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Outline of talk
EQ codes: The Recursive Zonal Equal Area spherical codes,

EQP(d, V) C S¢, with |[EQP(d, V)| = N.

» Overview of properties of the EQ codes
» Construction of the EQ codes

» Some precedents
» Definitions: coordinates, partitions, diameter bounds
» The Recursive Zonal Equal Area (EQ) partition

» Details of properties of the EQ codes

» Separation and discrepancy bounds imply energy bounds
» Separation and diameter bounds imply energy bounds
» More details of properties (if time permits)
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The spherical code EQP(2,33) on S? C R3




Overview of properties of the EQ codes

Geometric properties

For EQP(d, N)

Good:
» Centre points of regions of diameter = O(N~1/d),
» Mesh norm (covering radius) = O(N~1/9),
» Minimum distance and packing radius = Q(N ~1/9).

Bad:
> Mesh ratio = Q(+/d),

» Packing density < /2

maSN—)OO.
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Overview of properties of the EQ codes

Approximation properties

Not so bad?
» Normalized spherical cap discrepancy = O(./\f_l/d),

» Normalized s-energy

(I + O(NV~1/d) 0<s<d-—1

s+ ONVdlogN) s=d—1
Es =  Ig + O(N™/4-1) d—1<s<d

O(log ) s=d

| O(N/s/d-1) s > d.

Ugly:
» Cannot be used for polynomial interpolation:
proven for large enough N/, conjectured for small AV .
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Overview of properties of the EQ codes

Relationships between properties

partition ————— diameter — — ==% mesh norm
~

|
|
| discrepancy \
|
|

centres —— separation —— energy

\

no polynomial packing density

interpolation
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Construction of the EQ codes

Some precedents

The EQ partition is based on Zhou's (1995) construction for S?
as modified by Saff, and on Sloan’s sketch of a partition of S3
(2003).

Separation without equidistribution: Hamkins (1996) and Hamkins
and Zeger (1997) constructed S? codes with asymptotically
optimal packing density.

Equidistibution without separation: Many constructions for S?, eg.
mapped Hammersley, Halton, (t,s) etc. sequences.

Feige and Schechtman (2002) constructed a diameter bounded
equal area partition of S9. Put one point in each region.
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Construction of the EQ codes

Equal-area partitions of S¢ C R¢Y

An equal area partition of S4 C RY is a finite set P of Lebesgue
measurable subsets of Y, such that

U R =s9,

and for each R € P,

o(SY)
Pl

o(R) =

where o is the Lebesgue area measure on S9.
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Construction of the EQ codes

Diameter bounded sets of partitions

The diameter of a region R C R4+! is defined by

diam R := sup{[|x — y|| | x,y € R}.
A set = of partitions of S9 C R4t is diameter-bounded with
diameter bound K € R if for all P € =, for each R € P,

diamR < K |[P|71/9.
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Construction of the EQ codes

Key properties of the EQ partition of S

EQ(d, N) is the recursive zonal equal area partition of S into
N regions.

The set of partitions EQ(d) := {EQ(d,N) | N € N, }.

The EQ partition satisfies:

Theorem 1
Ford>1, N >1, EQ(d,N) is an equal-area partition.

Theorem 2
For d > 1, EQ(d) is diameter-bounded.
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Construction of the EQ codes

Spherical polar coordinates on S

Spherical polar coordinates describe x € S4 C R4+ by one
longitude, &1 € R (modulo 27), and d — 1 colatitudes,
& € [0,x], for j € {2,...,d}.

The spherical polar to Cartesian coordinate map
®:Rx[0,7]97! — s¢ C RHL s

@(519 £Za seey Ed) = (xla X2q e 7Xd+1)a

d d
where x3 := cos &3 Hsin &, x2:= Hsin &,

d
X 1= cos &1 [[sin&, k€ {3,...,d+1}.
j=k
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Construction of the EQ codes

Spherical caps, zones, and collars

The spherical cap S(p,0) C S9 is
S(p,0) := {a s’ | p-a>cos(d)}.
For d > 1, a zone can be described by
2(r,8) = {O(Er,.-, &) €5 | & €[]},
where 0 < T < B < .
Z(0, 3) is a North polar cap and Z(7, ) is a South polar cap.

fo<rT<B<m, Z(T,0) is a collar.
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EQ(3,99) Steps 1 to 2 EQ(3,99) Steps 3to 5

y1:14.E.../ 6,

X

V(8) =V,
= o(s%)/99

Yy = 33.7...

A
F
~ Oca
W= 14.8...




Construction of the EQ codes

Centre points of regions of EQ(d, N\)

The placement of the centre point a = ®(«) of a region

R=0© ([T],fh] X ..o X [Td,ﬁd]) is

)0 B1 = 71 (mod 27)
T (1 + B1)/2 (mod 2w) otherwise,
and for j > 1,
0 T = 0
Qj = (T ,@j =T

(15 + B;)/2 otherwise.
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Details of properties of the EQ codes

Minimum distance and packing radius

The minimum distance of X := {x1,...,xar} C SY is

min dist X := min |[|x —
min [l =yl

and the packing radius of X is

rad X := min cos 1(x - 2.
p min (x-y)/

It can be shown that min dist EQP(d, N) = QN ~1/9),
and therefore  prad EQP(d, N) = QN ~1/9).
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Details of properties of the EQ codes

Minimum distance of EQP(4) codes
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Details of properties of the EQ codes

Normalized spherical cap discrepancy

We use the probability measure & := o /o (SY).
For X := {x1,...,xx7} C SY the normalized spherical cap

discrepancy is

XN S(y,0)]

disc X := sup sup N a(S(y,0))|-

y€eSd 0€[0,7]

It can be shown that

disc EQP(d, N') = O(N~1/9),
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Details of properties of the EQ codes

Normalized s-energy

For X := {x1,...,xa’} C SY, s € R,
the normalized s-energy is

N
E(X):=N"2) 0 > llxi—xl7",

i=1 x;#xEX

and the normalized energy double integral for 0 < s < d is

b= [ [ =yl do(dity).
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Details of properties of the EQ codes

Separation and discrepancy imply energy

Theorem 3

Let (X1,X2,...) be a sequence of S? codes for which there exist
ci1,c2 > 0 and 0 < q < 1 such that each
Xn = {xXA15- - - XAN} Satisfies

lIxari — xarjll > et N7V (i # )
disc Xpor < co N9,

Then for the normalized s energy for 0 < s < d, we have for
some c3 > 0,

Es(Xn) < s + c3 (/47 1)a,
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Details of properties of the EQ codes

Separation and diameter imply energy

Theorem 4

Let ((X1,P1), (X2, P2),...) be a sequence of pairs of S codes
and equal area partitions such that |Xar| = |Par| = N, with
(X1, X2, ...) well separated and (P1,Pa2,...) diameter
bounded, where each xnr;i € Xar lies in Rari € Par. Then

Is £ O(NV~1/9) 0<s<d—1
s OWNYlogN) s=d—1
Es(Xar) = < Is = O(N5/971) d—1<s<d
O(log V) s=d
| O(Ne/d-1) s > d.
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Details of properties of the EQ codes

Comparison to minimum energy

For s > d — 1, Theorem 4 gives energy bounds of the same order
as &(N), the minimum normalized s energy for A/ points on

Ssd.
(1, — OW/4-1) 0<s<d
(Wagner;
E£.(N) = Rakhmanov, Saff & Zhou;
Brauchart)
O(log N) s=d (Kuijlaars & Saff)
\O(Ns/d_l) s >d (Hardin & Saff).
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Details of properties of the EQ codes

d — 1 energy of EQP(2), EQP(3), EQP(4)

1

Normalized energy
o
N
T
i
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N: number of codepoints
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Details of properties of the EQ codes

2d energy of EQP(2), EQP(3), EQP(4)
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Details of properties of the EQ codes

Mesh norm (covering radius)

The mesh norm of X := {x1,...,xx} C SY is

mesh norm X := sup mincos~!(x - y).
yegd xE

Since EQ(d) is diameter bounded,

mesh norm EQP(d, N') = O(N~1/9).
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Details of properties of the EQ codes

Mesh ratio and packing density

The mesh ratio of X := {x1,...,xx} C S9 is
mesh ratio X := mesh norm X / prad X.
The packing density of X is
pdens X := N (S(x, prad X)).
Regions of EQ(d, N') near equators — cubic as N/ — oo, so
mesh ratio EQP(d, V') = Q(v/d), and
7472

pdens EQP(d,N) < m as N — OC.
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Details of properties of the EQ codes

Packing density of EQP(4) codes
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Details of properties of the EQ codes

For EQSP Matlab code

See SourceForge web page for EQSP:

Recursive Zonal Equal Area Sphere Partitioning Toolbox:

http://eqsp.sourceforge.net
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