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Outline of talk

® Some definitions,

® Property (R) and Reimer’s proofs,

® (Conjectures on Jacobi polynomials,
® Partial results in [—1/2,1/2]?,

* Weaker result for a > 3 > —1/2,

® Application to Property (R).
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Some definitions: 1 — notation

S¢ = {X € Rat+1 | Zd+1 = 1},

wq := o(S?),

PP i= P [ P{*2)(1),

©(*P) := gmallest zero in § of P{*P)(cos @),

Zo(z) =T (ax+1) (%)a Jo(2).
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Some definitions: 2 — polynomial spaces

We use P,,(S%) to denote the real polynomials on R4 of
maximum total degree m, restricted to S . with dimension

D(d,n) := dim P,,(S%) = (" :; d) n (n +;zl— 1)

and reproducing kernel ®(4+1) (x,y) := ®d+D(x . y), where

d d
§a§_1)

(I)(d_|_1) — 2 (iil_l_ 1)n—1 (
" Wd (5 _|_ ]-)n—l "
_Pln) pag-,

Wd "
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Property (R)

Quadrature regularity: Le Gia and Sloan (1999), Sloan and
Womersley (2000). Later refined into Property (R).

An admissible sequence of quadrature rules (Qq,...) on
S¢ C R4t hasrule Q; = (X, W;) with strength ¢ and
cardinality | X;| = N¢, with all weights Wy 5, positive.

An admissible sequence of quadrature rules has property (R)
(Hesse and Sloan, 2003, 2004) if and only if, given ¢ € |0, 7],

there exists positive constants v and %o such that forall y € S¢
and each rules (); in the sequence, if t > ¢, then

Z W <Y O (S (y,?))

Xt,k ES(Ya%)
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Property (R) and Reimer’s proofs: 1

Reimer (2000, 2003) proved that any admissible sequence of
quadrature rules 1s quadrature regular and satisfies Property (R).

(iai_l)
The (2000) proof uses Pp?"?

(Szego 1939 — 1975).

, and the following limit theorem

Theoreml. For o, 3 > —1, z € C,
~ zZ
lim P{*P) (cos —) = Za(2).
nN—00 n

The formula holds uniformly in every bounded region of the complex
z plane.
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Property (R) and Reimer’s proofs: 2

From Reimer’s proofs (2000, 2003) immediately follows:

Lemmal. Let Q := (X, W) be a positive weight quadrature rule
on S¢ of strength 272

Let K := ${4+D),

d d__
Thenfor 8 € |10, n©®,?’? 1)[,for any y € S¢9,

K(1)
Z Wi S Kz( 6

wes(o.t) “0s )

—2
— Wd (f’(g’g_l) (cos g)) .
D(d, n) " n

Positive quadrature on the sphere and conjectures on monotonicities of Jacobi polynomials — p. 7/1




Monotonicity of P19 (cos 8 /n) ?

Sequence of 157(11’0) (cos 8/m) seems monotonic to the first zero:

0.4

0.2

0.2 1

0.4 1

0.8

0.6
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Conjectures on Jacobi polynomials

Conjecturel. For a > —1, 8 > —1,
if for 6 €10, ©{*”] we have

- ~ 0
PP (cos ) < PL*P) (cos 5) (1)

thenfor n > 1, 8 € ]0,nO®(*P)], we have

~ ) ~ 0
P?ga,ﬁ) (cos —) < P,,gj‘_’f ) (cos ) (2)

q) n+1

and therefore
n®©A < (n+1)0%7. 3)
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Where does premise (1) hold?

alpha

(3c2 + 2a8 — B2+9a+ﬁ+4)\/ +ﬁ+2+(a+6)2+3a+7ﬁ+4=0-
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Partial results in [—1/2,1/2]?

Previously known (Gegenbauer polymonials):
(n+3+0a) O < (n+ 3 +a) %Y

form>1, a € |—3, 3| (Szegd (1939)).

27

So far proved:

n®(A) < (n + 1)@,&1’?) forn>1, (a,3) € } % %[2
(Sturm comparison or Gatteschi (1987)),

PP (cos &) < PP (COS 0 )

formn>1,0 €0, x|, (a,3) E {( % %)v(%v_%)’(%’%)}
(Koumandos 2005).
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Weaker result for o > 3 > —1/2

Theorem2. Forn > 1, a > 8> —3, 8 €]0, 2], wehave

g\ P 0\P+t3 B(ed) )
<2n sin —) (n sin —) ’ (cos —) <
2n n n
a—p0 2] B+3 2]
. ( »3)
1 — .
) ((n—|— )51nn+1> n—|—1 (cosn_l_l)

Proved by Sturm comparison using

1i_ 2 1 232 2
ﬁ%mww:]'<4.f9+-4 & >+<L+a+ﬁ+1),

((2n + 2) sin o 1 2

n?2 \ 4sin Dre 4 cos? 21 2n
n
3] a—|—% (2] ﬁ+2 - 0
VTEQ’B) (0) := <2n sin —) (cos —) ( P) ( os —> ,
2n 2n n

82

802 V(a”B) (6) + F(a’B) (0) V(a’B) (6) = 0.
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Application to Property (R): 1

From Lemma 1 and Conjecture 1 immediately follows:

Conjecture 2. Let Q := (X, W) be a positive weight quadrature
ruleon S¢ of strength 2n.

da d__
Thenfor 6 € 10, ©,2’2 1)[,for any y € S¢,

~(d d_ —2
Z Wy < d (Plz’2 1)(0089)) :
D(d,n)
Xk:ES(Y7%)
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Application to Property (R): 2

Conjecture3. For t > t, > 2,let Q = (X, W) bea positive
weight quadrature rule on S¢ whichis exact on P (S%).
Thenfor ¢ €10, =[, for any y € S¢, we have

> wkéclt_déclcza(S(y,?>),

Xk ES(Ya%)

—2
(d d_
24=1 . d! <P1(2’2 2 (cos %)) ]

—d+1
Co 1= d (SiIlC f) o<

Wda—1 to

where

e
ek
|
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Application to Property (R): 3

Lemma 1 and our weaker result, Theorem 2, give us only:
Theorem 3. With the same conditions and notation as Conjecture 3,
for ¢ €10, [, for any y € S¢, we have

Z wk<03t_d<03020'(5(y9%>)9

Xk ES(Ya%)

where

ci1,co asper Conjecture 3.
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