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Outline of talk

EQ codes: The Recursive Zonal Equal Area spherical codes,

EQP(d, N ) ⊂ Sd , with |EQP(d, N )| = N .

I Overview of properties of the EQ codes
I Construction of the EQ codes

I Some precedents
I Definitions: coordinates, partitions, diameter bounds
I The Recursive Zonal Equal Area (EQ) partition

I Details of properties of the EQ codes
I Separation and discrepancy bounds imply energy bounds
I Separation and diameter bounds imply energy bounds
I More details of properties (if time permits)
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The spherical code EQP(2,33) on S2 ⊂ R3
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Geometric properties

For EQP(d, N )

Good:

I Centre points of regions of diameter = O(N −1/d) ,

I Mesh norm (covering radius) = O(N −1/d) ,

I Minimum distance and packing radius = Ω(N −1/d) .

Bad:

I Mesh ratio = Ω(
√

d) ,

I Packing density 6 πd/2

2d Γ(d/2+1)
as N → ∞ .
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Approximation properties

Not so bad?

I Normalized spherical cap discrepancy = O(N −1/d) ,

I Normalized s -energy

Es =



Is ± O(N −1/d) 0 < s < d − 1

Is ± O(N −1/d log N ) s = d − 1

Is ± O(N s/d−1) d − 1 < s < d

O(log N ) s = d

O(N s/d−1) s > d.

Ugly:

I Cannot be used for polynomial interpolation:
proven for large enough N , conjectured for small N .
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Relationships between properties

partition
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Some precedents

The EQ partition is based on Zhou’s (1995) construction for S2

as modified by Saff, and on Sloan’s sketch of a partition of S3

(2003).

Separation without equidistribution: Hamkins (1996) and Hamkins
and Zeger (1997) constructed Sd codes with asymptotically
optimal packing density.

Equidistibution without separation: Many constructions for S2 , eg.
mapped Hammersley, Halton, (t, s) etc. sequences.
Feige and Schechtman (2002) constructed a diameter bounded
equal area partition of Sd . Put one point in each region.
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Equal-area partitions of Sd ⊂ Rd

An equal area partition of Sd ⊂ Rd is a finite set P of Lebesgue
measurable subsets of Sd , such that⋃

R∈P
R = Sd,

and for each R ∈ P ,

σ(R) =
σ(Sd)

|P|
,

where σ is the Lebesgue area measure on Sd .
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Diameter bounded sets of partitions

The diameter of a region R ⊂ Rd+1 is defined by

diam R := sup{‖x − y‖ | x, y ∈ R}.

A set Ξ of partitions of Sd ⊂ Rd+1 is diameter-bounded with
diameter bound K ∈ R+ if for all P ∈ Ξ , for each R ∈ P ,

diam R 6 K |P|−1/d .
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Key properties of the EQ partition of Sd

EQ(d, N ) is the recursive zonal equal area partition of Sd into
N regions.

The set of partitions EQ(d) := {EQ(d, N ) | N ∈ N+} .

The EQ partition satisfies:

Theorem 1

For d > 1 , N > 1 , EQ(d, N ) is an equal-area partition.

Theorem 2

For d > 1 , EQ(d) is diameter-bounded.
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Spherical polar coordinates on Sd

Spherical polar coordinates describe x ∈ Sd ⊂ Rd+1 by one
longitude, ξ1 ∈ R (modulo 2π ), and d − 1 colatitudes,
ξj ∈ [0, π] , for j ∈ {2, . . . , d} .

The spherical polar to Cartesian coordinate map
� : R × [0, π]d−1 → Sd ⊂ Rd+1 is

�(ξ1, ξ2, . . . , ξd) = (x1, x2, . . . , xd+1),

where x1 := cos ξ1

d∏
j=2

sin ξj, x2 :=
d∏

j=1

sin ξj,

xk := cos ξk−1

d∏
j=k

sin ξj, k ∈ {3, . . . , d + 1}.
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Spherical caps, zones, and collars

The spherical cap S(p, θ) ⊂ Sd is

S(p, θ) :=
{
q ∈ Sd | p · q > cos(θ)

}
.

For d > 1 , a zone can be described by

Z(τ, β) :=
{

�(ξ1, . . . , ξd) ∈ Sd | ξd ∈ [τ, β]
}

,

where 0 6 τ < β 6 π .

Z(0, β) is a North polar cap and Z(τ, π) is a South polar cap.

If 0 < τ < β < π , Z(τ, β) is a collar.
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Centre points of regions of EQ(d, N )

The placement of the centre point a = �(α) of a region

R = �
(
[τ1, β1] × . . . × [τd, βd]

)
is

α1 :=

{
0 β1 = τ1 (mod 2π)

(τ1 + β1)/2 (mod 2π) otherwise,

and for j > 1 ,

αj :=


0 τj = 0

π βj = π

(τj + βj)/2 otherwise.
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Minimum distance and packing radius

The minimum distance of X := {x1, . . . , xN } ⊂ Sd is

min dist X := min
x 6=y∈X

‖x − y‖ ,

and the packing radius of X is

prad X := min
x 6=y∈X

cos−1(x · y)/2.

It can be shown that min dist EQP(d, N ) = Ω(N −1/d),

and therefore prad EQP(d, N ) = Ω(N −1/d).
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Minimum distance of EQP(4) codes
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Normalized spherical cap discrepancy

We use the probability measure
∗
σ := σ/σ(Sd) .

For X := {x1, . . . , xN } ⊂ Sd the normalized spherical cap
discrepancy is

disc X := sup
y∈Sd

sup
θ∈[0,π]

∣∣∣∣ |X ∩ S(y, θ)|
N

− ∗
σ

(
S(y, θ)

)∣∣∣∣ .

It can be shown that

disc EQP(d, N ) = O(N −1/d).
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Normalized s -energy

For X := {x1, . . . , xN } ⊂ Sd , s ∈ R ,
the normalized s -energy is

Es(X) := N −2
N∑
i=1

∑
xi 6=xj∈X

‖xi − xj‖−s ,

and the normalized energy double integral for 0 < s < d is

Is :=

∫
Sd

∫
Sd

‖x − y‖−s d
∗
σ(x)d

∗
σ(y).
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Separation and discrepancy imply energy

Theorem 3

Let (X1, X2, . . .) be a sequence of Sd codes for which there exist
c1, c2 > 0 and 0 < q < 1 such that each
XN = {xN ,1, . . . , xN ,N } satisfies

‖xN ,i − xN ,j‖ > c1 N −1/d, (i 6= j)

disc XN 6 c2 N −q.

Then for the normalized s energy for 0 < s < d , we have for
some c3 > 0 ,

Es(XN ) 6 Is + c3 N (s/d−1)q.
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Separation and diameter imply energy

Theorem 4

Let ((X1, P1), (X2, P2), . . .) be a sequence of pairs of Sd codes
and equal area partitions such that |XN | = |PN | = N , with
(X1, X2, . . .) well separated and (P1, P2, . . .) diameter
bounded, where each xN ,i ∈ XN lies in RN ,i ∈ PN . Then

Es(XN ) =



Is ± O(N −1/d) 0 < s < d − 1

Is ± O(N −1/d log N ) s = d − 1

Is ± O(N s/d−1) d − 1 < s < d

O(log N ) s = d

O(N s/d−1) s > d.
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Comparison to minimum energy

For s > d − 1, Theorem 4 gives energy bounds of the same order
as Es(N ), the minimum normalized s energy for N points on
Sd.

Es(N ) =



Is − Θ(N s/d−1) 0 < s < d

(Wagner;

Rakhmanov, Saff & Zhou;

Brauchart)

O(log N ) s = d (Kuijlaars & Saff)

O(N s/d−1) s > d (Hardin & Saff).
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d − 1 energy of EQP(2), EQP(3), EQP(4)
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2d energy of EQP(2), EQP(3), EQP(4)
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Mesh norm (covering radius)

The mesh norm of X := {x1, . . . , xN } ⊂ Sd is

mesh norm X := sup
y∈Sd

min
x∈X

cos−1(x · y).

Since EQ(d) is diameter bounded,

mesh norm EQP(d, N ) = O(N −1/d).
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Mesh ratio and packing density

The mesh ratio of X := {x1, . . . , xN } ⊂ Sd is

mesh ratio X := mesh norm X / prad X.

The packing density of X is

pdens X := N ∗
σ(S

(
x, prad X)

)
.

Regions of EQ(d, N ) near equators → cubic as N → ∞ , so

mesh ratio EQP(d, N ) = Ω(
√

d), and

pdens EQP(d, N ) 6
πd/2

2d Γ(d/2 + 1)
as N → ∞.
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Packing density of EQP(4) codes
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For EQSP Matlab code

See SourceForge web page for EQSP:

Recursive Zonal Equal Area Sphere Partitioning Toolbox:

http://eqsp.sourceforge.net
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