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Analysis: missing words in a random string

We analyze the problem: find the distribution of
the number of missing words in a random string.

Alphabet size is α , equally likely.

String length is N . Word length is T .

Words overlap. The string S contains N − T + 1 words.

There are αN possible strings Si , αT possible words Wj .

Define indicator vi,j := 1⇔ word Wj is missing from string Si .
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Number of missing words X

The number of words missing from string Si is

Xi :=
∑
j

vi,j.

X is the number of words missing from a random string S .

For constant λ := N/αT as N →∞ ,
X is asymptotically normal. (Rukhin 2002)
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Pair absence probability, generating functions

The probability that both words Wj and Wk are
missing from a random string S is

aj,k := α−N
∑
i

vi,jvi,k.

Generating functions:

Aj,k : [zN ]Aj,k(z) = aj,k,

Aj : [zN ]Aj(z) = aj,j.



The original problem Correlations Enumeration The conjecture Other open problems

Expected value, variance

The expected value of X is

E[X] = α−N
∑
i

Xi = α−N
∑
i

∑
j

vi,j

=
∑
j

aj,j.

The variance is var[X] = E[X2 −X]− E[X]− E[X]2 , with

E[X2 −X] = α−N
∑
i

∑
j 6=k

vi,jvi,k

=
∑
j 6=k

aj,k.
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Word overlap correlation vectors

Words B,C of length T , B0 . . . BT−1 etc.

(Word overlap) correlation vector B:C :
B:Cs = 1⇔ Br+s = Cr , r = 0 . . . T − S − 1 .

B D A N G E R
C A N G E R S

A N G E R S
. . .

B:C 0 1 0 0 0 0

Correlation vectors B:B,C:C are called autocorrelations.

(Guibas and Odlyzko 1981; Rivals and Rahmann 2003)
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Correlation polynomials

For correlation vector v , the correlation polynomial Pv is

Pv(z) := v0 + v1z + . . .+ vT−1z
T−1.

For Pj := PWj :Wj , the generating function Aj is

Aj(z) =
Pj(z/α)

(z/α)T + (1− z)Pj(z/α)
.

(Guibas and Odlyzko 1981; Rahmann and Rivals 2003, Lemma 2.1)
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Correlation matrices and correlation classes

For Pj,k := PWj :Wk etc. the correlation matrix is

Mj,k(z) :=
[
Pj,j(z) Pj,k(z)
Pk,j(z) Pk,k(z)

]
.

Given M :=
[
m11 m12

m21 m22

]
define MV :=

[
m22 m21

m12 m11

]
,

R(M) := m11 +m22 −m12 −m21.

Define the equivalence class [M ] := {M,MT ,MV ,MTV } , so

[Mj,k(z) = Mj,k(z),MT
j,k(z),Mk,j(z),MT

k,j(z)}.

Note M ′ ∈ [M ]⇒ detM ′ = detM and R(M ′) = R(M) .
(Rahmann and Rivals 2003, Lemma 3.2)
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Generating function for pairs of words

For Qj,k(z) := detMj,k(z), Rj,k(z) := R(Mj,k(z)) , the
generating function Aj,k for the pair Wj,Wk is given by

Aj,k(z) =
Qj,k(z/α)

(1− z)Qj,k(z/α) + (z/α)TRj,k(z/α)
.

(Rahmann and Rivals 2003, Lemma 3.2)

Also (Goulden and Jackson 1979, 1983; Guibas and Odlyzko 1981;
Noonan and Zeilberger 1997; Rukhin 2002).
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Set partitions, restricted growth strings

We could simply sum aj,k for all α2T − αT word pairs
Wj 6= Wk , but we want to do this for α from 2 to 2T .
(For T = 8 , (2T )T = 4 294 967 296 .)
So instead we enumerate correlation classes and count the word
pairs for each class.

Word pairs Wj ,Wk with β different letters
→ partition of {0, . . . , 2T − 1} into β nonempty subsets
↔ restricted growth string of length 2T with β different letters.

S is a restricted growth string if Sk 6 Sj + 1
for each j from 0 to k − 1 , for k from 1 to 2T − 1 .
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Set partitions, restricted growth strings

Each permutation of the alphabet preserves the correlation matrix.
The set of word pairs with β different letters splits into orbits
under Sα of size

α!

(α− β)!
.

The number of partitions of {0, . . . , 2T − 1} into exactly β
nonempty subsets is the second kind Stirling number S(2T, β) .

If α 6 2T , the total number of word pairs is

α2T =
α∑
β=1

α!

(α− β)!
S(2T, β).
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Enumeration by set partitions

Define n[M ](α) = ]{(j, k) |Mj,k = [M ]} ,
the number of word pairs for correlation class [M ] .

For α 6 2T , to determine all correlation classes [M ] ,
and find n[M ](α) for each,

Keep a count for each correlation class encountered so far;
For each β from 1 to α :

I For each restricted growth string of length 2T with
exactly β different letters:

1. Find the correlation class for the corresponding word pair;
2. Add α!

(α−β)!
to the count for the class.
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Number of correlation classes

Define b(T, α) to be the number of correlation classes for
unequal strings of length T and alphabet size α .

The set of classes remains unchanged for α > 2T .

The number of classes b(T, α) for small T is:

α 1 2 3 4 5 6 7 8 9 10 11 12
2 1 3 11 31 87 193 415 839 1632 3004 5234 8747
3 1 6 20 54 141 322 655 1322 2506 4577 7882 13182
4 1 6 20 55 141 324 657 1329 2515 4592 7897 13221
5 1 6 20 55 141 324 657 1329 2515 4592 7897 ?

2T 1 6 20 55 141 324 657 1329 2515 4592 ? ?

See A152139, A152959, Online Encyclopedia of Integer Sequences.
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Are 4 characters enough?

Does b(T, 4) = b(T, 2T ) for all T ?

Precedent: Guibas and Odlyzko (1981) showed that the set of
autocorrelations of words of length T in an alphabet of size
α > 2 is the same as for a binary alphabet.

(Leopardi 2008, Guibas and Odlyzko 1981)
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A simple case

Guibas and Odlyzko’s result directly implies that for a pair of
words, X,Y ∈ ΣT , |Σ| = α , if X:Y = 0 . . . 0 and
Y :X = 0 . . . 0 , then there exists X′ ∈ {‘a′, ‘b′}T ,
Y ′ ∈ {‘c′, ‘d′}T such that X′, Y ′ has the same correlation
class as X,Y.
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Observations for T ≤ 10

I For X,Y ∈ ΣT , |Σ| = α > 4, X′, Y ′ can be found in
an alphabet of size 3 .

I For α = 4 some correlation classes can only be formed from
a pair X,Y with exactly 4 different characters.
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Example program output for T = 9

...
beta == 4 (number of different characters in the word pair)
...
X==ABACDABAC; Y==DABACDABA;

XX==100001000; YY==100001000;
XY==000010000; YX==010000101;
*** NEW CORRELATION CLASS ***
...
beta == 5 (number of different characters in the word pair)
...
X==AAAAAABCD; Y==BCDEAAAAA;

XX==100000000; YY==100000000;
XY==000000100; YX==000011111;
pX==AAAAAABAC; pY==BACBAAAAA;
...
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Possible proof strategies?

I Keep trying to find a counterexample for T > 10?

I Try induction on T ? Conjecture is trivially true for T ≤ 2 ,
verified for T ≤ 10 .

I Enumerate cases based on periods of X and Y versus
number of leading zeros of X:Y and Y :X?

I Try to prove simpler related statements, e.g. about the three
autocorrelations of a word X = PQ = RS , the prefix P
and the suffix S? How large an alphabet is needed to
produce all triples (X:X,P :P, S:S)? 3? 4? More?

I Look at polynomials in the adjacency matrix of the de Bruijn
graph, take limit as T →∞ . Relate the conjecture to
properties of pairs of infinite words, iterated function systems?

I Try to produce an automated proof, using e.g. Isabelle?
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Polynomials in de Bruijn matrices

Consider (e.g.) the matrix

A3,2 :=

26666666666664

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

37777777777775
.

This is the adjacency matrix of the de Bruijn graph for { ‘a’,‘b’,‘c’}2,
(α = 3, T = 2 ), where the words are taken in lexicographic order.
Now form C = P (xAα,T ) , where P (z) =

PT−1
k=0 z

k .
Then Ci,j is the correlation polynomial Pi,j .

(de Bruijn 1946; Rukhin 2001, 2006)
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Some other open problems

1. “Characterize and efficiently enumerate 2× 2 , and more
generally, k × k matrices of correlation vectors between k
pairwise different [words], and find the number of such
matrices.
Compute the number of k -tuples of words that share a given
correlation matrix.”
(Rahmann and Rivals 2003)

2. For T > 2 , λ := N/αT constant as N →∞ ,
find a high order asymptotic expansion for var[X] .
(Rukhin 2002; Rahmann and Rivals 2003)
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