SPHERICAL CODES WITH GOOD SEPARATION, DISCREPANCY AND ENERGY

PAUL LEOPARDI

Equal-area partitions of \mathbb{S}^d .

An equal area partition of \mathbb{S}^d is a nonempty finite set \mathcal{P} of Lebesgue measurable subsets of $\mathbb{S}^d \subset \mathbb{R}^d$, such that

$$\bigcup_{R\in\mathcal{P}}R=\mathbb{S}^d,$$

and for each $R \in \mathcal{P}$,

$$\sigma(R) = \frac{\sigma(\mathbb{S}^d)}{|\mathcal{P}|},$$

where σ is the Lebesgue area measure on \mathbb{S}^d .

Diameter bounded sets of partitions.

The diameter of a region $R \subset \mathbb{R}^{d+1}$ is defined by

$$\operatorname{diam} R := \sup\{\|\mathbf{x} - \mathbf{y}\| \mid \mathbf{x}, \mathbf{y} \in R\}.$$

A set Ξ of partitions of $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ is diameter-bounded with diameter bound $K \in \mathbb{R}_+$ if for all $\mathcal{P} \in \Xi$, for each $R \in \mathcal{P}$,

diam
$$R \leq K |\mathcal{P}|^{-1/d}$$
.

Spherical polar coordinates on $\mathbb{S}^d \subset \mathbb{R}^{d+1}$.

Spherical polar coordinates describe $\mathbf{x} \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ by one longitude, $\xi_1 \in \mathbb{R}$ (modulo 2π), and d-1 colatitudes, $\xi_j \in [0,\pi]$, for $j \in \{2,\ldots,d\}$.

The spherical polar to Cartesian coordinate map $\odot : \mathbb{R} \times [0,\pi]^{d-1} \to \mathbb{S}^d \subset \mathbb{R}^{d+1}$ is

Spherical caps, zones, and collars.

The spherical cap $S(\mathbf{p}, \theta) \subset \mathbb{S}^d$ is

$$S(\mathbf{p},\theta) := \left\{ \mathbf{q} \in \mathbb{S}^d \ | \ \mathbf{p} \cdot \mathbf{q} \geqslant \cos(\theta) \right\}.$$

For d > 1, a zone can be described by

$$Z(\tau,\beta) := \{ \odot(\xi_1,\ldots,\xi_d) \in \mathbb{S}^d \mid \xi_d \in [\tau,\beta] \},$$

where $0 \le \tau < \beta \le \pi$.

 $Z(0,\beta)$ is a North polar cap and $Z(\tau,\pi)$ is a South polar cap. If $0<\tau<\beta<\pi$, $Z(\tau,\beta)$ is a collar.

Date: 2007-02-19.

Mesh norm (covering radius).

The mesh norm of $X := \{\mathbf{x}_1, \dots, \mathbf{x}_{\mathcal{N}}\} \subset \mathbb{S}^d$ is

$$\text{mesh norm } X := \sup_{\mathbf{y} \in \mathbb{S}^d} \min_{\mathbf{x} \in X} \cos^{-1}(\mathbf{x} \cdot \mathbf{y}).$$

Minimum distance and packing radius.

The minimum distance of $X := \{\mathbf{x}_1, \dots, \mathbf{x}_{\mathcal{N}}\} \subset \mathbb{S}^d$ is

$$\min \operatorname{dist} X := \min_{\mathbf{x} \neq \mathbf{y} \in X} \|\mathbf{x} - \mathbf{y}\|,$$

and the packing radius of X is

$$\operatorname{prad} X := \min_{\mathbf{x} \neq \mathbf{y} \in X} \cos^{-1}(\mathbf{x} \cdot \mathbf{y})/2.$$

Mesh ratio and packing density.

The mesh ratio of $X := \{\mathbf{x}_1, \dots, \mathbf{x}_{\mathcal{N}}\} \subset \mathbb{S}^d$ is

mesh ratio
$$X := \text{mesh norm } X / \text{prad } X$$
.

The packing density of X is

pdens
$$X := \mathcal{N}\sigma(S(\mathbf{x}, \operatorname{prad} X)) / \sigma(\mathbb{S}^d).$$

Normalized spherical cap discrepancy.

We use the probability measure $\overset{*}{\sigma} := \sigma/\sigma(\mathbb{S}^d)$.

For $X := \{\mathbf{x}_1, \dots, \mathbf{x}_{\mathcal{N}}\} \subset \mathbb{S}^d$ the normalized spherical cap discrepancy is

$$\operatorname{disc}\,X:=\sup_{\mathbf{y}\in\mathbb{S}^d}\sup_{\theta\in[0,\pi]}\left|\frac{|X\cap S(\mathbf{y},\theta)|}{\mathcal{N}}-\mathring{\sigma}\big(S(\mathbf{y},\theta)\big)\right|.$$

Normalized s-energy.

For $X := \{\mathbf{x}_1, \dots, \mathbf{x}_{\mathcal{N}}\} \subset \mathbb{S}^d$ the normalized s-energy is

$$E_s(X) := \mathcal{N}^{-2} \sum_{i=1}^{\mathcal{N}} \sum_{\mathbf{x}_i \neq \mathbf{x}_j \in X} \|\mathbf{x}_i - \mathbf{x}_j\|^{-s},$$

and the normalized energy double integral is

$$I_s := \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|\mathbf{x} - \mathbf{y}\|^{-s} d\mathring{\sigma}(\mathbf{x}) d\mathring{\sigma}(\mathbf{y}).$$

Separation and discrepancy imply energy.

Theorem

Let $(X_1, X_2, \ldots \in \mathbb{N})$ be a sequence of \mathbb{S}^d codes for which there exist $c_1, c_2 > 0$ such that each $X_{\mathcal{N}} = \{\mathbf{x}_{\mathcal{N},1}, \ldots, \mathbf{x}_{\mathcal{N},\mathcal{N}}\}$ satisfies

$$\|\mathbf{x}_{\mathcal{N},i} - \mathbf{x}_{\mathcal{N},j}\| > c_1 \ \mathcal{N}^{-1/d}, \quad (i \neq j)$$

 $\operatorname{disc} \ X_{\mathcal{N}} \leqslant c_2 \ \mathcal{N}^{-q}.$

Then for the normalized s energy for 0 < s < d, we have for some $c_3 \ge 0$,

$$E_s(X_{\mathcal{N}}) \leqslant I_s + c_3 \, \mathcal{N}^{(s/d-1)q}$$
.

For EQSP Matlab code.

See SourceForge web page for EQSP:

Recursive Zonal Equal Area Sphere Partitioning Toolbox:

http://eqsp.sourceforge.net
E-mail address: paul.leopardi@usyd.edu.au