Base and trellis plots on the same graphics page

For example, base graphics commands such as mtext() can be used to label a lattice plot:

plot(0:1, 0:1, type="n", bty="n", axes=FALSE, xlab="", ylab="")

mtext(side=3, line=3, "Lattice bwplot (i.e., boxplot)")

cuckoos.bw <- bwplot(species˜length, data=cuckoos)

print(cuckoos.bw, newpage=FALSE)

5.4 An Implementation of Wilkinson’s Grammar of Graphics

The ggplot2 syntax implements the ideas set out in Wilkinson (2005). It is highly consistent, but less stylized
than lattice.

Examples given here will use the wrapper function quickplot(). This remarkably versatile function can
be used to create a wide variety of ggplot graphics objects.

5.4.1 Australian rain data

Figure 5.4 plots annual rainfall for South-East Australia.
Here is the code:

library(DAAG)

library(ggplot2)

Default loess smooth, with SE bands added.

quickplot(Year, seRain, data=bomsoi, geom=c("point","smooth"),

span=0.1, xlab="", ylab="Av. rainfall, M-D basin")

Try also the following:

library(splines)

quickplot(Year, seRain, data=bomsoi, geom=c("point", "quantile"),

formula = y ˜ ns(x,5), quantiles=c(0.2,0.5,0.8))

The normal spline basis ns(x,5) is supplied to the function that fits the quantiles, so that 5 d.f. spline curves
are fitted at the 20%, 50% and 80% quantiles.

5.4.2 Physical measurements of Australian athletes

Figure 5.5 plots height against weight, for the ais data. Boxplots that show the distributions of
heights, and two-dimensional density contour estimates have been added. Figure 5.5 shows boxplots
(geom="boxplot"), by sport (given as the x-variable) and sex (separate panels): The code is:

Overlay scatterplots with boxplots and with density contours

quickplot(wt, ht, xlab="Weight (kg)", ylab="Height (cm)", data=ais,

geom=c("boxplot", "point", "density2d"),

facets = . ˜ sex)

5.5 Dynamic Graphics – the rgl and rggobi packages 49

The facets argument takes the form row.var col.var, where row.var indexes the rows of panels,
col.var indexes columns. and . is used as a placeholder when there is one row or one column only.

Try also:

Two panels (columns): sexes have different colors and symbols

quickplot(wt, ht, data=aisBS, type="point",

colour=sex, shape=sex,

facets = . ˜ sport)

Single panel: distinguish sexes by colors; sports by symbols

quickplot(wt, ht, data=aisBS, type="point",

colour=sex, shape=sport)

To get different colours for different levels of sport, specify colour=sport, For different plotting
symbols, specify shape=sport. For different sizes of symbol, specify size=sport. Two of these may
appear together. For example:

aisBS <- subset(ais, sport %in% c("Row","Swim"))

aisBS$sport <- factor(aisBS$sport)

quickplot(wt, ht, data=aisBS, type="point",

colour=sex, shape=sex, size=I(2.5),

facets = . ˜ sport)

Single panel: distinguish sexes by colors; sports by symbols

quickplot(wt, ht, data=aisBS, type="point",

color=sex, shape=sport, size=I(2.5))

Single panel: distinguish sexes by colors; sports by symbol size

quickplot(wt, ht, data=aisBS, type="point",

color=sex, size=sport)

Possible choices of geom, additional to those already demonstrated, are "path" (join points), "line"
(join points), "histogram", and "density".

Note the difference between:

size=I(2.5),used to make points somewhat larger than otherwise.
size=2.5, which specifies a mapping from the vector with the single element 2.5 to all points in the
data. This does change the point size, but it adds adds an extraneous key. (This is analagous to the use of
size=sport to specify a mapping from sport to size.)

Thus also, to make all points red, specify color=I("red"), not color="red"
Note also the following:

Change the base pointsize for text to 8

theme_set(theme_gray(base_size=8)) # Gray theme

theme_set(theme_bw(base_size=8)) # Black and white theme

Modify the pointsize

update_geom_defaults("point", aes(cex=1.25))

The function aes() generates aesthetic mappings. These map variables in the data to visual properties (aes-
thetics) of geoms.

Consult the web page http://had.co.nz/ggplot/ for up to date information on ggplot2.

5.5 Dynamic Graphics – the rgl and rggobi packages

Both these packages provide three-dimensional dynamic graphics. The following code may be used to give
the left panel in Figure 5.6 It uses functions in the Rcmdr package – scatter3d() and identify3d(),
which may be more convenient for novices than the rgl functions that are called by scatter3d() and
identify3d().

50 5. The R System – Additional Topics

The Rcmdr and rgl packages must be installed

library(Rcmdr) # This makes scatter3d() available

The call to open3d() is optional, but see below

open3d(usermatrix= matrix(c(

1, 0.0000000, 0.0000000, 0,

0, 0.9659258, -0.2588190, 0,

0, 0.2588190, 0.9659258, 0,

0, 0.0000000, 0.0000000, 1), byrow=TRUE))

par3d(cex=0.6) # Optional. Requires an rgl device to be open

with(nihills, scatter3d(x=log(dist), y=log(climb), z=log(time),

grid=FALSE, surface.col="gray",

point.col="black", axis.scales=FALSE))

with(nihills, identify3d(x=log(dist), y=log(climb), z=log(time),

labels=row.names(nihills), col="gray40"))

The optional initial call to open3d() serves two purposes:

• The usermatrix argument is used to ensure that the initial view is that shown in Figure 5.6.
• Once the rgl graphics device is open, parameter settings can be modified, prior to displaying the plot.

Following the call to identify3d(), use the middle (or maybe right) mouse button to drag a rectangle
around any point that is to be labeled. To cease identifying points, make a middle (or right) click on an empty
region of the plot. Use rgl.snapshot() to save the current plot into a file.

The rggobi package offers a wider range of features, via an interface to the GGobi system (Cook and Swayne,
2007). For installation details go to http://www.ggobi.org/.

5.6 Further Reading

The definitive document is the relevant up to date version of the R Language Definition document (R Core
Development Team). Recent texts that give comprehensive accounts of R syntax and semantics are Chambers
(2007); Gentleman (2008). See also Muenchen (2008).

For citing R in a publication, use R Development Core Team (2004). For historical background, see Ihaka
and Gentleman (1996). Note that the R function citation() can be used to obtain citation information,
both for R itself and for any installed package, thus:

citation()

citation("DAAG")

References

Carroll, R., 2004. Measuring diet. Texas A & M Distinguished Lecturer series.
URL http://stat.tamu.edu/˜carroll/talks.php

Chambers, J. M., 2007. Software for Data Analysis: Programming with R. Springer.
Cook, D. and Swayne, D. F., 2007. Interactive and Dynamic Graphics for Data Analysis. Springer.
Fuller, W. A., 1987. Measurement Error Models. Wiley.
Gentleman, R., 2008. Bioinformatics with R. Chapman & Hall/CRC.
Ihaka, R. and Gentleman, R., 1996. R: a language for data analysis and graphics. Journal of Computational

and Graphical Statistics, 5:299–314.
Miller, R. G., 1986. Beyond ANOVA, Basics of Applied Statistics. Wiley.
Muenchen, R. A., 2008. R for SAS and SPSS Users. Springer.
Murrell, P., 2005. R Graphics. Chapman and Hall/CRC.

URL http://www.stat.auckland.ac.nz/˜paul/RGraphics/rgraphics.html
Nicholls, N.; Lavery, B.; Frederiksen, C.; and Drosdowsky, W., 1996. Recent apparent changes in relationships

5.6 Further Reading 51

between the El Niño –, southern oscillation and Australian rainfall and temperature. Geophysical Research
Letters, 23:3357–3360.

Paradis, E., 2006. Analysis of Phylogenetics and Evolution with R. Springer, New York.
R Development Core Team, 2004. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.
URL http://www.R-project.org

Sarkar, D., 2007. Lattice: Multivariate Data Visualization with R. Springer, New York.
Schatzkin, A.; Kipnis, V.; Carroll, R.; Midthune, D.; Subar, A.; Bingham, S.; Schoeller, D.; Troiano, R.;

and Freedman, L., 2003. A comparison of a food frequency questionnaire with a 24-hour recall for use in
an epidemiological cohort study: results from the biomarker-based observing protein and energy nutrition
(open) study. International Journal of Epidemiology, 32:1054–1062.

Stidd, C. K., 1953. Cube-root-normal precipitation distributions. Transactions of the American Geophysical
Union, 34:31–35.

Wilkinson, L., 2005. The Grammar of Graphics. Springer.

52 5. The R System – Additional Topics

Years Before Present

C
O

2
(p

pm
)

−8e+05 −6e+05 −4e+05 −2e+05 0e+00

180

200

220

240

260

280

45

50

55

T
em

pe
ra

tu
re

 (°°C
)

Figure 5.3: This graph overlays EPICA Dome C ice core 800KYr temperature and CO2 estimates, showing the strong
correlation. Both sets of data have been locally smoothed.

A
nn

ua
l r

ai
nf

al
l (

m
m

),
 M

ur
ra

y−
D

ar
lin

g
ba

si
n

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

200

300

400

500

600

700

800

1900 1920 1940 1960 1980 2000

Figure 5.4: Annual rainfall, from 1901 to 2007, for the Murray-Darling basin region of Australia. The curve is fitted using
the default loess smoother. The pointwise standard error bands assume that errors about the curve are independent; this is
unlikely to be strictly true. To suppress the bands, specify se=FALSE.

5.6 Further Reading 53

Weight (kg)

H
ei

gh
t (

cm
)

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●●●

●
●●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

150

160

170

180

190

200

40 60 80 100 120 40 60 80 100 120

f m

Figure 5.5: Height versus weight, by sex, for Australian athletes in the ais data set. Boxplots that show the distributions
of heights, and two-dimensional density contours have been added.

0.0 0.1 0.2 0.3 0.4

−
3

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Cook's distance

1

0.5

0.5

1

Residuals vs Leverage

Seven Sevens

Hen & Cock

Meelbeg Meelmore

Figure 5.6: The left panel is a snapshot of a three-dimensional dynamic graphic plot. The two points that have the largest
leverage in the regression of logtime on logdist and logclimb have been labeled. In the right panel, standardized
residuals are plotted against leverages. Contours are shown for Cook’s distances of 0.5 and 1.0.

