Positive quadrature on the sphere and conjectures on monotonicities of Jacobi polynomials

Paul Leopardi

paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.

Joint work with Walter Gautschi.

For presentation at Australian Mathematical Society Conference,

Macquarie University, September 2006.

Outline of talk

- Some definitions,
- Property (R) and Reimer's proofs,
- Conjectures on Jacobi polynomials,
- Partial results in $[-1/2, 1/2]^2$,
- Weaker result for $\alpha \geqslant \beta > -1/2$,
- Application to Property (R).

Some definitions: 1 – notation

$$\mathbb{S}^d := \left\{ \mathbf{x} \in \mathbb{R}^{d+1} \mid \sum_{k=1}^{d+1} x_k^2 = 1
ight\},$$
 $\omega_d := \sigma(\mathbb{S}^d),$ $\widetilde{P}_n^{(lpha,eta)} := P_n^{(lpha,eta)}/P_n^{(lpha,eta)}(1),$ $\Theta_n^{(lpha,eta)} := ext{smallest zero in } heta ext{ of } P_n^{(lpha,eta)}(\cos heta),$ $Z_lpha(z) := \Gamma(lpha+1) \left(rac{2}{z}
ight)^lpha J_lpha(z).$

Some definitions: 2 – polynomial spaces

We use $\mathbb{P}_n(\mathbb{S}^d)$ to denote the real polynomials on \mathbb{R}^{d+1} , of maximum total degree n, restricted to \mathbb{S}^d , with dimension

$$\mathcal{D}(d,n) := \dim \mathbb{P}_n(\mathbb{S}^d) = inom{n+d}{d} + inom{n+d-1}{d}$$

and reproducing kernel $\Phi_n^{(d+1)}(\mathbf{x},\mathbf{y}) := \Phi_n^{(d+1)}(\mathbf{x}\cdot\mathbf{y})$, where

$$egin{align} \Phi_n^{(d+1)} &:= rac{2}{\omega_d} rac{(d+1)_{n-1}}{(rac{d}{2}+1)_{n-1}} P_n^{(rac{d}{2},rac{d}{2}-1)} \ &= rac{\mathcal{D}(d,n)}{\omega_d} \, \widetilde{P}_n^{(rac{d}{2},rac{d}{2}-1)}. \end{aligned}$$

Property (R)

Quadrature regularity: Le Gia and Sloan (1999), Sloan and Womersley (2000). Later refined into Property (R).

An admissible sequence of quadrature rules (Q_1, \ldots) on $\mathbb{S}^d \subset \mathbb{R}^{d+1}$, has rule $Q_t = (X_t, W_t)$ with strength t and cardinality $|X_t| = \mathcal{N}_t$, with all weights $W_{t,k}$ positive.

An admissible sequence of quadrature rules has property (R) (Hesse and Sloan, 2003, 2004) if and only if, given $\phi \in]0, \frac{\pi}{2}]$, there exists positive constants γ and t_0 such that for all $y \in \mathbb{S}^d$ and each rules Q_t in the sequence, if $t \geqslant t_0$ then

$$\sum_{\mathrm{x}_{t,k}\in \mathsf{S}\left(\mathrm{y},rac{\phi}{t}
ight)}w_{t,k}\leqslant \gamma\,\sigma\left(\mathsf{S}\left(\mathrm{y},rac{\phi}{t}
ight)
ight).$$

Property (R) and Reimer's proofs: 1

Reimer (2000, 2003) proved that any admissible sequence of quadrature rules is quadrature regular and satisfies Property (R).

The (2000) proof uses $P_n^{(\frac{d}{2},\frac{d}{2}-1)}$, and the following limit theorem (Szegő 1939 – 1975).

Theorem 1. For $\alpha, \beta > -1$, $z \in \mathbb{C}$,

$$\lim_{n o\infty}\widetilde{P}_n^{(lpha,eta)}\left(\cosrac{z}{n}
ight)=Z_lpha(z).$$

The formula holds uniformly in every bounded region of the complex z plane.

Property (R) and Reimer's proofs: 2

From Reimer's proofs (2000, 2003) immediately follows:

Lemma 1. Let Q := (X, W) be a positive weight quadrature rule on \mathbb{S}^d of strength 2n.

Let
$$K := \Phi_n^{(d+1)}$$
.

Then for $\theta \in]0, n\Theta_n^{(\frac{d}{2}, \frac{d}{2} - 1)}[$, for any $y \in \mathbb{S}^d$,

$$\sum_{\mathbf{x}_k \in \mathsf{S}\left(\mathbf{y}, rac{ heta}{n}
ight)} w_k \leqslant rac{K(1)}{K^2\left(\cosrac{ heta}{n}
ight)}$$

$$=rac{\omega_d}{\mathcal{D}(d,n)}\,\left(\widetilde{P}_n^{(rac{d}{2},rac{d}{2}-1)}\left(\cosrac{ heta}{n}
ight)
ight)^{-2}.$$

Monotonicity of $\widetilde{P}_n^{(1,0)}(\cos heta/n)$?

Sequence of $\widetilde{P}_n^{(1,0)}(\cos\theta/n)$ seems monotonic to the first zero:

Conjectures on Jacobi polynomials

Conjecture 1. For $\alpha > -1$, $\beta > -1$, if for $\theta \in]0, \Theta_1^{(\alpha,\beta)}]$ we have

$$\widetilde{P}_1^{(\alpha,\beta)}(\cos\theta) < \widetilde{P}_2^{(\alpha,\beta)}\left(\cos\frac{\theta}{2}\right)$$
 (1)

then for $n\geqslant 1$, $\theta\in]0,n\Theta_n^{(\alpha,\beta)}]$, we have

$$\widetilde{P}_{n}^{(\alpha,\beta)}\left(\cos\frac{\theta}{n}\right) < \widetilde{P}_{n+1}^{(\alpha,\beta)}\left(\cos\frac{\theta}{n+1}\right)$$
 (2)

and therefore

$$n\Theta_n^{(\alpha,\beta)} < (n+1)\Theta_{n+1}^{(\alpha,\beta)}. \tag{3}$$

Where does premise (1) hold?

$$(3lpha^2+2lphaeta-eta^2+9lpha+eta+4)\,\sqrt{rac{eta+1}{lpha+eta+2}}+(lpha+eta)^2+3lpha+7eta+4=0.$$

Partial results in $[-1/2, 1/2]^2$

Previously known (Gegenbauer polymonials):

$$\left(n + \frac{1}{2} + \alpha\right)\Theta_n^{(\alpha,\alpha)} < \left(n + \frac{3}{2} + \alpha\right)\Theta_{n+1}^{(\alpha,\alpha)}$$

for
$$n \ge 1$$
, $\alpha \in]-\frac{1}{2}, \frac{1}{2}[$ (Szegő (1939)).

So far proved:

$$n\Theta_n^{(\alpha,\beta)} < (n+1)\Theta_{n+1}^{(\alpha,\beta)}$$
 for $n \geqslant 1$, $(\alpha,\beta) \in \left] -\frac{1}{2}, \frac{1}{2} \right[^2$ (Sturm comparison or Gatteschi (1987)),

$$\begin{split} \widetilde{P}_{n}^{(\alpha,\beta)}\left(\cos\frac{\theta}{n}\right) &< \widetilde{P}_{n+1}^{(\alpha,\beta)}\left(\cos\frac{\theta}{n+1}\right) \\ \text{for } n \geqslant 1, \ \theta \in \left]0, \pi\left[, \ (\alpha,\beta) \in \left\{\left(-\frac{1}{2},\frac{1}{2}\right), \left(\frac{1}{2},-\frac{1}{2}\right), \left(\frac{1}{2},\frac{1}{2}\right)\right\} \\ \text{(Koumandos 2005)}. \end{split}$$

Weaker result for $\alpha \geqslant \beta > -1/2$

Theorem 2. For $n \geqslant 1$, $\alpha \geqslant \beta > -\frac{1}{2}$, $\theta \in]0, \frac{\pi}{2}]$, we have

$$\left(2n\sin\frac{\theta}{2n}\right)^{\alpha-\beta} \left(n\sin\frac{\theta}{n}\right)^{\beta+\frac{1}{2}} \tilde{P}_{n}^{(\alpha,\beta)} \left(\cos\frac{\theta}{n}\right) < \left((2n+2)\sin\frac{\theta}{2n+2}\right)^{\alpha-\beta} \left((n+1)\sin\frac{\theta}{n+1}\right)^{\beta+\frac{1}{2}} \tilde{P}_{n+1}^{(\alpha,\beta)} \left(\cos\frac{\theta}{n+1}\right).$$

Proved by Sturm comparison using

$$egin{aligned} F_n^{(lpha,eta)}(heta) &:= rac{1}{n^2} \left(rac{rac{1}{4}-lpha^2}{4\sin^2rac{ heta}{2n}} + rac{rac{1}{4}-eta^2}{4\cos^2rac{ heta}{2n}}
ight) + \left(1 + rac{lpha+eta+1}{2n}
ight)^2, \ V_n^{(lpha,eta)}(heta) &:= \left(2n\,\sinrac{ heta}{2n}
ight)^{lpha+rac{1}{2}} \left(\cosrac{ heta}{2n}
ight)^{eta+rac{1}{2}} \, \widetilde{P}_n^{(lpha,eta)}\left(\cosrac{ heta}{n}
ight), \ rac{\partial^2}{\partial heta^2} V_n^{(lpha,eta)}(heta) + F_n^{(lpha,eta)}(heta)\, V_n^{(lpha,eta)}(heta) = 0. \end{aligned}$$

Application to Property (R): 1

From Lemma 1 and Conjecture 1 immediately follows:

Conjecture 2. Let Q := (X, W) be a positive weight quadrature rule on \mathbb{S}^d of strength 2n.

Then for $\theta \in]0, \Theta_1^{(\frac{d}{2}, \frac{d}{2} - 1)}[$, for any $y \in \mathbb{S}^d$,

$$\sum_{\mathrm{x}_k \in \mathsf{S}\left(\mathrm{y}, rac{ heta}{n}
ight)} w_k \leqslant rac{\omega_d}{\mathcal{D}(d,n)} \, \left(\widetilde{P}_1^{(rac{d}{2},rac{d}{2}-1)}(\cos heta)
ight)^{-2}.$$

Application to Property (R): 2

Conjecture 3. For $t \ge t_0 \ge 2$, let Q = (X, W) be a positive weight quadrature rule on \mathbb{S}^d which is exact on $\mathbb{P}_t(\mathbb{S}^d)$. Then for $\phi \in]0, \pi[$, for any $y \in \mathbb{S}^d$, we have

$$\sum_{\mathbf{x}_k \in S\left(\mathbf{y}, rac{\phi}{t}
ight)} w_k \leqslant c_1 \ t^{-d} \leqslant c_1 \ c_2 \ \sigma\left(S\left(\mathbf{y}, rac{\phi}{t}
ight)
ight),$$

where

$$egin{align} c_1 := 2^{d-1} \, \omega_d \, d! \, \left(\widetilde{P}_1^{(rac{d}{2},rac{d}{2}-1)} \left(\cos rac{\phi}{2}
ight)
ight)^{-2}, \ c_2 := rac{d}{\omega_{d-1}} \, \left(\operatorname{sinc} rac{\phi}{t_0}
ight)^{-d+1} \, \phi^{-d}. \end{align}$$

Application to Property (R): 3

Lemma 1 and our weaker result, Theorem 2, give us only:

Theorem 3. With the same conditions and notation as Conjecture 3, for $\phi \in]0, \pi[$, for any $y \in \mathbb{S}^d$, we have

$$\sum_{\mathtt{x}_k \in S\left(\mathtt{y}, rac{\phi}{t}
ight)} w_k \leqslant c_3 \ t^{-d} \leqslant c_3 \ c_2 \ \sigma \left(S\left(\mathtt{y}, rac{\phi}{t}
ight)
ight),$$

where

$$c_3:=c_1\,\left(\mathrm{sinc}\,rac{\phi}{2}
ight)^{-d-1},$$

 c_1, c_2 as per Conjecture 3.