Updates and Corrections (as of September 18, 2015)

Data Analysis and Graphics Using R – An Example-Based Approach, 3rd edn, 2013 reprint

John Maindonald (email: john.maindonald@anu.edu.au) and John Braun

Changes are of four types:

- Changes made necessary, or desirable, arising from changes in R functions;
- Corrections to errors;
- Code changes, designed to improve coding style;
- Removal of some obscurities.

Graphs that need to be replaced

Figure 2.14, page 64, should be replaced if the figure now given by the existing code is preferred.

Figure 7.10, page 237 (the function used for the smooth is from a package that has been archive; hence use a different package)

Figure 12.2, page 381 (the graph should be printed with aspect="iso")

Figure 12.9, page 403 (the maximum number of features selected should be 23, as in the code that is in the text; the attempt to select more than 23 generates a collinearity warning.)

Chapter 1

page 27, Subsection 1.5.2

Replace the first paragraph, i.e.

The default palette, which can be changed, has eight colors including ‘white’.

by

The default color palette, shown in Plate 10, attaches the numbers 1, . . . , 8 to the eight colors that are included.

page 27, bullet points in lines 3 to 18 [addition]

Insert as the second to last bullet point:

- Aspect ratio: \texttt{asp=1} gives a plot with isometric scaling, i.e., \(x \) and \(y \) units occupy the same physical distances in both directions.
Add, following the first bullet point, the further bullet points:

- Most common types of parameter settings can be handled by using `simpleTheme()` to create a theme, which the argument `par.settings` then supplies to the function that creates the graph. See the code for Figure 15.3 in Subsection 15.5.1.

- Use the argument `aspect` to control aspect. If a number, this specifies the ratio of graph height to width. For isometric scales, specify `aspect="iso"`.

Edit the final sentence to read:

Use either `.RData` or `.rda` as the extension for such files.

Omit footnote 9.

Replace `there is extreme value of area that` by `One extreme value for area`.

Chapter 2

Replace `attach(fossum)` by

```r
ftotlength <- fossum[, "totlength"]
```

Replace `totlength` by `ftotlength`

Replace

```
par(mfrow=c(1,1)); detach(fossum)
```

by

```r
par(mfrow=c(1,1))
```
Table 1: Control of ggplot2 graphics features. Note that functions such as `xlab()` and `scale_x_continuous()` all have counterparts with `y` in place of `x`.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Argument to <code>qplot()</code></th>
<th><code>ggplot()</code> or <code>qplot()</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td><code>main="mytitle"</code></td>
<td><code>+ labs(title="mytitle")</code></td>
</tr>
<tr>
<td>Axes</td>
<td><code>see help(qplot)</code></td>
<td><code>+ scale_x_continuous()</code></td>
</tr>
<tr>
<td>Axis labels</td>
<td>e.g., <code>xlab="myxlabel"</code></td>
<td><code>+ xlab("myxlabel")</code></td>
</tr>
<tr>
<td>log axes</td>
<td>log="x", (or "y", or "xy")</td>
<td><code>+ scale_x_log10()</code></td>
</tr>
<tr>
<td>Facets</td>
<td><code>facets=sex ~ sport</code></td>
<td><code>+ facet_grid(sex ~ sport)</code></td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>e.g., <code>asp=1</code></td>
<td><code>+ coord_equal()</code></td>
</tr>
<tr>
<td>Graph title</td>
<td>e.g., <code>main="maintitle"</code></td>
<td><code>+ ggtitle("mytitle")</code></td>
</tr>
</tbody>
</table>

1. Recall that `quickplot()` (or `qplot()`) returns a `ggplot` object. Functions such as `xlab()` or `scale_x_continuous()` can be used, just as for any other `ggplot2` object, to update objects returned by `quickplot()`.
2. Available arguments include `limits`, `breaks` (locations for the ticks), `labels` (labels for the breaks), and `trans` (e.g., `trans="log"`).
3. This is an alternative to using `name` (e.g., `name="myxlabel"`) as an argument to `scale_x_continuous()` or `scale_x_discrete()`.
4. This is an alternative to using `trans="log10"` as an argument to `scale_x_continuous()` or `scale_x_discrete()`. Note also `trans="log"` and `trans="log2"`.
5. Facets give Lattice style conditioning.
6. By default (`ratio=1`), a given distance, e.g., 1cm, represents the same range along both x- and y-axes.
7. Themes control such graphical attributes as background color, gridlines, and size and color of fonts. See `help(ggtheme)` for details of other available themes.

Replace `horiz` by `horizontal`

For the graph as shown, replace:

```r
panel.average(x, y, type="p", col="black", pch=3, cex=1.25}),
```

by

```r
av <- sapply(split(x,y),mean)
ypos <- unique(y)
lpoints(ypos~av, pch=3, cex=1.25, col="black"},
```

[The code given in the text uses a line to join up the means. In this instance, in order to allow ready comparison of the pattern across the three panels, it would be better to leave the code as is and replace the graph.]

[There are equivalent replacements on page 123 (footnote 13) and page 261 (lines -4 and -3).]

Replace the first line of code (`attach(cuckoohosts)`) by

```r
with(cuckoohosts, {
```

Indent the next 5 lines by 5 spaces

Replace the final line of code (`detach(cuckoohosts)`) by

```r
}
```

Chapter 3

Replace Figure 4.1B by Figure 4.1
Chapter 4
page 123, footnote 13, lines 6-7

Replace

```r
panel.average(x, y, type="p", col="black",
pch=3, cex=1.25),
```

by

```r
av <- sapply(split(x,y),mean)
ypos <- factor(levels(y), levels=levels(y))
lpoints(ypos~av, pch=3, cex=1.25, col="black"),
```

[The code in the text still works, but uses a line to join up the means.]

Chapter 6

page 177, line -5

Replace The models nihills.lmnihillsG.lm by
The models nihills.lm and nihillsG.lm.

page 186, lines of code preceding subsection 6.3.2

Replace lines 2 and 3 of the code with

```r
influencePlot(allbacks.lm)
```

[influencePlots()] does something different from what leverage.plots() formerly did, but provides a better indication of what is available that is different from what is discussed in the text.]

page 203, line prior to 6.3 Errors in x

Replace remedy by) recourse

page 216, exercise 14, 1st line of code

Replace } by)

Chapter 15

p.473, lines 6-8 (2nd para)

Omit lines 6 - 8.

Run together the two paragraphs in lines -9 to -4. Omit for details at the end of the final sentence.

p.473, line -6

Replace The function by The base graphics function.

p.474, Color [addition]

Add
The function adjustcolor() can be used to set the opacity alpha for the color that is returned. Thus with alpha=0.4, 60% of the background shows through. Two overlapping points have a combined opacity of 80%, so that 20% of the background shows through. Lattice and ggplot2 graphics functions accept the argument alpha directly.

p.481, lines 1 to 7

Delete lines 4 - 7.

Modify (add a comment at the end) line 2, so that it reads:
```
trellis.device(color=TRUE) # Try also with color=TRUE
```

p.481, following the current line 7 [addition]

Insert
A theme settings1 that has been created earlier, e.g., by a call to simpleTheme(), can be modified thus:
```r
settings1["fontsize"] <- list(text = 16, points = 8)
```
```
## Then do, e.g.
groplot1 <- update(groplot0, par.settings=settings1)
```

p.491, Table 2

The current Table 15.2 has been overtaken by changes in ggplot2. Replace Table 15.2 by:
Chapter 13

c.413, footnote 2, line 1

Replace component by component

p.416, Figure 13.2

Code for Figure 13.2 is not given. See the separate file.

p.421, code on lines 3 to 12

The code assumes an updated version of the function overlapDensity(). This will be included in the next version of DAAG (>=1.21). It is provided as a separate file. Replace the current line 7 by the more explicit code:

overlapDensity(sc.rf[tnum==1], sc.rf[tnum==2], ratio=c(1/20, 50),
 ratio.number=TRUE, plotvalues="Density")

Replace the current lines 11 and 12 by the more explicit code:

overlapDensity(sc.lda[tnum==1], sc.lda[tnum==2], ratio=c(1/20, 50),
 ratio.number=TRUE, plotvalues="Density")

p.423, line starting proba.rf

Replace probability by prob

Chapter 14

p.429, line 2

Replace) by)

page 442, line -6:

Replace scale by scales

page 467, line 10:

Replace Packages can have their own namespaces, with by

Each package has its own namespace. There can be

Chapter 7

page 236, Section 7.5.3, line 7

Replace All by Most

page 237, final 13 lines

Replace with:

Monotone polynomials, as fitted using the function monpol() from the MonoPoly package, will often be satisfactory, as in Figure 7.10.

Code is:

library(MonoPoly)

u <- monpol(ohms~juice, data=fruitohms, degree=3)

plot(ohms ~ juice, data=fruitohms, xlab="Apparent juice content (%)",
 ylab="Resistance (ohms)", col="gray40")

ord <- with(fruitohms, order(juice))

lines(fitted(u)[ord] ~ juice[ord], data=fruitohms, col=2)

For fitting a monotonic spline curve, see help(mono.con, package="mgcv")

[Also, replace Figure 7.10 with a figure that has been generated using the above code. The MonoPoly package has been archived.]

page 238, line -2

Replace lm by gam

Chapter 8

Replace 15/60 = 0.25 by 45/60 = 0.75

page 249, footnote 4, line 2

Add, at the end of the line asp=1, i.e., the line becomes

plot(northing ~ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1], asp=1,

page 260, line -17

Replace is ("suggesting that is should be") by it.
Replace The Number is the total number by Here, Number is the number.

Replace panel.average(x, y, pch=3, cex=1.25, type="p", col="gray45")

by

av <- sapply(split(x,y),mean)
ypos <- factor(levels(y), levels=levels(y))
lpoints(ypos~av, pch=3, cex=1.25, col="gray45"),

[The code in the text still works, but uses a line to join up the means.]

Note that use of a square root link function largely obviates problems with use of the
habitat Bank as the reference level for species A. The use of a square root link function
will of course somewhat change t-statistics for other comparisons also. Any result that
is presented has a certain inevitable arbitrariness imposed by the necessity to choose
a link function.

Replace newdat by ndf

Chapter 9

Replace mfrow=c(3,2) by mfrow=c(2,2)

Chapter 10

The pdf for a draft of a rewrite of this chapter is available as a separate file.

Chapter 12

Add at end of line aspect="iso", i.e. the line becomes:
xyplot(possum.prc$scores[, 2] ~ possum.prc$scores[, 1], aspect="iso",

[Also, replace Figure 12.2 with a figure that has been printed with aspect="iso". (The vertical and horizontal scales are in the same units.)]

Replace value by values

Replace with:
chooseCols <- with(golubInfo, tissue.mf=="PB:f"& cancer=="allB")
df.PBf <- data.frame(t(Golub[ord15, chooseCols, drop=FALSE]))
scores.PBf <- predict(dfB15.lda, newdata=df.PBf, dimen=2)$x

Replace with a figure in which the maximum number of features selected is 23, as in
the text and in the code.
library(R.utils)
levels(tinting$agegp) <- capitalize(levels(tinting$agegp))

page 330, lines 7, 11 and 14:
Replace method="ML" with REML=FALSE

page 330, line 15:
Replace
method="ML"
with
REML=FALSE (use maximum likelihood in place of REML)

page 331, lines 8 and 13:
Replace method="REML" with REML=TRUE

pages 332-333:
A revised and more nuanced draft of these pages can be found at

page 340, fnote 13, line 4:
Replace scale by scales

page 349, exercise 1:
Replace the final three lines of code, i.e.
vars <- c("(block:plot)^2"=as.vector(vcov[["block:plot"]]),
 "sigma^2"=as.vector(attributes(vcov, "sigmaREML")$sc^2))
print(vars)
by
print(vcov) # For variances, specify print(vcov^2)

General
This chapter is strongly affected by changes in the lme4 package. The most important is that mmcmcsamp() is, because it did not work reliably, no longer available. The primary function for calculating confidence intervals is confint(), using method="profile" or method="boot" in preference to the less reliable method="Wald".
The following demonstrate the form of command that one might now expect to use, with objects returned by lmer():

library(lme4)
library(DAAG)

science1.lmer <- lmer(like ~ sex + PrivPub + (1 | school:class),
 data = science, na.action=na.exclude)
 # science1.lmer is then a merMod object
Output from print()
print(science1.lmer, ranef.comp="Variance", digits=3)
Output from use of summary() with a merMod object
print(summary(science1.lmer), ranef.comp="Variance", digits=3)
Variance components information
print(VarCorr(science1.lmer), comp="Variance", digits=3)
See help(merMod) and help(VarCorr) for further details.

More important Ch 10 changes, with explanatory comment
page 310, following final paragraph
Insert
The object ant1111b.lmer has the class merMod. See help(merMod) for details of functions ("methods") that are available for use with this class.

page 312, subsubsection in lines 3 to 26
Replace with:

*Uncertainty in parameter estimates — profile likelihood & alternatives
The limits of acceptance of a likelihood ratio test for the null hypothesis of no change in a parameter value can be used as approximate 95% confidence limits for that parameter. Where the likelihood is a function of more than one parameter, the profile likelihood may be used. For any parameter \(\psi \), the profile likelihood is the function of \(\psi \) that
is obtained by maximizing the likelihood, for each value of \(\psi \), over values of other parameters.¹

The function \texttt{confint()} can be used to pull together the profile information, calculated using the profile method for \texttt{merMod} objects, to create approximate confidence intervals:

```r
> prof.lmer <- profile(ant11b.lmer)
> CI95 <- confint(prof.lmer, level=0.95)
> rbind("sigmaL^2"=CI95[1,], "sigma^2"=CI95[2,])
2.5 % 97.5 %
sigmaL^2 0.796 6.94
sigma^2 0.344 1.08
```

A 95% confidence interval for the intercept is:

```r
> CI95[3,]
2.5 % 97.5 %
(Intercept) 3.128 5.46
```

The function \texttt{confint()}, as used here, returned confidence intervals for \(\sigma_L \) (row label \texttt{.sig01}, random), for \(\sigma \) (row label \texttt{.sigma}, random), and for (Intercept) (fixed). The (Intercept) is the intercept in the fitted model, which estimates the overall mean.

The profile likelihoods, scaled so that the lower 2.5% limit transforms to -1.96 and the upper lower 97.5% limit, can be plotted thus:

```r
library(lattice)
print(xyplot(prof.lmer, conf=c(50, 80, 95, 99)/100, between=list(x=0.35)))
```

For variances, the horizontal scales show \texttt{Std.Dev.} = \sqrt{\text{Variance}}. On the vertical scale, the confidence interval limits are labeled according to the equivalent normal deviates. The 95% confidence interval limits are thus at -1.96 and 1.96.

For details of this and other displays that can be used for the output from the \texttt{profile()} method for \texttt{merMod} objects, see \texttt{help(xyplot.thpr)}.

See \texttt{help(confint.merMod)} for details of the \texttt{confint} method for \texttt{merMod} objects. Alternatives to \texttt{method="profile"} are \texttt{method="Wald"} or \texttt{method="boot"}. The Wald method is fast, but based on approximations that can be highly inaccurate. The \texttt{boot} method uses repeated fits to suitably constructed bootstrap samples, and can be time consuming. The trustworthiness of results from this method may be questioned if more than an occasional fit fails. See \texttt{help(bootMer)} and \texttt{help(simulate.merMod)} for further details of \texttt{method="boot"}, and for references.

¹Note that convergence problems will sometimes occur in the calculation of the profile likelihood, generating warning messages.

page 316, lines 9-18:

Replace by:

```r
> # # Use profile likelihood
> pp <- profile(science1.lmer, which="theta_")
> # which="theta_": all random parameters
> # which="beta_": fixed effect parameters
> var95 <- confint(pp, level=0.95)
> # Square to get variances in place of SDs
> rnames(var95) <- c("sigma_Class^2", "sigma^2")
> signif(var95, 3)
    2.5 % 97.5 %
sigma_Class^2 0.178 0.511
sigma^2    2.830 3.300
```

page 318, footnote 3

Replace with:

```r
print(VarCorr(science2.lmer), comp="Variance", digits=3)
## The component of variance that is labeled 'Residual' is
## the estimate of the within class variance.
```

page 326, lines -10 to -1

Replace line 10 by: The following agree with results from the preceding section:

Replace the code chunk in lines -9 to -2 by:

```r
> print(kiwishade.lmer, ranef.comp="Variance", digits=3)
```

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>block:plot (Intercept)</td>
<td>2.19</td>
<td></td>
</tr>
<tr>
<td>block (Intercept)</td>
<td>4.08</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>12.18</td>
<td></td>
</tr>
</tbody>
</table>

Number of obs: 48, groups: block:plot, 12; block, 3

Delete the final line.

page 330, line 4

Replace by:

```r
```