Spherical codes with good separation, discrepancy and energy

\author{
Paul Leopardi
 ```
paul.leopardi@usyd.edu.au

```
}

School of Physics, University of Sydney.
For presentation at Second Workshop on High-Dimensional Approximation, Australian National University, Canberra, February 2007.

\section*{Outline of talk}

EQ codes: The Recursive Zonal Equal Area spherical codes, \(\operatorname{EQP}(d, \mathcal{N}) \subset \mathbb{S}^{d}\), with \(|\operatorname{EQP}(d, \mathcal{N})|=\mathcal{N}\).
- Overview of properties of the EQ codes
- Some precedents
- Definitions: spherical polar coordinates, partitions, diameter bounds
- The Recursive Zonal Equal Area (EQ) partition
- Details of properties of the EQ codes
- Separation and discrepancy bounds imply energy bounds

\section*{The spherical code \(\operatorname{EQP}(2,33)\) on \(\mathbb{S}^{2} \subset \mathbb{R}^{3}\)}


\section*{Geometric properties of the EQ codes}

For \(\operatorname{EQP}(\boldsymbol{d}, \boldsymbol{\mathcal { N }})\)
Good:
- Centre points of regions of diameter \(\leqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\),
- Mesh norm (covering radius) \(\leqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\),
- Minimum distance and packing radius \(\geqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\).

Bad:
- Mesh ratio \(\geqslant \mathrm{O}(\sqrt{d})\),
- Packing density \(\leqslant \frac{\pi^{d / 2}}{2^{d} \Gamma(d / 2+1)}\).

\section*{Approximation properties of the EQ codes}

For \(\operatorname{EQP}(\boldsymbol{d}, \boldsymbol{\mathcal { N }})\)
Not so bad?
- Normalized spherical cap discrepancy \(\leqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\),
- Excess normalized \(s\)-energy \(\leqslant \mathrm{O}\left(\mathcal{N}^{s / d^{2}-1 / d}\right)\), for \(0<s<d\).

Ugly:
- Cannot be used for polynomial interpolation: not a fundamental system
- proven for large enough \(\mathcal{N}\), conjectured for small \(\mathcal{N}\).

\section*{Relationships between properties of EQ codes}


\section*{Some precedents}

The EQ partition is based on Zhou's (1995) construction for \(\mathbb{S}^{2}\) as modified by Saff, and on Sloan's sketch of a partition of \(\mathbb{S}^{3}\) (2003).

Separation without equidistribution: Hamkins (1996) and Hamkins and Zeger (1997) constructed \(\mathbb{S}^{d}\) codes with asymptotically optimal packing density.

Equidistibution without separation: Many constructions for \(\mathbb{S}^{2}\), eg. mapped Hammersley, Halton, \((t, s)\) etc. sequences.

Feige and Schechtman (2002) constructed a diameter bounded equal area partition of \(\mathbb{S}^{d}\). Put one point in each region.

\section*{Equal-area partitions of \(\mathbb{S}^{d} \subset \mathbb{R}^{d}\)}

An equal area partition of \(\mathbb{S}^{\boldsymbol{d}} \subset \mathbb{R}^{\boldsymbol{d}}\) is a nonempty finite set \(\mathcal{P}\) of Lebesgue measurable subsets of \(\mathbb{S}^{d}\), such that
\[
\bigcup_{R \in \mathcal{P}} R=\mathbb{S}^{d}
\]
and for each \(\boldsymbol{R} \in \mathcal{P}\),
\[
\sigma(R)=\frac{\sigma\left(\mathbb{S}^{d}\right)}{|\mathcal{P}|}
\]
where \(\sigma\) is the Lebesgue area measure on \(\mathbb{S}^{d}\).

\section*{Diameter bounded sets of partitions}

The diameter of a region \(\boldsymbol{R} \subset \mathbb{R}^{d+1}\) is defined by
\[
\operatorname{diam} R:=\sup \{\|\mathrm{x}-\mathrm{y}\| \mid \mathrm{x}, \mathrm{y} \in \boldsymbol{R}\}
\]

A set \(\boldsymbol{\Xi}\) of partitions of \(\mathbb{S}^{\boldsymbol{d}} \subset \mathbb{R}^{\boldsymbol{d + 1}}\) is diameter-bounded with diameter bound \(\boldsymbol{K} \in \mathbb{R}_{+}\)if for all \(\mathcal{P} \in \boldsymbol{\Xi}\), for each \(\boldsymbol{R} \in \mathcal{P}\),
\[
\operatorname{diam} \boldsymbol{R} \leqslant \boldsymbol{K}|\mathcal{P}|^{-1 / d}
\]

\section*{Key properties of the EQ partition of \(\mathbb{S}^{d}\)}
\(\operatorname{EQ}(\boldsymbol{d}, \mathcal{N})\) is the recursive zonal equal area partition of \(\mathbb{S}^{\boldsymbol{d}}\) into \(\mathcal{N}\) regions.

The set of partitions \(\operatorname{EQ}(\boldsymbol{d}):=\left\{\operatorname{EQ}(\boldsymbol{d}, \mathcal{N}) \mid \mathcal{N} \in \mathbb{N}_{+}\right\}\).
The EQ partition satisfies:
Theorem 1. For \(\boldsymbol{d} \geqslant 1, \mathcal{N} \geqslant 1, \mathrm{EQ}(\boldsymbol{d}, \mathcal{N})\) is an equal-area partition.

Theorem 2. For \(\boldsymbol{d} \geqslant 1, \mathrm{EQ}(\boldsymbol{d})\) is diameter-bounded.

\section*{Spherical polar coordinates on \(\mathbb{S}^{d}\)}

Spherical polar coordinates describe \(\mathrm{x} \in \mathbb{S}^{d} \subset \mathbb{R}^{d+1}\) by one longitude, \(\boldsymbol{\xi}_{1} \in \mathbb{R}\) (modulo \(2 \boldsymbol{\pi}\) ), and \(\boldsymbol{d}-\mathbf{1}\) colatitudes, \(\xi_{j} \in[0, \pi]\), for \(j \in\{2, \ldots, d\}\).

The spherical polar to Cartesian coordinate map
\(\odot: \mathbb{R} \times[0, \pi]^{d-1} \rightarrow \mathbb{S}^{d} \subset \mathbb{R}^{d+1}\) is
\[
\odot\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right)=\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)
\]
where \(\quad x_{1}:=\cos \xi_{1} \prod_{j=2}^{d} \sin \xi_{j}, \quad x_{2}:=\prod_{j=1}^{d} \sin \xi_{j}\),
\[
x_{k}:=\cos \xi_{k-1} \prod_{j=k}^{d} \sin \xi_{j}, \quad k \in\{3, \ldots, d+1\}
\]

\section*{Spherical caps, zones, and collars}

The spherical cap \(\boldsymbol{S}(\mathbf{p}, \boldsymbol{\theta}) \subset \mathbb{S}^{\boldsymbol{d}}\) is
\[
S(\mathrm{p}, \theta):=\left\{\mathrm{q} \in \mathbb{S}^{d} \mid \mathrm{p} \cdot \mathrm{q} \geqslant \cos (\theta)\right\}
\]

For \(d>1\), a zone can be described by
\[
Z(\tau, \beta):=\left\{\odot\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{S}^{d} \mid \xi_{d} \in[\tau, \beta]\right\},
\]
where \(0 \leqslant \boldsymbol{\tau}<\boldsymbol{\beta} \leqslant \boldsymbol{\pi}\).
\(Z(0, \beta)\) is a North polar cap and \(Z(\tau, \pi)\) is a South polar cap.

If \(0<\boldsymbol{\tau}<\boldsymbol{\beta}<\boldsymbol{\pi}, \boldsymbol{Z}(\boldsymbol{\tau}, \boldsymbol{\beta})\) is a collar.

EQ(3,99) Steps 1 to 2


EQ( 3,99 ) Steps 3 to 5


EQ \((3,99)\) Steps 6 to 7


\section*{Centre points of regions of \(\operatorname{EQ}(d, \mathcal{N})\)}

The placement of the centre point \(\boldsymbol{a}=\odot(\boldsymbol{\alpha})\) of a region
\[
\begin{gathered}
\boldsymbol{R}=\odot\left(\left[\tau_{1}, \boldsymbol{\beta}_{1}\right] \times \ldots \times\left[\boldsymbol{\tau}_{d}, \boldsymbol{\beta}_{d}\right]\right) \text { is } \\
\boldsymbol{\alpha}_{1}:= \begin{cases}0, & \boldsymbol{\beta}_{1}=\tau_{1}(\bmod 2 \pi) \\
\left(\tau_{1}+\boldsymbol{\beta}_{1}\right) / 2(\bmod 2 \pi), & \text { otherwise }\end{cases}
\end{gathered}
\]
and for \(j>1\),
\[
\alpha_{j}:= \begin{cases}0, & \tau_{j}=0 \\ \pi, & \boldsymbol{\beta}_{j}=\pi \\ \left(\tau_{j}+\beta_{j}\right) / 2, & \text { otherwise }\end{cases}
\]

\section*{Mesh norm (covering radius)}

The mesh norm of \(\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{d}\) is
\[
\operatorname{mesh} \operatorname{norm} X:=\sup _{\mathrm{y} \in \mathbb{S}^{d}} \min _{\mathrm{x} \in X} \cos ^{-1}(\mathrm{x} \cdot \mathrm{y})
\]

Since \(\operatorname{EQ}(d)\) is diameter bounded, mesh norm \(\operatorname{EQP}(d, \mathcal{N}) \leqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\).

\section*{Minimum distance and packing radius}

The minimum distance of \(\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{\boldsymbol{d}}\) is
\[
\min \operatorname{dist} X:=\min _{\mathrm{x} \neq \mathrm{y} \in \boldsymbol{X}}\|\mathrm{x}-\mathrm{y}\|
\]
and the packing radius of \(\boldsymbol{X}\) is
\[
\operatorname{prad} X:=\min _{\mathrm{x} \neq \mathrm{y} \in X} \cos ^{-1}(\mathrm{x} \cdot \mathrm{y}) / 2
\]

It can be shown that \(\quad \min\) dist \(\operatorname{EQP}(d, \mathcal{N}) \geqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\), and therefore \(\quad \operatorname{prad} \operatorname{EQP}(d, \mathcal{N}) \geqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)\).

\section*{Minimum distance of EQP(4) codes}


\section*{Mesh ratio and packing density}

The mesh ratio of \(\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{\boldsymbol{d}}\) is
\[
\text { mesh ratio } \boldsymbol{X}:=\text { mesh norm } \boldsymbol{X} / \operatorname{prad} \boldsymbol{X}
\]

The packing density of \(\boldsymbol{X}\) is
\[
\text { pdens } X:=\mathcal{N} \sigma(S(\mathrm{x}, \operatorname{prad} X)) / \sigma\left(\mathbb{S}^{d}\right)
\]

Regions of \(\mathrm{EQ}(\boldsymbol{d}, \boldsymbol{\mathcal { N }})\) near equators \(\rightarrow\) cubic as \(\boldsymbol{\mathcal { N }} \rightarrow \infty\), so mesh ratio \(\operatorname{EQP}(d, \mathcal{N}) \geqslant \mathbf{O}(\sqrt{d}), \quad\) and
\[
\text { pdens } \operatorname{EQP}(d, \mathcal{N}) \leqslant \frac{\pi^{d / 2}}{2^{d} \Gamma(d / 2+1)} \quad \text { (asymptotically). }
\]

\section*{Packing density of EQP(4) codes}


\section*{Normalized spherical cap discrepancy}

We use the probability measure \(\stackrel{*}{\sigma}:=\sigma / \sigma\left(\mathbb{S}^{d}\right)\).
For \(\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{\boldsymbol{d}}\) the normalized spherical cap discrepancy is
\[
\operatorname{disc} X:=\sup _{\mathbf{y} \in \mathbb{S}^{d}} \sup _{\theta \in[0, \pi]}\left|\frac{|X \cap S(\mathbf{y}, \theta)|}{\mathcal{N}}-\stackrel{*}{\sigma}(S(\mathbf{y}, \theta))\right|
\]

It can be shown that
\[
\operatorname{disc} \operatorname{EQP}(d, \mathcal{N}) \leqslant \mathrm{O}\left(\mathcal{N}^{-1 / d}\right)
\]

\section*{Normalized \(s\)-energy}

For \(\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{d}\) the normalized \(s\)-energy is
\[
E_{s}(X):=\mathcal{N}^{-2} \sum_{i=1}^{\mathcal{N}} \sum_{\mathrm{x}_{i} \neq \mathrm{x}_{j} \in X}\left\|\mathrm{x}_{i}-\mathrm{x}_{j}\right\|^{-s}
\]
and the normalized energy double integral is
\[
I_{s}:=\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|\mathrm{x}-\mathrm{y}\|^{-s} d \stackrel{*}{\sigma}(\mathrm{x}) d \stackrel{*}{\sigma}(\mathrm{y})
\]

It can be shown that, for \(0<s<d\),
\[
E_{s}(\operatorname{EQP}(d, \mathcal{N})) \leqslant I_{s}+\mathrm{O}\left(\mathcal{N}^{s / d^{2}-1 / d}\right)
\]

\section*{Separation and discrepancy imply energy}

\section*{Theorem 3.}

Let \(\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots \in \mathbb{N}\right)\) be a sequence of \(\mathbb{S}^{d}\) codes for which there exist \(c_{1}, c_{2}>0\) such that each \(\boldsymbol{X}_{\mathcal{N}}=\left\{\mathrm{x}_{\mathcal{N}, 1}, \ldots, \mathrm{x}_{\mathcal{N}, \mathcal{N}}\right\}\) satisfies
\[
\begin{aligned}
\left\|\mathrm{x}_{\mathcal{N}, i}-\mathrm{x}_{\mathcal{N}, j}\right\| & >c_{1} \mathcal{N}^{-1 / d}, \quad(i \neq j) \\
\operatorname{disc} X_{\mathcal{N}} & \leqslant c_{2} \mathcal{N}^{-q}
\end{aligned}
\]

Then for the normalized \(s\) energy for \(0<s<\boldsymbol{d}\), we have for some \(\boldsymbol{c}_{\mathbf{3}} \geqslant \mathbf{0}\),
\[
\boldsymbol{E}_{s}\left(\boldsymbol{X}_{\mathcal{N}}\right) \leqslant I_{s}+c_{3} \mathcal{N}^{(s / d-1) q}
\]

\section*{\(d-1\) energy of \(\operatorname{EQP}(2), \operatorname{EQP}(3), \operatorname{EQP}(4)\)}


\section*{For EQSP Matlab code}

See SourceForge web page for EQSP:
Recursive Zonal Equal Area Sphere Partitioning Toolbox:
http://eqsp.sourceforge.net```

