
A List of Topics

1. Documentation & help (help pages, vignettes, manuals, . . .

2. R GUIs (mainly R Commander)

3. The OS interface (working directory, data I/O, system access)

4. The workspace, and what sits above it on the search list

5. Improving the R experience – tinn-R, ESS, other editors

6. R objects (including functions)

7. The packaging of R – base base packages, recommended
packages, other user contributed packages

8. Classes & methods (S3, S4)

9. Graphics - base graphics (graphics), lattice, ggplot2, rgl 3-D,
rggobi dynamic, plotting expressions

10. Models; univariate & multivariate exploration – see the next slide.

Topics that may be discussed upon request

I Package construction

I Environments, manipulating language constructs, . . .
I Models

I linear (NB, linear in the parameters)
I GLM
I multi-level
I time series
I classification

I Multivariate exploration
I distance measures
I ordination

The R System:

I R is currently the environment of choice for
I specialists who are implementing new methodology
I highly trained professional data analysts.
I increasingly, statistically skilled scientists.

I It is designed for interactive use: the next step may depend on
the previous result.

I Twice-yearly major releases bring improvements & new features.
I It can be remarkably efficient, even though:

I data resides (mostly) in memory
I it is an interpreted language (but one command may start a

lengthy computation)

Web Sites

CRAN (Comprehensive R Archive Network; use an Australian mirror):
http://cran.r-project.org

R homepage: http://www.r-project.org/

DAAGUR (Data Analysis & Graphics Using R):
www.maths.anu.edu.au/~johnm/r-book.html

R-downunder:
http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder

Wikipedia:
http://en.wikipedia.org/wiki/R_(programming_language)

For other useful web pages, start an R session, click on the menu item
Help, click on Html help, & look under Resources on the browser
window that should then appear.

http://cran.r-project.org
http://www.r-project.org/
www.maths.anu.edu.au/~johnm/r-book.html
http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder
http://en.wikipedia.org/wiki/R_(programming_language)

Packages (ss 1.2.2 & Secx 4.21)

Under Windows & the MacOS X, with an internet connection,
use the relevant R menu item to install packages.
(usually easier than downloading, then installing).

Note the CRAN task views, which may help in locating packages.

Packages do most of R’s work. They make the system extendable
without limit.

1Ch, Sec and ss refer to the 3rd edition of Data Analysis and Graphics Using R.
Chx, Secx and ssx refer to the Additional Notes that are available from my
webpage.

Command line calculations (ss 1.1.1)

The > at the start of the line is the command prompt.
User commands are typed following this prompt:

> 2+2

[1] 4

> 555+83+427+254

[1] 1319

> 2 > 1

[1] TRUE

The [1] says “first (& here, only) element will follow”

Syntax (ss 1.1.1)

Command End of line (providing command is complete) or ;
separator print(2+2); print(2+3)

Quitting To quit from R type
q() # NB q(), not q

Case matters volume is different from Volume

Assignment The assignment symbol is <-, e.g.
volume <- c(351, 955, 662, 1203, 557)
Store the column of numbers in volume

Comments Introduce with #

Demonstrations, Help & Help Examples (ss 1.1.3, 14.13.1)

Demonstrations

demo(graphics) # Start graphics demonstrations

demo() # List all available demonstrations

Examples

example(plot) # Examples from help page for plot()

par(ask=FALSE)

Help

help() # Describe the use of help()

help(plot) # help on the plot function

help.start() # Open a browser interface to R help

resources

Note also help.search(), apropos() and help.start()

Utility Functions (ss 1.5.1)

Functions that act on the contents of the workspace

ls() # List contents of workspace

ls(pattern="cr") # List objects whose names include the

character string "cr"

rm(x, y, z) # Remove x, y, and z from workspace

rm(list=c("x", "y", "z")) # Alternative to rm(x, y, z)

rm(list=ls()) # Remove contents of workspace

Functions that access the working or other specified directory

Functions that act on the working or other directory

dir() # List contents of working directory

file.show() # List file contents on screen.

Columns of data (Sec 1.3)

> c(351, 955, 662, 1203, 557, 460)

[1] 351 955 662 1203 557 460

Assignment to a vector object (Sec 1.3)

volume <- c(351, 955, 662, 1203, 557, 460)

type <- c("Guide", "Guide", "Roadmaps", "Roadmaps",

"Roadmaps", "Guide"),

description <- c("Aird’s Guide to Sydney",

"Moon’s Australia handbook",

"Explore Australia Road Atlas",

"Australian Motoring Guide",

"Penguin Touring Atlas", "Canberra - The Guide")

Data Frames – Lists of Columns (Sec 1.4)

thickness <- c(1.3, 3.9, 1.2, 2, 0.6, 1.5)

width <- c(11.3, 13.1, 20, 21.1, 25.8, 13.1)

height <- c(23.9, 18.7, 27.6, 28.5, 36, 23.4)

weight <- c(250, 840, 550, 1360, 640, 420)

volume, type & description were input earlier?

This can get unmanageable (many objects). We might prefer:

travelbooks <- data.frame(

thickness = c(1.3, 3.9, 1.2, 2, 0.6, 1.5),

width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),

. . . .

type = type # type was created earlier

row.names = description # description was created earlier.

)

Data frames offer a tidy way to supply data to modeling functions.

Input to a Data Frame (ss 1.2.1 & ss 14.2.1)

Place the file in the working directory

library(DAAGxtras) # DAAGxtras has the needed function

datafile("travelbooks") # Place file in directory

dir() # Check contents

Display contents of travelbooks.txt

> file.show("travelbooks.txt")
"thickness" "width" "height" "weight" "volume" "type"
"Aird’s Guide to Sydney" 1.3 11.3 23.9 250 351 "Guide"
"Moon’s Australia handbook" 3.9 13.1 18.7 840 955 "Guide"
"Explore Australia Road Atlas" 1.2 20 27.6 550 662 "Roadmaps"
"Australian Motoring Guide" 2 21.1 28.5 1360 1203 "Roadmaps"
"Penguin Touring Atlas" 0.6 25.8 36 640 557 "Roadmaps"
"Canberra - The Guide" 1.5 13.1 23.4 420 460 "Guide"

> ## Now input the file
> travelbooks <- read.table("travelbooks.txt")

Accessing Data Frame Columns (ss 1.4.1)

travelbooks[, 4]

travelbooks[, "weight"]

travelbooks$weight

travelbooks[["weight"]]

Repeated reference to travelbooks is unnecessary!

rm(weight, volume) # If present, remove from the workspace

attach(travelbooks)

plot(weight ~ volume)

cor(weight, volume)

detach(travelbooks)

For one or a few statments, use with() (ephemeral attachment):

with(travelbooks, cor(weight, volume)

To execute a block of code, enclose it within braces ({})

The Working Environment (ss 1.1.1, Sec 1.8 & ss 14.1.2

Working R will by default read files from this directory,
directory or write files to it

Object A data structure or function that R recognizes
Functions, as well as data, exist as “objects”
Note also, e.g., formula objects, expression objects, . . .

Workspace This is the user’s “database”, where the user can make
additions or changes, or delete objects, as desired.
Use ls() to list contents of current workspace.

read.table() Use to read data, from a file, into the workspace

Image files Use to store R objects, e.g., workspace contents.
(The expected file extension is .RData or .rda)

save.image() Use to store all or some workspace contents.
For safety, use from time to time in a session
Alternatively, use the relevant menu item.

Packages, and the Search List (Sec 1.2.2 & 14.1.1)

Packages Packages are collections of R functions and/or data.

library() Use to attach a package, e.g. library(DAAG)
(Binary R distributions include recommended packages.
Install other packages, as required, prior to their use.)

Search List The search list specifies the working directory,
followed by other “databases” that should be searched
if the object sought is not in the working directory.

Databases Other “databases” that can be added to the search
list include image (.RData) files, and data frames.

Worked Regression Examples (Chx 2 & Secx 3.1)

I World record times for track and field events:
library(DAAGxtras)

str(worldRecords) # Check columns in data

library(lattice) # Prepare to plot data

xyplot(Time ~ Distance, groups=roadORtrack,

data=worldRecords, scales=list(log=10),

auto.key=list(columns=2))

Fit regression line

lm(log(Time) ~ log(Distance), data=worldRecords)

I Regression with two explanatory variables; the nihills data.
splom(~ log(nihills),

varnames=c("log(dist)", "log(climb)",

"log(time)", "log(timef)"))

I Exploration of time series data – Australian rain records.

Different types of data objects:

Vectors These collect together elements that are all of one mode.
(Possible modes are ”logical”, ”integer”, ”numeric”,
”complex”, ”character” and ”raw”)

Factors Factors identify category levels in categorical data.
Modeling functions know how to represent factors.
(Factors do not quite manage to be vectors! Why?)

Data A list of columns – same length; may have different modes.
frame Data frames are commonly a huge help for organizing data.

Lists Lists group together an arbitrary collection of objects
(These are recursive structures; elements of lists are lists.)

NAs The handling of NAs (missing values) can be tricky.

All R objects have a length, which can be 0. (Why is this useful?)

Vectors (Sec 1.3)

Subsets of Vectors

z <- c(2,3,5,2,7,1)

z[c(1:3, 5)] # Elements 1 to 3 and 5

z[-c(3,5)] # All except elements 3 & 5

subset(z, z>2) # Extract elements that are > 2

Names for Vector Elements

> booksales <- c(Dec07=555, Jan07=83,

+ Feb07=427, Mar07=254)

> booksales[c("Jan07", "Feb07")]

Jan07 Feb07

83 427

Factors (ss 5.1.2)

Create a character vector

> field <- c("Med", "Lit", "Chem", "Med", "Med")
> field
[1] "Med" "Lit" "Chem" "Med" "Med"
Nobel winners: Katz, White, Comforth, Doherty, Marshall

From field, create the factor fieldfac

> fieldfac <- factor(field)
> fieldfac
[1] Med Lit Chem Med Med
Levels: Chem Lit Med
> unclass(fieldfac)
[1] 3 2 1 3 3
attr(,"levels")
[1] "Chem" "Lit" "Med"

Notice that, by default, the levels are taken in alphanumeric order.

Different Kinds of Functions (Sec 1.5 & 14.3)

Generic They examine the object given as argument, before
functions deciding what action is needed. Examples include

print(), plot() & summary()

Modeling Use to fit statistical models. Thus note lm() for linear
functions modeling. Output may be stored in a model object.

Extractor Use extractor functions to obtain summaries, coefficients,
functions residuals, etc., from model objects.

e.g., summary(), coef(), residuals()

User Create functions that automate & document computations

Anonymous Functions that are defined in place do not need a name

Vectors – Useful Functions

Any mode length(), rev(), sort(), order(), unique(),
of vector is.factor(), is.na(); also other analagous functions

numeric sum(), cumsum(), mean(), sd(), range(), diff()

character paste(), nchar(), substring(), grep()a and friends,
strsplit()b, charmatch()

logical any(), all() e.g., any(x>0)

To search for a needed function, guess a character string that might
appear in the name, e.g., str or char for character manipulations.
Then do, e.g.

help.search("str", package="base")

or

apropos("str")

aNote the parameter fixed.
bAgain, note the parameter fixed.

Functions that create vectors

numeric(5) Creates a numeric vector of length 5, all elements 0.

numeric(0) Numeric vector of length 0.

logical(5) Logical vector of length 5, all elements FALSE.

character(5) Character vector of length 5, all elements "".

Check or change (coerce) class

> as("1.23", "numeric") # Equivalently, as.numeric("1.23")

[1] 1.23

> as(TRUE, "numeric")

[1] 1

> as(1.23, "character") # Equivalently paste(1.23)

[1] "1.23"

Functions that are useful with data frames (Sec 14.7)

names() Names of columns

row.names() Row names

dim() Dimensions (as for a matrix argument)

summary() Summary details, e.g., summary(travelbooks)

str() A different summary, e.g., str(travelbooks)

sapply() Apply function columnwise:
sapply(travelboooks, is.factor)
sapply(travelboooks[, 1:4], mean)

plot() plot() does indeed accept a data frame as argument.

Note the possibility of using anonymous functions with sapply()

sapply(travelbooks, function(x)if(is.factor(x))levels(x))

User-defined Functions (ss 14.3.3)

mean.and.sd <- function(x){

av <- mean(x)

sdev <- sd(x)

c(mean=av, sd = sdev) # Return value (vector)

}

The usage is:
function(arglist) { expr

return(value)
}

Default Arguments are a Good Idea

mean.and.sd <- function(x=rnorm(20)){

av <- mean(x)

sdev <- sd(x)

c(mean=av, sd = sdev) # Return value (vector)

}

Tables and Cross-tabulation (ss 5.4.4); table()

> library(DAAGxtras) # Get data frame nassCDS from here

> ## First count numbers of records. (Misleading?)

> ## I: Use table()

> with(nassCDS, table(sex, dead)) # NB: unweighted

dead

sex alive dead

f 11784 464

m 13253 716

Note the correction to Sec 14.5. With the argument
exclude=NULL, the function table() now tabulates missing values,
both for vectors and factors.

Tables and Cross-tabulation (Sec 1.5 & ss 2.2.1):
xtabs()

> ## II: Use xtabs()

> xtabs(~ sex + dead, data=nassCDS) # NB: unweighted

. . .

> ## Now weight records a/c 1/(sampling fraction)

> xtabs(weight ~ sex + dead, data=nassCDS)

dead

sex alive dead

f 5899999.64 25677.26

m 6167937.23 39917.87

Review, & Additional Points

I Vignettes (ss 14.13.1) are pdf files that accompany packages

I Saving into and retrieving objects from image files (Sec 1.8 & ss
14.1.2)

I Attaching image files (Sec 14.1)

I Matrices (5.3)

I Lists (ss 3.1.3 & Sec 14.7)

I User functions (ss 1.5.3 & Sec 14.3)

I Common sources of difficulty (5.6).

Next:

Base & Trellis Graphics

Base or “Traditional” Graphics (Sec 1.6 & 14.11)

Base graphics comprises plot() and allied functions

Functions plot(), points(), lines(), text(), mtext(),
axis(), identify() etc. form a suite

Choice: old plot(x, y) syntax vs newer plot(y ∼ x) formula syntax:

plot(x, y) with(women, plot(height, weight))
plot(y ∼ x) plot(weight ∼ height, data=women)

par(), etc Use to set parameters in base graphics (Sec 6.2)
Some parameters must be set using par()
Specify others in function call. Or there may be a choice.

NB: Some base graphics functions do not take a data parameter

Other (mostly 2-D) graphics:

(i) lattice (trellis) graphics, using the lattice package,
and (ii) the low-level grid package on which lattice is built.

3-D Graphics: Note rgl, misc3d and tkrplot.

Lattice Graphics (Sec 1.7 & Secx 4.3)

Lattice Lattice is a flavour of trellis graphics
(the S-PLUS flavour was the original implementation)

Grid grid is a low-level graphics system. It was used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

ggplot2 ggplot2 is an R implementation of Wilkinson’s
Grammar of Graphics. It has some nice features.

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

Lattice Lattice syntax is consistent and tightly regulated
syntax For use of lattice, graphics formulae are mandatory.

latticist The latticist() function in the latticist package opens
a simple GUI to the lattice & vcd packages.

Beer+Wine+Spirit, conditioning on Country
A

m
ou

nt
 c

on
su

m
ed

 (
pe

r
pe

rs
on

)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ● ● ● ● ● ●

●

NewZealand

Beer Spirit Wine●

xyplot(Beer+Spirit+Wine ~ Year | Country, data=grog,

outer=FALSE, auto.key=list(columns=3))

NB: Code has been simplified; next slide has full details.

Beer+Wine+Spirit, conditioning on Country, with frills

grogplot <-

xyplot(Beer+Spirit+Wine ~ Year | Country, data=grog,

outer=FALSE, auto.key=list(columns=3))

Send output from update() to command line, causing ‘printing’

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

Alternatively, spell out the details – ‘print’ explicitly

frillyplot <-

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

print(frillyplot)

Simple Lattice Examples

Conditioning (|) – separate panels (ssx 4.3.2)

xyplot(Beer ~ Year | Country, data=grog)

Overlaid plots – use groups parameter (ssx 4.3.2)

xyplot(Beer ~ Year, groups=Country, data=grog)

Use auto.key for a basic key to the labeling (groups parameter).

Parallel plots - separate panels (ssx 4.3.2)

xyplot(Beer+Wine+Spirit ~ Year, data=grog)

Grouping of Points, and Columns in Parallel

Overplot
(a single panel)

Separate panels
(conditioning)

Levels of
a factor

Beer ∼ Year,
groups=Country Beer ∼ Year | Country

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
● ●

● ● ●

Aust
NZ

●

1

2

3

4

5

19982000200220042006

● ● ● ●
● ●

● ● ●

Australia

19982000200220042006

● ● ● ● ● ● ● ● ●

NewZealand

Beer+Wine+Spirit ∼ Year,
Columns
in parallel

outer=FALSE outer=TRUE

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Beer
Wine
Spirit

●

2

3

4

5

1998 2002 2006

● ● ● ●
● ●

● ● ●

Beer

1998 2002 2006

● ● ● ● ● ● ● ● ●

Wine

1998 2002 2006

● ● ●
●

● ●
● ● ●

Spirit

Lattice parameter settings

1. The ‘theme’ determines point and line settings. Changes are
readily made using simpleTheme() (recent version of lattice).

2. For axis, axis tick, tick label and axis label settings use the
argument scales in the function call.

3. Lattice objects can be created, then updated – use update().

4. Note also the arguments layout (# rows × # columns × #
pages) and aspect (aspect ratio).

5. The type argument can specify any combination of p (points), l
(lines), b (points & lines), r (regression lines) and smooth (a
smooth curve). Set span to control the smoothness of any curve.

Use of simpleTheme() for Point & Line Settings

First use simpleTheme() to create a “theme” with the new settings:

miscSettings <- simpleTheme(pch = 16, cex=1.25)

Alternatives are then:

(i) Supply the “theme” to par.settings in the function call.
[This stores the settings with the object. These
stored settings over-ride the global settings at the time of printing.]

xyplot(Beer ~ Year | Country, data=grog,

par.settings=miscSettings)

(ii) Supply the “theme” to trellis.par.set(), prior to plotting:
[Makes the change globally, until a new trellis device is opened]

trellis.par.set(miscSettings)

xyplot(Beer ~ Year | Country, data=grog)

Axis, tick, tick label and axis label settings

jobplot <- xyplot(Ontario+BC ~ Date, data=jobs)

Half-length ticks, each quarter, Label years, Add key

tpos <- seq(from=95, by=0.25, to=97)

tlabs <- rep(c("Jan95", "", "Jan96", "", "Jan97"),

c(1,3,1,3,1))

update(jobplot, auto.key=list(columns=2), xlab="",

scales=list(tck=0.5, x=list(at=tpos, labels=tlabs)))

Date

O
nt

ar
io

 +
 B

C

2000

3000

4000

5000

95.0 95.5 96.0 96.5 97.0

● ●

● ●

O
nt

ar
io

 +
 B

C

2000

3000

4000

5000

Jan95 Jan96 Jan97

● ●

● ●

Ontario BC● ●

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Grammar of Graphics (Secx 4.4)

ggplot2 Implements Wilkinson’s Grammar of Graphics
At its best, it combines simplicity & power.
Use grid functions to extend ggplot2 abilities.

Plot annual rainfall vs Year; add smooth

qplot(Year, seRain, data=bomsoi, geom=c("point","smooth"))

Scatterplot, add 2-d density contours, by sex

qplot(wt, ht, data=ais, geom=c("point", "density2d"),

facets = sex ~.)

In lattice terminology; condition on sex.

Boxplots, by sport, with panel split by sex

qplot(sport, ht, data=ais, geom="boxplot",

facets = sex ~.)

The geometry tells all!

Linear Models, in the style of lm() (Ch 6 & Chx 3)

Linear model Any model that lm() will fit is a “linear” model.
lm() can fit highly non-linear forms of response!

Diagnostic Use plot() with the model object as argument,
plots to get a basic set of diagnostic plots.

termplot() If there are no interaction terms, use termplot() to
visualize the contributions of the different terms.
(Why are interactions a problem for lm()?)

Factors In model terms, use factors to model qualitative effects.

Model How should coefficients be interpreted? Examine the
matrices model matrix. (This is an especial issue for factors.)

GLMs Generalized Linear Models are an extension of linear
models, commonly used for analyzing counts.

[NB: lm() assumes independently & identically distributed (iid) errors,
perhaps after applying a weighting function.]

Models with Non-iid Errors (Ch 9 & Ch 10)

Error Term Errors do not have to be (and often are not) iid

Multi-level Multi-level models are a (relatively) simple type of non-iid
models model. Fit using lme() (nlme) or lmer() (lme4 package).

Such models allow different errors of prediction, depending
on the intended prediction. (The error term does matter!)

aov models For suitably balanced designs, these give the
information needed for a multi-level type of analysis.
[See Chapters 4 & 7 of DAAGUR]

Time Points that are close together in time are likely to show a
series (usually, positive) correlation. R’s acf() and arima()

functions are highly useful tools for time series.

Multivariate Models and Methods (Ch 12)

Ordination Principal components, multi-dimensional scaling [D-Ch 12]
Multivariate distances – do variables have equal weight?
Phylogenetics – distances are from evolutionary model.

2D or 3D Ordination may allow a low-dimensional view.
views Which view is best, or which is the “right” view

NB: The “view” can be rotated arbitrarily.

Classification Linear Discriminant Analysis [D-Ch 12]: simple.
methods Trees [D-Ch 11]: simple to fit; may be hard to interpret.

Random forests [Ch 11]: easy to fit, superior to trees?
Neural nets, SVMs: Watch for exaggerated claims!

Classify, then A clear criterion determines the distance measure.
ordinate Different classifications will give different axes (views).

Ordination (ss 12.1.2 & 12.1.3)

Road Distances example

Can we recover the geographical configuration?

Calculate distances from points in n-space

Is a “good”representation possible in dimension 2 or 3?

NB: How should variables be weighted? Equally?

Phylogenetics

Distances should reflect time from Last Common Ancestor!

C.f. the dist.dna() function in ape. Choose between:
raw, JC69, K80 (default), F81, K81, F84, BH87, T92, TN93, GG95,
logdet, & paralin.

Different models for evolutionary imply different distances.

There may not be a unique distance between two organisms.

Classification (Ch 11 & Sec 12.2)

Linear Methods (ss 12.2)

The notes have examples of the use of lda() and qda(), both from
the MASS package.

Tree-based Methods (Ch 11)

These are about as non-parametric as is possible – a strong contrast
with lda() and qda(). The notes demonstrate the use of rpart()
which generates trees, and of randomForest() which generates
forests of trees. The functions take their names from the packages in
which they are the main workhorses.

Key Language Ideas (Sec 14.8 & 14.9)

Classes Classes make generic functions (methods) possible.

Methods Examples are print(), plot(), summary(), etc.

S4 vs S3 S3 is the original implementation of classes & methods
S4, which uses the methods package, is more recent.

Formulae As of now, there are model, graphics and table formulae.
Formulae can be manipulated, just as with other objects.

Expressions They can be evaluated (of course!). They can also
be printed (on a graph)

Argument Argument lists can be constucted in advance, as a
lists list of named values, with do.call() then used

to pass the argument list to the function

Environments Environments hold various subtleties. There are basic
matters that it helps to know.

Additional Notes (Ch 14)

Errors in My attempt to input data has generated an error.
data input How can I locate it?

scan() scan() is a more flexible alternative to read.table()

sapply() sapply(), lapply() and apply() apply functions
& friends in parallel across all columns of a data frame

or ((apply()) across all rows or columns of a matrix.
Apply any function that will not generate an error.
[e.g., log("Hobart") is not allowed.]

Inf & friends The logarithm of zero returns -Inf. Take care!

Large datasets A little knowhow can save a load of time.

Workspaces Manage them carefully!

THE END

You may think that this is the end,
Well it is, but to prove we’re all liars,
We’re going to sing it again,
Only this time we’ll sing a little higher.

Actually, this is not the end, for there are many other analysis methods
and R packages to explore, even if not in this workshop!

	Introduction
	General
	General

	Overview of R
	
	
	
	
	
	
	
	
	

	The Working Environment of an R Session
	

	Worked Examples
	Objects and Functions
	
	
	
	
	
	
	
	
	
	

	Base Graphics
	Lattice Graphics
	
	

	A Graphics Language -- the Grammar of Graphics
	Fitting Statistical Models
	Linear models with iid errors

	Multivariate Models & Methods
	Key Language Ideas & Their Use
	Additional Notes

