A conjecture on the alphabet size needed to produce all correlation classes of pairs of words

Paul Leopardi

Thanks: Jörg Arndt, Michael Barnsley, Richard Brent, Sylvain Forêt, Judy-anne Osborn.

Mathematical Sciences Institute, Australian National University.
For presentation at 34th Australasian Conference on Combinatorial Mathematics and Combinatorial Computing ANU, December 2010.

Topics

- Analysis of the problem: missing words in a random string
- Word overlap correlations
- Enumeration of correlation classes
- The conjecture
- Other open problems

Analysis: missing words in a random string

We analyze the problem: find the distribution of the number of missing words in a random string.

Alphabet size is α, equally likely.
String length is N. Word length is T.

Words overlap. The string S contains $N-T+1$ words.
There are $\boldsymbol{\alpha}^{\boldsymbol{N}}$ possible strings $\boldsymbol{S}_{\boldsymbol{i}}, \boldsymbol{\alpha}^{\boldsymbol{T}}$ possible words $\boldsymbol{W}_{\boldsymbol{j}}$.
Define indicator $\boldsymbol{v}_{\boldsymbol{i}, \boldsymbol{j}}:=\mathbf{1} \Leftrightarrow$ word $\boldsymbol{W}_{\boldsymbol{j}}$ is missing from string $\boldsymbol{S}_{\boldsymbol{i}}$.

Number of missing words X

The number of words missing from string $\boldsymbol{S}_{\boldsymbol{i}}$ is

$$
X_{i}:=\sum_{j} v_{i, j}
$$

\boldsymbol{X} is the number of words missing from a random string S.
For constant $\boldsymbol{\lambda}:=\boldsymbol{N} / \boldsymbol{\alpha}^{\boldsymbol{T}}$ as $\boldsymbol{N} \rightarrow \infty$, \boldsymbol{X} is asymptotically normal. (Rukhin 2002)

Pair absence probability, generating functions

The probability that both words $\boldsymbol{W}_{\boldsymbol{j}}$ and $\boldsymbol{W}_{\boldsymbol{k}}$ are missing from a random string S is

$$
a_{j, k}:=\alpha^{-N} \sum_{i} v_{i, j} v_{i, k}
$$

Generating functions:

$$
\begin{gathered}
A_{j, k}:\left[z^{N}\right] A_{j, k}(z)=a_{j, k} \\
A_{j}:\left[z^{N}\right] A_{j}(z)=a_{j, j}
\end{gathered}
$$

Expected value, variance

The expected value of \boldsymbol{X} is

$$
\begin{aligned}
\mathrm{E}[X] & =\alpha^{-N} \sum_{i} X_{i}=\alpha^{-N} \sum_{i} \sum_{j} v_{i, j} \\
& =\sum_{j} a_{j, j}
\end{aligned}
$$

The variance is $\operatorname{var}[\boldsymbol{X}]=\mathbf{E}\left[\boldsymbol{X}^{2}-\boldsymbol{X}\right]-\mathbf{E}[\boldsymbol{X}]-\mathbf{E}[\boldsymbol{X}]^{2}$, with

$$
\begin{aligned}
\mathrm{E}\left[X^{2}-X\right] & =\alpha^{-N} \sum_{i} \sum_{j \neq k} v_{i, j} v_{i, k} \\
& =\sum_{j \neq k} a_{j, k}
\end{aligned}
$$

Word overlap correlation vectors

Words $\boldsymbol{B}, \boldsymbol{C}$ of length $\boldsymbol{T}, \boldsymbol{B}_{\mathbf{0}} \ldots \boldsymbol{B}_{\boldsymbol{T}-1}$ etc.
(Word overlap) correlation vector $\boldsymbol{B}: \boldsymbol{C}$:

$$
B: C_{s}=1 \Leftrightarrow B_{r+s}=C_{r}, r=0 \ldots T-S-1 .
$$

B
C

D	A	N	G	E	R	
A	N	G	E	R	S	
	A	N	G	E	R	S

$\boldsymbol{B}: \boldsymbol{C} \begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0\end{array}$

Correlation vectors $\boldsymbol{B}: \boldsymbol{B}, \boldsymbol{C}: \boldsymbol{C}$ are called autocorrelations.
(Guibas and Odlyzko 1981; Rivals and Rahmann 2003)

Correlation polynomials

For correlation vector \boldsymbol{v}, the correlation polynomial $\boldsymbol{P}_{\boldsymbol{v}}$ is

$$
P_{v}(z):=v_{0}+v_{1} z+\ldots+v_{T-1} z^{T-1}
$$

For $\boldsymbol{P}_{\boldsymbol{j}}:=\boldsymbol{P}_{\boldsymbol{W}_{\boldsymbol{j}}: \boldsymbol{W}_{\boldsymbol{j}}}$, the generating function $\boldsymbol{A}_{\boldsymbol{j}}$ is

$$
A_{j}(z)=\frac{P_{j}(z / \alpha)}{(z / \alpha)^{T}+(1-z) P_{j}(z / \alpha)}
$$

(Guibas and Odlyzko 1981; Rahmann and Rivals 2003, Lemma 2.1)

Correlation matrices and correlation classes

For $\boldsymbol{P}_{\boldsymbol{j}, \boldsymbol{k}}:=\boldsymbol{P}_{\boldsymbol{W}_{j}: \boldsymbol{W}_{\boldsymbol{k}}}$ etc. the correlation matrix is

$$
M_{j, k}(z):=\left[\begin{array}{ll}
P_{j, j}(z) & P_{j, k}(z) \\
P_{k, j}(z) & P_{k, k}(z)
\end{array}\right]
$$

Given $M:=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \quad$ define $M^{V}:=\left[\begin{array}{ll}m_{22} & m_{21} \\ m_{12} & m_{11}\end{array}\right]$, $R(M):=m_{11}+m_{22}-m_{12}-m_{21}$.

Define the equivalence class $[M]:=\left\{M, M^{T}, M^{V}, M^{T V}\right\}$, so

$$
\left[M_{j, k}(z)=M_{j, k}(z), M_{j, k}^{T}(z), M_{k, j}(z), M_{k, j}^{T}(z)\right\}
$$

Note $M^{\prime} \in[M] \Rightarrow \operatorname{det} M^{\prime}=\operatorname{det} M$ and $R\left(M^{\prime}\right)=\boldsymbol{R}(M)$.
(Rahmann and Rivals 2003, Lemma 3.2)

Generating function for pairs of words

For $Q_{j, k}(z):=\operatorname{det} M_{j, k}(z), \quad R_{j, k}(z):=R\left(M_{j, k}(z)\right)$, the generating function $\boldsymbol{A}_{\boldsymbol{j}, \boldsymbol{k}}$ for the pair $\boldsymbol{W}_{\boldsymbol{j}}, \boldsymbol{W}_{\boldsymbol{k}}$ is given by

$$
A_{j, k}(z)=\frac{Q_{j, k}(z / \alpha)}{(1-z) Q_{j, k}(z / \alpha)+(z / \alpha)^{T} R_{j, k}(z / \alpha)}
$$

(Rahmann and Rivals 2003, Lemma 3.2)
Also (Goulden and Jackson 1979, 1983; Guibas and Odlyzko 1981; Noonan and Zeilberger 1997; Rukhin 2002).

Set partitions, restricted growth strings

We could simply sum $a_{j, k}$ for all $\alpha^{2 T}-\alpha^{T}$ word pairs $\boldsymbol{W}_{\boldsymbol{j}} \neq \boldsymbol{W}_{\boldsymbol{k}}$, but we want to do this for $\boldsymbol{\alpha}$ from 2 to $\mathbf{2 T}$. (For $T=8,(2 T)^{T}=4294967296$.)
So instead we enumerate correlation classes and count the word pairs for each class.

Word pairs $\boldsymbol{W}_{\boldsymbol{j}}, \boldsymbol{W}_{\boldsymbol{k}}$ with $\boldsymbol{\beta}$ different letters
\rightarrow partition of $\{0, \ldots, 2 T-1\}$ into β nonempty subsets \leftrightarrow restricted growth string of length $\mathbf{2 T}$ with β different letters.
S is a restricted growth string if $\boldsymbol{S}_{\boldsymbol{k}} \leqslant \boldsymbol{S}_{j}+\mathbf{1}$ for each j from $\mathbf{0}$ to $\boldsymbol{k}-\mathbf{1}$, for \boldsymbol{k} from $\mathbf{1}$ to $\mathbf{2 T} \mathbf{- 1}$.

Set partitions, restricted growth strings

Each permutation of the alphabet preserves the correlation matrix. The set of word pairs with $\boldsymbol{\beta}$ different letters splits into orbits under $\mathbb{S}_{\boldsymbol{\alpha}}$ of size

$$
\frac{\alpha!}{(\alpha-\beta)!}
$$

The number of partitions of $\{\mathbf{0}, \ldots, \mathbf{2 T}-\mathbf{1}\}$ into exactly $\boldsymbol{\beta}$ nonempty subsets is the second kind Stirling number $S(2 T, \beta)$.

If $\alpha \leqslant \mathbf{2 T}$, the total number of word pairs is

$$
\alpha^{2 T}=\sum_{\beta=1}^{\alpha} \frac{\alpha!}{(\alpha-\beta)!} S(2 T, \beta)
$$

Enumeration by set partitions

Define $n[M](\alpha)=\sharp\left\{(j, k) \mid M_{j, k}=[M]\right\}$, the number of word pairs for correlation class $[M]$.

For $\boldsymbol{\alpha} \leqslant \mathbf{2 T}$, to determine all correlation classes $[M]$, and find $n[M](\alpha)$ for each,

Keep a count for each correlation class encountered so far; For each $\boldsymbol{\beta}$ from 1 to $\boldsymbol{\alpha}$:

- For each restricted growth string of length $2 T$ with exactly $\boldsymbol{\beta}$ different letters:

1. Find the correlation class for the corresponding word pair;
2. Add $\frac{\alpha!}{(\alpha-\beta)!}$ to the count for the class.

Number of correlation classes

Define $b(T, \alpha)$ to be the number of correlation classes for unequal strings of length \boldsymbol{T} and alphabet size $\boldsymbol{\alpha}$.

The set of classes remains unchanged for $\alpha>2 \boldsymbol{T}$.

The number of classes $\boldsymbol{b}(\boldsymbol{T}, \boldsymbol{\alpha})$ for small \boldsymbol{T} is:

α	1	2	3	4	5	6	7	8	9	10	11	12
2	1	3	11	31	87	193	415	839	1632	3004	5234	8747
3	1	6	20	54	141	322	655	1322	2506	4577	7882	13182
4	1	6	20	55	141	324	657	1329	2515	4592	7897	13221
5	1	6	20	55	141	324	657	1329	2515	4592	7897	$?$
$2 T$	1	6	20	55	141	324	657	1329	2515	4592	$?$	$?$

See A152139, A152959, Online Encyclopedia of Integer Sequences.

Are 4 characters enough?

Does $b(T, 4)=b(T, 2 T)$ for all T ?

Precedent: Guibas and Odlyzko (1981) showed that the set of autocorrelations of words of length \boldsymbol{T} in an alphabet of size $\boldsymbol{\alpha}>\mathbf{2}$ is the same as for a binary alphabet.
(Leopardi 2008, Guibas and Odlyzko 1981)

A simple case

Guibas and Odlyzko's result directly implies that for a pair of words, $\boldsymbol{X}, \boldsymbol{Y} \in \Sigma^{T},|\boldsymbol{\Sigma}|=\alpha$, if $\boldsymbol{X}: \boldsymbol{Y}=\mathbf{0} \ldots \mathbf{0}$ and $\boldsymbol{Y}: \boldsymbol{X}=\mathbf{0} \ldots \mathbf{0}$, then there exists $\boldsymbol{X}^{\prime} \in\left\{{ }^{6} a^{\prime},{ }^{\prime} b^{\prime}\right\}^{\boldsymbol{T}}$, $\boldsymbol{Y}^{\prime} \in\left\{{ }^{6} \boldsymbol{c}^{\prime},{ }^{6} \boldsymbol{d}^{\prime}\right\}^{\boldsymbol{T}}$ such that $\boldsymbol{X}^{\prime}, \boldsymbol{Y}^{\prime}$ has the same correlation class as $\boldsymbol{X}, \boldsymbol{Y}$.

Observations for $T \leq 10$

- For $\boldsymbol{X}, \boldsymbol{Y} \in \Sigma^{T},|\Sigma|=\alpha>4, X^{\prime}, Y^{\prime}$ can be found in an alphabet of size $\mathbf{3}$.
- For $\alpha=4$ some correlation classes can only be formed from a pair $\boldsymbol{X}, \boldsymbol{Y}$ with exactly $\mathbf{4}$ different characters.

Example program output for $T=9$

```
beta == 4 (number of different characters in the word pair)
    X==ABACDABAC; Y==DABACDABA;
XX==100001000; YY==100001000;
XY==000010000; YX==010000101;
*** NEW CORRELATION CLASS ***
beta == 5 (number of different characters in the word pair)
    X==AAAAAABCD; Y==BCDEAAAAA;
XX==100000000; YY==100000000;
XY==000000100; YX==000011111;
pX==AAAAAABAC; pY==BACBAAAAA;
```


Possible proof strategies?

- Keep trying to find a counterexample for $\boldsymbol{T}>\mathbf{1 0}$?
- Try induction on \boldsymbol{T} ? Conjecture is trivially true for $\boldsymbol{T} \leq \mathbf{2}$, verified for $\boldsymbol{T} \leq \mathbf{1 0}$.
- Enumerate cases based on periods of \boldsymbol{X} and \boldsymbol{Y} versus number of leading zeros of $\boldsymbol{X}: \boldsymbol{Y}$ and $\boldsymbol{Y}: \boldsymbol{X}$?
- Try to prove simpler related statements, e.g. about the three autocorrelations of a word $\boldsymbol{X}=\boldsymbol{P Q}=\boldsymbol{R} \boldsymbol{S}$, the prefix \boldsymbol{P} and the suffix \boldsymbol{S} ? How large an alphabet is needed to produce all triples $(X: X, P: P, S: S)$? 3 ? 4 ? More?
- Look at polynomials in the adjacency matrix of the de Bruijn graph, take limit as $\boldsymbol{T} \rightarrow \infty$. Relate the conjecture to properties of pairs of infinite words, iterated function systems?
- Try to produce an automated proof, using e.g. Isabelle?

Polynomials in de Bruijn matrices

Consider (e.g.) the matrix

$$
A_{3,2}:=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

This is the adjacency matrix of the de Bruijn graph for $\{\text { ' } a \text { ', ' } b \text { ', ' } c \text { ' }\}^{2}$, ($\alpha=\mathbf{3}, T=\mathbf{2}$), where the words are taken in lexicographic order. Now form $C=P\left(x A_{\alpha, T}\right)$, where $\boldsymbol{P}(z)=\sum_{k=0}^{T-1} z^{k}$. Then $\boldsymbol{C}_{i, j}$ is the correlation polynomial $\boldsymbol{P}_{\boldsymbol{i}, \boldsymbol{j}}$.
(de Bruijn 1946; Rukhin 2001, 2006)

Some other open problems

1. "Characterize and efficiently enumerate $\mathbf{2} \times \mathbf{2}$, and more generally, $\boldsymbol{k} \times \boldsymbol{k}$ matrices of correlation vectors between \boldsymbol{k} pairwise different [words], and find the number of such matrices.
Compute the number of \boldsymbol{k}-tuples of words that share a given correlation matrix."
(Rahmann and Rivals 2003)
2. For $T>2, \lambda:=N / \alpha^{T}$ constant as $N \rightarrow \infty$, find a high order asymptotic expansion for $\operatorname{var}[\boldsymbol{X}]$.
(Rukhin 2002; Rahmann and Rivals 2003)
