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Approximating Clifford functions

Motivation

Functions in Clifford algebras are a special case of matrix
functions, as can be seen via representation theory. The square
root and logarithm functions, in particular, pose problems for the
author of a general purpose library of Clifford algebra functions.
This is partly because the principal square root and logarithm of a
matrix do not exist for a matrix containing a negative eigenvalue.
(Higham 2008)
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Problems

1. Define the square root and logarithm of a multivector in the
case where the matrix representation has negative eigenvalues.

2. Predict or detect negative eigenvalues.
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Topics

I Clifford algebras

I Clifford algebras and transformations

I Functions in Clifford algebras

I Dealing with negative eigenvalues

I Predicting negative eigenvalues?

I Detecting negative eigenvalues
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Clifford algebras

The exterior product

I For x and y in Rn , making angle θ , the exterior (outer)
product x ∧ y is a directed area in the plane of x and y :

|x ∧ y| = ‖x‖ ‖y‖ sin θ
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(Grassmann 1844; Lasenby and Doran 1999; Lounesto 1997)
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Clifford algebras

Properties of exterior product

I The exterior product is anticommutative on vectors:

x ∧ y = −y ∧ x ∀x, y ∈ Rn

I and distributive:

x ∧ (y + z) = x ∧ y + x ∧ z ∀x, y, z

I x ∧ y is a bivector for vectors x 6= y

I Bivectors form a linear space

(Grassmann 1844; Lasenby and Doran 1999)
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Clifford algebras

The geometric product

I The geometric product of vectors in Rn is:

xy = x · y + x ∧ y ∀x, y ∈ Rn

I Sum of scalar and bivector

I Encodes the angle between x and y

yx = y · x+ y ∧ x = x · y − x ∧ y

x · y =
1

2
(xy + yx)

x ∧ y =
1

2
(xy − yx) ∀x, y ∈ Rn

(Clifford 1878; Lasenby and Doran 1999)
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Clifford algebras

Multivectors

I A vector space closed under the geometric product is a
Clifford algebra

I Elements are called multivectors

I A multivector is a 0 -vector (scalar), plus a 1 -vector (vector),
plus a 2 -vector (bivector), plus . . . an n -vector
(pseudoscalar)

I Formal definition uses quadratic forms

(Lasenby and Doran 1999)
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Clifford algebras

Quadratic forms

For vector space V over field K , characteristic 6= 2 :

I Map q : V → K , with

q(rx) = r2q(x), ∀r ∈ K, x ∈ V

I q(x) = b(x, x) , where

b : V × V → K, given by

b(x, y) :=
1

2
(q(x+ y)− q(x)− q(y))

is a symmetric bilinear form

(Lounesto 1997)
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Clifford algebras

Quadratic spaces, Clifford maps

I A quadratic space is the pair (V, q) , where q is a quadratic
form on V

I A Clifford map is a vector space homomorphism

ϕ : V → A

where A is an associative algebra, and

(ϕv)2 = q(v) ∀v ∈ V

(Porteous 1995; Lounesto 1997)
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Clifford algebras

Universal Clifford algebras

I The universal Clifford algebra Cl(q) for the quadratic space
(V, q) is the algebra generated by the image of the Clifford
map ϕq such that Cl(q) is the universal initial object such
that ∀ suitable algebras A with Clifford map ϕA ∃ a
homomorphism

ρA : Cl(q)→ A
ϕA = ρA ◦ ϕq

(Lounesto 1997)
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Clifford algebras

Real quadratic forms

I A real symmetric matrix determines a real quadratic form, eg.

q(x) := 3x2
1 + 2x1x2 − 2x2

2

= xTBx where

B :=
[

3 1
1 −2

]

(Lounesto 1997)
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Clifford algebras

Canonical quadratic forms

I A real symmetric matrix can be diagonalized
I Sylvester’s theorem implies ∃ unique canonical quadratic

form φ(x) , eg.

B :=

»
3 1
1 −2

–
= S

T
QS, with

S :=

24 √3
q

1
3

0
q

7
3

35 , Q :=

»
1 0
0 −1

–

so we can define φ(x) := xTQx = x2
1 − x2

2

(Sobolev 1964; Lipschutz 1968)
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Clifford algebras

Construction of real Clifford algebras

Each real Clifford algebra Rp,q is a real associative algebra
generated by n = p+ q anticommuting generators, p of which
square to 1 and q of which square to -1.
(Braden 1985; Lam and Smith 1989; Porteous 1995; Lounesto 1997)
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Clifford algebras

Start with a group of signed integer sets

Generators: {k} where k ∈ Z∗ .

Relations: Element (−1) in the centre.

(−1)2 = 1,

(−1){k} = {k}(−1) (for all k),

{k}2 =

{
(−1) (k < 0),
1 (k > 0),

{j}{k} = (−1){k}{j} (j 6= k).

Canonical ordering:
{j, k, `} := {j}{k}{`} (j < k < `), etc.

Product of signed sets is signed XOR.

(Braden 1985; Lam and Smith 1989; Lounesto 1997; Dorst 2001)
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Clifford algebras

Extend to a real linear algebra

Overall vector space RZ∗ :
Real (finite) linear combination of Z∗ sets.

v =
∑

S⊂Z∗
vSS.

Multiplication: Extends group multiplication.

vw =
∑

S∈Z∗
vSS

∑
T⊂Z∗

wTT

=
∑

S∈Z∗

∑
T⊂Z∗

vSwTST.

(Braden 1985; Lam and Smith 1989; Wene 1992; Lounesto 1997; Dorst 2001; Ashdown)
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Clifford algebras

Usual notation for real Clifford algebras Rp,q

The real Clifford algebra Rp,q uses subsets of {−q, . . . , p}∗ .

Underlying vector space is Rp,q :
real linear combinations of the generators
{−q}, . . . , {−1}, {1}, . . . , {p} .

Conventionally (not always) e1 := {1}, . . . , ep := {p},
ep+1 := {−q}, . . . , ep+q := {−1} .

Conventional order of product is then es1
1 es2

2 . . . esp+q

p+q .
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Clifford algebras

Some examples of Clifford algebras

R0,0 ≡ R.

R0,1 ≡ R + R{−1} ≡ C.

R1,0 ≡ R + R{1} ≡ 2R.

R1,1 ≡ R + R{−1}+ R{1}+ R{−1, 1} ≡ R(2).

R0,2 ≡ R + R{−2}+ R{−1}+ R{−2,−1} ≡ H.
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Clifford algebras

Matrix representations of Clifford algebras

Each Clifford algebra Rp,q is isomorphic to a matrix algebra over
R , 2R := R + R , C , H or 2H per the following table, with
periodicity of 8. The R and 2R matrix algebras are highlighted in
red.

q
p 0 1 2 3 4 5 6 7

0 R C H 2H H(2) C(4) R(8) 2R(8)

1 2R R(2) C(2) H(2) 2H(2) H(4) C(8) R(16)

2 R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8) C(16)

3 C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8) H(16)

4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16)

5 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32)

6 H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64) C(64)

7 C(8) H(8) 2H(8) H(16) C(32) R(32) 2R(64) R(128)

(Hile and Lounesto 1990; Porteous 1995; Lounesto 1997; Leopardi 2004)
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Clifford algebras

Real representations

A real matrix representation is obtained by representing each
complex or quaternion value as a real matrix. Representation is a
linear map, producing 2n × 2n real matrices for some n .

R0,1 ≡ C : ρ(x+ y{−1}) =
[
x −y
y x

]

R1,0 ≡ 2R : ρ(x+ y{1}) =
[
x y
y x

]
R0,2 ≡ H :

ρ(w + x{−2}+ y{−1}+ z{−2,−1} ) =


w −y −x z
y w −z −x
x −z w −y
z x y w


(Cartan and Study 1908; Porteous 1969; Lounesto 1997)
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Clifford algebras

Real chessboard

q →
p 0 1 2 3 4 5 6 7
↓ 0 1 2 4 8 8 8 8 16

1 2 2 4 8 16 16 16 16
2 2 4 4 8 16 32 32 32
3 4 4 8 8 16 32 64 64
4 8 8 8 16 16 32 64 128
5 16 16 16 16 32 32 64 128
6 16 32 32 32 32 64 64 128
7 16 32 64 64 64 64 128 128

(Cartan and Study 1908; Porteous 1969; Lounesto 1997)



Approximating Clifford functions

Clifford algebras

Inner product and norm

Normalized Frobenius inner product:
For v, w ∈ Rp,q, ρ(v) = V, ρ(w) = W ∈ R(2n) ,

v • w :=
∑

T⊂{−q,...,p}∗
vTwT

= 2−n
2n∑

j=1

2n∑
k=1

Vj,kWj,k.

Norm: Induced by normalized Frobenius inner product.

‖v‖ :=
√
v • v.

(Gilbert and Murray 1991)
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Clifford algebras and transformations

Clifford algebra automorphisms and
antiautomorphisms

The grade automorphism: x̂
The unique automorphism such that ̂̂x = x and
v̂ = −v for v ∈ Rp,q .

The reversal antiautomorphism: x̃
The antiautomorphism such that
˜{j}{k} = {k}{j}

(reverses order of generators in all terms).

The Clifford conjugate: x
The antiautomorphism x := ̂̃x = ˜̂x .
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Clifford algebras and transformations

Z2 grading of the Clifford algebras

The Z grading of Clifford algebras into scalars, vectors, bivectors,
trivectors, etc. does not survive multiplication,
but the Z2 (odd, even) grading is respected.

Scalars are even graded, vectors are odd graded.
Even grade × odd grade = odd grade.
Odd grade × odd grade = even grade.

The even grade elements of Rp,q (linear combinations of scalars,
bivectors, etc.) form the even subalgebra R0

p,q .
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Clifford algebras and transformations

Transformations and the Clifford group

The invertible elements of Rp,q form a multiplicative group, R∗p,q .
g ∈ R∗p,q acts on x ∈ Rp,q by a twisted adjoint action:

g : x 7→ gxĝ−1.

where ̂ is the grade involution automorphism of Rp,q .

The Clifford group (aka Lipschitz group) is the subgroup
Γp,q ⊂ R∗p,q which maps vectors to vectors,
i.e. g ∈ Γp,q acts on v ∈ Rp,q by:

g : v 7→ gvĝ−1 ∈ Rp,q.

(Lounesto 1997)
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Clifford algebras and transformations

The Pin and Spin groups

The quadratic norm usually used with x ∈ Rp,q is
Q(x) := 〈xx̃〉 , where 〈x〉 is the scalar part of x .
The Pin group Pin(p, q) is then

Pin(p, q) := {g ∈ Γp,q | Q(g) = ±1}.

The Spin group Spin(p, q) is the even part of Pin(p, q) .

Spin(p, q) := Pin(p, q) ∩ R0
p,q.

(Lounesto 1997, Doran and Lasenby 2003)
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Clifford algebras and transformations

Why study logarithms in Rp,q ?

The exponential is common in the study of Rp,q .
If x is a bivector, then exp(x) ∈ Spin(p, q) .
Elements of Spin(p, q) are called rotors.

In general, the exponential can be used to create one-parameter
subgroups of the group R∗p,q .

The logarithm can then be used to interpolate between group
elements – with care because in general
exp(x + y) 6= exp(x) exp(y) .
(Lounesto 1992; Wareham, Cameron and Lasenby 2005)
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Functions in Clifford algebras

Definition of matrix functions

For a function f analytic in Ω ⊂ C ,

f(X) :=
1

2πi

∫
∂Ω
f(z) (zI −X)−1 dz,

where the spectrum Λ(X) ⊂ Ω .

For f analytic on an open disk D ⊃ Λ(X) with 0 ∈ D ,

f(X) =
∞∑

k=0

f (k)(0)

k!
Xk.

For invertible Y, f(Y XY −1) = Y f(X)Y −1 .

(Rinehart 1955; Golub and van Loan 1983, 1996; Horn and Johnson 1994)
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Functions in Clifford algebras

Functions in Clifford algebras

For f analytic in Ω ⊂ C , x in a Clifford algebra,

f(x) :=
1

2πi

∫
∂Ω
f(z) (z − x)−1 dz,

where the spectrum Λ(ρx) ⊂ Ω , with ρx the matrix
representing x .
(Higham 2008)
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Functions in Clifford algebras

Principal square root and logarithm

Let X be a matrix in Rn×n with no negative (real) eigenvalues.

The principal square root
√
X is the unique square root of X

having all its eigenvalues in the open right half plane of C .

The principal logarithm log(X) is the unique logarithm of X
having all its eigenvalues in the open strip

{λ | −π < Imag(λ) < π}.

Both the principal square root and the principal logarithm are real
matrices.
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Functions in Clifford algebras

Padé approximation

For function f with power series

f(z) =
∞∑

k=0

fkz
k,

the (m,n) Padé approximant is the ratio

am(z)

bn(z)
,

of polynomials am, bn of degree m,n such that

|f(z) bn(z)− am(z)| = O(zm+n+1).

(Padé; Zeilberger 2002)
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Functions in Clifford algebras

Padé square root

For (|z| 6 1) :

√
1− z = 1−

1

2
z −

1

8
z2 −

1

16
z3 −

5

128
z4 − . . .

For Z := I −X where ‖Z‖ is “small”, use (n, n) Padé
approximant

√
X =

√
I − Z ' an(Z)bn(Z)−1.

(Newton; Padé)
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Functions in Clifford algebras

Denman–Beavers square root

If X has no negative eigenvalues, the iteration

M0 := Y0 := X,

Mk+1 :=
Mk +M−1

k

4
+
I

2
,

Yk+1 := Yk
I +M−1

k

2

has Yk →
√
X and Mk → I as k→∞ .

This iteration is numerically stable.

(Denman, Beavers 1976; Cheng, Higham, Kenney, Laub 1999)
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Functions in Clifford algebras

Cheng–Higham–Kenney–Laub logarithm

log(1− z) = −
∞∑

k=1

zk

k
(|z| ≤ 1, z 6= 1).

Assume X has no negative eigenvalues.
Since log(X) = 2 log(

√
X) ,

1. iterate square roots until ‖I −X‖ is “small”,

2. use a Padé approximant to log(I−Z) , where Z := I−X ,

3. rescale.

C-H-K-L’s “incomplete square root cascade”:

I Stop Denman–Beavers iterations early, estimate error in log.

(Cheng, Higham, Kenney, Laub 1999)
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Dealing with negative eigenvalues

The real and complex case

A negative real number does not have a real square root or a real
logarithm. Solution: R ⊂ C .
For x < 0 and complex c 6= 0 ,

√
x =

√
1/c
√
cx,

log(x) = log(cx)− log c,

For example, if c = −1 then,

√
x = i

√
−x,

log(x) = log(−x)− iπ,



Approximating Clifford functions

Dealing with negative eigenvalues

The general multivector case (1)

Only a little more complicated. Each real Clifford algebra A is a
subalgebra of a real Clifford algebra C , containing the
pseudoscalar i , such that i2 = −1 and such that the subalgebra
generated by i is

I the centre Z(C) of C ; and

I isomorphic to C as a real algebra.

Thus C is isomorphic to an algebra over C .
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Dealing with negative eigenvalues

The general multivector case (2)

For x ∈ A and any c ∈ Z(C) with c 6= 0 , if cx has no
negative eigenvalues, we can define

sqrt(x) :=
√

1/c
√
cx,

log(x) := log(cx)− log c,

where the square root and logarithm of cx on the RHS are
principal.
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Dealing with negative eigenvalues

Examples of A ⊂ C

C is an algebra with i : i2 = −1 , ix = xi for all x ∈ C :
Full C matrix algebra.

Embeddings:

R ≡ R0,0 ⊂ R0,1 ≡ C.

2R ≡ R1,0 ⊂ R1,2 ≡ C(2).

R(2) ≡ R1,1 ⊂ R1,2 ≡ C(2).

H ≡ R0,2 ⊂ R1,2 ≡ C(2).
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Dealing with negative eigenvalues

Complex chessboard

q →
p 0 1 2 3 4 5 6 7
↓ 0 1 1 2 4 4 4 8 16

1 2 2 2 4 8 8 8 16
2 2 4 4 4 8 16 16 16
3 2 4 8 8 8 16 32 32
4 4 4 8 16 16 16 32 64
5 8 8 8 16 32 32 32 64
6 8 16 16 16 32 64 64 64
7 8 16 32 32 32 64 128 128

(Cartan and Study 1908; Porteous 1969; Lounesto 1997)
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Dealing with negative eigenvalues

Real–complex chessboard

q →
p 0 1 2 3 4 5 6 7
↓ 0 1 2 4 8 8 8 8 16

1 2 2 4 8 16 16 16 16
2 2 4 4 8 16 32 32 32
3 4 4 8 8 16 32 64 64
4 8 8 8 16 16 32 64 128
5 16 16 16 16 32 32 64 128
6 16 32 32 32 32 64 64 128
7 16 32 64 64 64 64 128 128

(Cartan and Study 1908; Porteous 1969; Lounesto 1997)
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Dealing with negative eigenvalues

Example: 2R ≡ R1,0

2R ≡ R1,0 ⊂ R1,2 ⊂ R2,2 ≡ R(4).

ρ(x+ y{1}) =


x y
y x

x y
y x



i =


1 0
0 −1

−1 0
0 1


(Cartan and Study 1908; Porteous 1969; Lounesto 1997)
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Dealing with negative eigenvalues

Definitions of sqrt and log

When the matrix representing x has a negative eigenvalue and no
imaginary eigenvalues, define

sqrt(x) :=
1 + i
√

2
sqrt(−ix),

log(x) := log(−ix) + i
π

2
,

where i2 = −1 and ix = xi .

When x also has imaginary eigenvalues, the real matrix
representing −ix has negative eigenvalues. Find some φ such
that exp(iφ)x does not have negative eigenvalues, and define

sqrt(x) := exp
(
− i

φ

2

)
sqrt

(
exp(iφ)x

)
,

log(x) := log
(
exp(iφ)x

)
− iφ.
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Dealing with negative eigenvalues

Examples

Let e1 := {1}. Eigenvalues of real matrix are −1 and 1 .
We have

sqrt(e1) =
1

2
+

1

2
{1} −

1

2
{2, 3}+

1

2
{1, 2, 3},

log(e1) = −
π

2
{2, 3}+

π

2
{1, 2, 3}.

Check: sqrt(e1)× sqrt(e1) = e1 and exp(log(e1)) = e1 .

Let v := −2{1}+ 2{2} − 3{3} ∈ R3,0. The real matrix has
eigenvalues near −4.12311 and 4.12311 . We have

sqrt(v) :'1.015− 0.4925{1}+ 0.4925{2} − 0.7387{3}
+0.7387{1, 2}+ 0.4925{1, 3}+ 0.4925{2, 3}
+1.015{1, 2, 3},

log(v) :'1.417 + 1.143{1, 2}+ 0.7619{1, 3}+ 0.7619{2, 3}
+1.571{1, 2, 3}.
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Predicting negative eigenvalues?

Predicting negative eigenvalues?

In Clifford algebras with a faithful irreducible complex or quaternion
representation, a multivector with independent N(0, 1) random
coefficients is unlikely to have a negative eigenvalue. In large
Clifford algebras with an irreducible real representation, such a
random multivector is very likely to have a negative eigenvalue.
(Ginibre 1965; Edelman, Kostlan and Shub 1994; Edelman 1997; Forrester and Nagao 2007)
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Predicting negative eigenvalues?

Predicting negative eigenvalues?

Probability of a negative eigenvalue is denoted by shades of red.

q
p 0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

This phenomenon is a direct consequence of the eigenvalue density
of the Ginibre ensembles.
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Predicting negative eigenvalues?

Real Ginibre ensemble

Eigenvalue density of real representations of Real Ginibre ensemble.
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Predicting negative eigenvalues?

Complex Ginibre ensemble

Eigenvalue density of real representations of Complex Ginibre
ensemble.
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Predicting negative eigenvalues?

Quaternion Ginibre ensemble

Eigenvalue density of real representations of Quaternion Ginibre
ensemble.
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Detecting negative eigenvalues

Detecting negative eigenvalues

Trying to predict negative eigenvalues using the p and q of Rp,q

is futile. Negative eigenvalues are always possible, since Rp,q

contains Rp′,q′ for all p′ 6 p and q′ 6 q .

The eigenvalue densities of the Ginibre ensembles simply make
testing more complicated.

In the absence of an efficient algorithm to detect negative
eigenvalues only, it is safest to use a standard algorithm to find all
eigenvalues.
(Higham 2008).
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Detecting negative eigenvalues

Schur form and QR algorithm

Schur form:
Block triangular, eigenvalues on diagonal. Eg.

T =


−2 7 19 3i

−2 −5 0
i 1

9


QR algorithm:

Iterative algorithm for Schur decomposition
X = QTQ∗ : originally iterated QR decomposition.

Schur form is more numerically stable than Jordan form.

(Golub and van Loan 1983, 1996; Davies and Higham 2002; Higham 2008)
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Detecting negative eigenvalues

Further problem

Devise an algorithm which detects negative eigenvalues only, and is
more efficient than standard eigenvalue algorithms.
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Detecting negative eigenvalues

GluCat — Clifford algebra library

I Generic library of universal Clifford algebra templates.

I C++ template library for use with other libraries.

I Implements algorithms for matrix functions.

I PyCliCal: Prototype Clifford algebra Python extension module.

For details, see http://glucat.sf.net

(Lounesto et al. 1987; Lounesto 1992; Raja 1996; Leopardi 2001-2010)


	Clifford algebras
	Clifford algebras and transformations
	Functions in Clifford algebras
	Dealing with negative eigenvalues
	Predicting negative eigenvalues?
	Detecting negative eigenvalues

