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Abstract. The D2 statistic, which counts the number of word matches
between two given sequences, has long been proposed as a measure of
similarity for biological sequences. Much of the mathematically rigorous
work carried out to date on the properties of the D2 statistic has been
restricted to the case of ‘Bernoulli’ sequences composed of identically and
independently distributed letters. Here the properties of the distribution
of this statistic for the biologically more realistic case of Markovian se-
quences is studied. The approach is novel in that Markovian dependency
is defined for sequences with periodic boundary conditions, and this en-
ables exact analytic formulae for the mean and variance to be derived.
The formulae are confirmed using numerical simulations, and asymptotic
approximations to the full distribution are tested.
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1 Introduction

The D2 statistic is defined as the number of exact word matches of pre-specified
length k between two sequences of letters from a finite alphabet A. This statis-
tic [13], and its many variants [19, 17, 9, 10] have been proposed as a measures of
similarity between biological sequences in cases where the more commonly used
alignment methods may not be appropriate. The distributional properties of the
D2 statistic under the null hypothesis of sequences composed of independently
and identically distributed (i.i.d.) letters have been studied extensively [13, 6, 11,
8, 7, 4].

Analysis of the k-mer spectra of the genomes of several species provides strong
evidence that genomic sequences are more appropriately modelled as having a
Markovian dependence [5]. In the current work existing exact analytic results
results for the mean, variance and an empirical distribution of D2 for i.i.d. se-
quences is extended to the case of Markovian sequences.

A previous study of this problem, with some approximations, has been carried
out by Kantorovitz et al. [12] in the process of developing a method for detecting
regulatory modules in genomic sequences. The current study differs in that we
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consider sequences with periodic boundary conditions (PBCs), for which we
introduce a new definition of Markovian sequences. The restriction to periodic
sequences simplifies calculations of the mean and variance, enabling an exact
analytic formula for the variance for first order Markovian sequences which is
rapidly computable to double precision accuracy for arbitrary sequence lengths.
In biological aplications of the analogous results for i.i.d. sequences [7, 4] we
have found generally that the PBCs are not an impediment, as they can simply
be imposed on the sequences prior to calculating D2 without without seriously
affecting its efficacy as a measure of sequence similarity.

2 Definitions

Definition 1. Consider a sequence x = x1, x2 . . . of letters from an alphabet
A of size d. We say that x has periodic boundary conditions (PBCs) and is of
length m if xi+m = xi for all i = 1, 2, . . ..

A sequence X = X1, X2 . . . of random letters has an θ-th order Markovian
dependence if

Prob ((Xi+θ = b|(Xi, . . . , Xi+θ−1 = (a1, . . . , aθ))

= M(a1, . . . , aθ; b) , (1)

for a specified dθ × d matrix M satisfying

0 ≤M(a1, . . . , aθ; b) ≤ 1 ;
∑
b∈A

M(a1, . . . , aθ; b) = 1 , (2)

for all a1, . . . , aθ, b ∈ A.

As a shorthand notation, we will write a string of length θ in bold italics:

x = (x1, . . . xθ) , (3)

and write any substring of X of length θ in a similar fashion, labelled by the
index of the first element:

Xi = (Xi, . . . Xi+θ−1) , (4)

Thus (1) is written more compactly as

Prob (Xi+θ = b|Xi = a) = M(a; b) . (5)

Following the notation of ref. [18], define a dθ × dθ square matrix M as

M(a, b) =

{
M(a; bθ) if (a2, . . . , aθ) = (b1, . . . bθ−1),

0 otherwise.
(6)

Then the Markovian dependency can be written as a first order Markovian de-
pendency as

Prob (Xi+1 = b|Xi = a) = M(a, b) . (7)
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2.1 Markov Sequences with PBCs

Definition 2. Given an order θ Markov transition matrix M , we define a Markov
sequence with PBCs of length n to be a random sequence X = X1, X2 . . . , Xn

for which the probability of observing the sequence x = x1, x2 . . . , xn ∈ An is

Prob (X = x) =
M(x1,x2)M(x2,x3) . . .M(xm,x1)

tr (Mm)
, (8)

where M is the equivalent first order transition matrix defined by (6) [15].

It is shown in ref. [4] that the following algorithm gives a practical way of
generating such a sequence

Algorithm 1
Step 1: Generate X1 = X1, . . . Xθ from the uniform distribution Prob (X1 =

x) = 1/dθ for all x ∈ Aθ.
Step 2: Generate Xθ+1, . . . , Xθ+n using (5).
Step 3: If Xn+1 = X1, accept the sequence X = X1, X2 . . . , Xn, otherwise

repeat from Step 1 until an accepted sequence is obtained.

Note that, counter-intuitively, it is important that the initial θ-mer is chosen
from a uniform distribution and not the stationary distribution of the Markov
model in order to generate the correct distribution.

3 Strand Symmetry and the Transition Matrix M

To model genomic DNA sequences, the transition matrix M is generally esti-
mated from observed word counts in a genome or part of a genome via the
asymptotic maximum likelihood estimator for infinitely long sequences

M̂(a; b) =
Nab

Na
(9)

where Nab is the number of occurrences of the (θ+ 1)-mer (a1 . . . aθb) and Na =∑
c∈ANac is the number of occurences of the θ-mer a [18].
Most genomic sequences, when examined on a sufficiently large scale, are

observed to have the property of strand symmetry [1]. That is, the number of
occurrences of any given k-mer is, to a good approximation, equal to the number
of occurrences of its reverse complement. In the interests of reducing the number
of free parameters one would like to build this property into genomic Markov
models.

To give a more mathematical framework to this statement, let us assume
that the alphabet size d is even and each letter a ∈ A has a complement ā
such that ¯̄a = a and ā 6= a. In general the alphabet splits into d/2 ‘purines’
and d/2 ‘pyrimidines’. For the usual nucleotide alphabet, A and G are purines,
C and T are pyrimidines and Ā = T , Ḡ = C. We wish to determine what
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practical restrictions are placed on the estimate M̂ of the transition matrix by
the strand-symmetry restriction

Prob ((X1, . . . , Xn) = (x1, . . . , xn)) = Prob ((X1, . . . , Xn) = (x̄n, . . . , x̄1)) .
(10)

To this purpose it is more convenient to work with the square matrix M defined
by (6). Define a matrix Nab, a, b ∈ Aθ, from the count matrix N(a, b) in a
manner analogous to (6). Then M is estimated by normalising the rows of N to
add to 1:

M̂(a, b) =
Nab∑

c∈Aθ Nac
. (11)

Now rearrange the order of columns of N to form a new matrix Q so that if the
rows are labelled by the complete set of θ-mers w1,w2, . . .wdθ the columns are
labelled in the order w̄1, w̄2, . . . w̄dθ , where w̄i = (wi1 . . . wiθ) = (w̄iθ . . . w̄i1) is
the reverse complement of the ith θ-mer wi. Strand symmetry implies that Q
will be symmetric because the probability of making the transition (a1 . . . aθ)→
(b1 . . . bθ) will be the same as the probability of making the transition (b̄θ . . . b̄1)→
(āθ . . . ā1).

The problem of determining the most general form of transition matrix is
equivalent to answering the following question: how many independent non-zero
elements does the matrix Q have, given the restrictions

1. Qab = Qb̄ā

2. Qab is zero unless (a2 . . . aθ) = (b̄θ . . . b̄2)?

Consider first any diagonal element Qaa. It will be zero unless (a2 . . . aθ) =
(āθ . . . ā2). If θ is even, this requires aθ/2+1 = āθ/2+1 which is impossible since
no letter of the alphabet is its own complement. If θ is odd this condition can
be satisfied by independently specifiying the letters a1, . . . , a(θ+1)/2. Thus the
number of non-zero diagonal elements of Q is

0 if θ is even ,
d(θ+1)/2 if θ is odd .

(12)

Now consider the off-diagonal elements of Q. The total number of non-zero
off-diagonal elements is

dθ+1 − 0 if θ is even ,
dθ+1 − d(θ+1)/2 if θ is odd .

(13)

Since the matrix is symmetric, exactly half of these are independent:

1
2d
θ+1 if θ is even ,

1
2d

(θ+1)/2(d(θ+1)/2 − 1) if θ is odd .
(14)

Finally, adding the number of independent diagonal elements gives the number
of independent elements of M as

1
2d
θ+1 if θ is even ,

1
2d

(θ+1)/2(d(θ+1)/2 + 1) if θ is odd .
(15)
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The number of independent elements of Q for an alphabet of size d = 4 is listed
in Table 1.

In order to estimate a strand-symmetric transition matrix from a given ob-
served sequence, it is sufficient to extend the definition of the count matrix Nab

to include a count of the number of occurrences of then (θ+1)-mer (a1 . . . aθb) in
the sequence plus the number of occurrences of the same (θ+1)-mer in its reverse
complement. Such a matrix will automatically have the same number of inde-
pendent elements as the corresponding Q, and the matrix M̂(a, b) constructed
according to (9) will then have the required symmetry.

Table 1. The number of independent θ + 1-mer word counts Nab needed to estimate
a θ-order strand-symmetric transition matrix for an alphabet of d = 4 letters.

θ # of independent elements of Q # of non-zero elements of M

1 10 16
2 32 64
3 136 256
4 512 1024
5 2080 4096
6 8192 16384

4 The D2 Statistic

We now consider statistical properties of the alignment-free sequence similarity
measure known as the D2 statistic. The distributional properties of this statistic
presented here apply to any higher order Markov model with or without the
constraint of strand symmetry.

Definition 3. Given two sequences X and Y with PBCs of length m and n re-
spectively, the D2 statistic is defined as the number of k-word matches, including
overlaps, between X and Y:

D2(k,M) =

m∑
i=1

n∑
j=1

Iij , (16)

where Iij is the word match indicator random variable for words length k posi-
tioned at site i in sequence X and site j in sequence Y:

Iij =

{
1 if (Xi, . . . , Xi+k−1) = (Yj , . . . , Yj+k−1) ,

0 otherwise.
(17)
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More specifically, we are interested in the case where the two sequences are
Markovian. From (6) and (7) it is easy to see that any ensemble of pairs of random
sequences (X,Y) generated by an θ-order transition matrix M is in one-to-one
correspondence with an ensemble of pairs of random sequences (X,Y) of letters
from a dθ-letter alphabet generated by the equivalent sparse dθ × dθ matrix M.
Furthermore, any k-mer match between X and Y corresponds to a (k − θ + 1)-
mer match between X and Y. It follows that the distributional properties of D2

for Markovian sequences can be determined in terms of the properties of D2 for
an equivalent first order system. In particular, for the mean and variance:

E(D2(k,M)) = E(D2(k − θ + 1,M)) ,

Var (D2(k,M)) = Var (D2(k − θ + 1,M)) ,
k ≥ θ . (18)

Therefore, to calculate E(D2(k,M)) and Var (D2(k,M)) for any k ≥ θ it is
sufficient to derive formulae for a first order Markov model. These formulae are
given below. An R implementation [16] of the mean and variance for k ≥ θ and
a formula for the mean when k < θ will be published elsewhere [4].

4.1 D2 Mean for θ = 1

The mean of D2 for θ = 1 is

E(D2) =
mn

tr (Mm)tr (Mn)
tr [(Mm−k+1 ◦Mn−k+1)(M ◦M)k−1] , (19)

where the Hadamard product A ◦ B of two matrices A and B is defined as the
matrix whose (α, β)-th element is

(A ◦B)αβ = AαβBαβ . (20)

Proof. We have that

E(D2) =

m∑
i=1

n∑
j=1

E(Iij) =

m∑
i=1

n∑
j=1

Prob (Iij = 1) , (21)

where

Prob (Iij = 1) =
∑
w∈Ak

Prob (Xi . . . Xi+k−1 = w)Prob (Yj . . . Yj+k−1 = w) .

(22)
To calculate Prob (Xi . . . Xi+k−1 = w) we sum (8) over all sequences x such that
(xi . . . xi+k−1) = w. Thus

Prob (Xi . . . Xi+k−1 = w) =

Mm−k+1(wk, w1)M(w1, w2) . . .M(wk−1, wk)

tr (Mm)
, (23)
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Fig. 1. Contributions to Var (D2) via the sum in (27). The left-hand diagram shows
the (i′, j′)-plane for a fixed value of (i, j), shown as the black square. The right-hand
diagram is an expanded view of the ‘accordion’ region −k + 1 ≤ s, t ≤ k − 1, where
t = i′ − i and s = j′ − j up to PBCs.

where the factor Mm−k+1(wk, w1) arises from summing over the letters x1, . . . ,
xi−1, xi+k, . . . , xm. Similarly we have

Prob (Yj . . . Yj+k−1 = w) =

Mn−k+1(wk, w1)M(w1, w2) . . .M(wk−1, wk)

tr (Mn)
. (24)

Substituting (23) and (24) into (22) gives

Prob (Iij = 1) =
tr [(Mm−k+1 ◦Mn−k+1)(M ◦M)k−1]

tr (Mm)tr (Mn)
. (25)

Equation (21) then gives the required result. ut

4.2 D2 Variance for θ = 1

The exact variance of D2 for Markovian sequences with PBCs requires an ex-
tensive calculation. Here we give a summary of the result, which is valid for
m,n ≥ 2k. Full technical details of the derivation will be published elsewhere [4].

We have
Var (D2) = E(D2

2)− E(D2)2 . (26)

The second term can be calculated from (19). The first term is a sum of con-
tributions obtained from (16) by partitioning a sum over words beginning at
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positions i and i′ in sequence X and beginning at j and j′ in sequence Y,

E(D2
2) =

m∑
i,i′=1

n∑
j,j′=1

E(IijIi′j′)

=

m∑
i,i′=1

n∑
j,j′=1

Prob (Iij = 1, Ii′j′ = 1)

= V0 + V1 + V2 + V3 + V4 . (27)

The partitioning reflects the degree of overlap between words in each of the two
sequences, and is illustrated in Fig. 1. We assume m,n ≥ 2k, which will almost
certainly be the case in any biological application.

We will write a Hadamard product of q factors, M ◦ . . . ◦ M , using the
shorthand notation M◦q. With this notation, the contributions to the variance
are:

V0 =
mn

tr (Mm)tr (Mn)
×

m−2k∑
r=0

n−2k∑
s=0

tr
[
(Mr+1 ◦Ms+1)(M ◦M)k−1 ×

(Mm−2k−r+1 ◦Mn−2k−s+1)(M ◦M)k−1
]
,

(28)

V1 =
mn

tr (Mm)tr (Mn)
×{

n−2k∑
s=0

[
tr {[(M ◦M ◦M)k−1 ◦ (Ms+1)T ]×

(Mm−k+1 ◦Mn−2k−s+1)}

+ 2

k−1∑
r=1

tr {(M ◦M)r ×

[(M ◦M ◦M)k−r−1 ◦ (Ms+1)T ]×
(M ◦M)r(Mm−k−r+1 ◦Mn−2k−s+1)

}]
+ the same with m and n interchanged.

}
, (29)
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V2 =
mn

tr (Mm)tr (Mn)
×{

tr [(Mm−k+1 ◦Mn−k+1)(M ◦M)k−1]

+ 2

k−1∑
t=1

tr [(Mm−k−t+1 ◦Mn−k−t+1)×

(M ◦M)k+t−1]

}
, (30)

V3 =
2mn

tr (Mm)tr (Mn)
×

k−1∑
t=1

t−1∑
s=0

tr
[
(M ◦M)sQ(M ◦M)s ×

(Mm−k−t+1 ◦Mn−k−s+1 +

Mn−k−t+1 ◦Mm−k−s+1)
]
, (31)

where

Q =


(M◦(2ν+3))ρ−1 ◦ [(M◦(2ν+1))t−s−ρ+1]T

if ρ > 0 ,

(M◦(2ν+1))t−s−1 ◦ (M◦(2ν−1))T

if ρ = 0 ,

(32)

and

ν =

⌊
k − s
t− s

⌋
, ρ = (k − s) mod (t− s) . (33)

Finally,

V4 =
2mn

tr (Mm)tr (Mn)

k−1∑
r,t=1

trU , (34)
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where

U =

{
(M◦(2ν+1))t−1 ◦ (Mm−k−t+1)T

}
M◦2ν×{

(M◦(2ν+1))r−1 ◦ (Mn−k−r+1)T
}
M◦2ν

if ζ = 0 ,{
(M◦(2ν+1))r−ζ+1 ◦Mm−k−t+1

}
×

(M◦(2ν+2))ζ−1×{
(M◦(2ν+1))t−ζ+1 ◦Mn−k−r+1

}
×

(M◦(2ν+2))ζ−1

if 0 < ζ ≤ r, t ,{
(M◦(2ν+3))ζ−r−1 ◦ (Mm−k−t+1)T

}
×

(M◦(2ν+2))r
{

(M◦(2ν+1))t−ζ+1 ◦Mn−k−r+1
}

×(M◦(2ν+2))r

if r < ζ ≤ t ,
{as above with m and n interchanged

and r and t interchanged}
if t < ζ ≤ r ,{

(M◦(2ν+3))ζ−r−1 ◦ (Mm−k−t+1)T
}
×

(M◦(2ν+2))t+r−ζ+1×{
(M◦(2ν+3))ζ−t−1 ◦ (Mn−k−r+1)T

}
×

(M◦(2ν+2))t+r−ζ+1

if r, t < ζ ,

and

ν =

⌊
k

r + t

⌋
, ζ = k mod (r + t) . (35)

5 Numerical Simulations

For short sequences and small alphabets the distribution of the D2 statistic
can be computed by enumerating all possible sequences. We have confirmed
the accuracy of the formulae for the mean and variance given in Sect. 4 to 11
significant figures by generating the complete distribution of D2 using double
precision arithmetic for sequences up to length m = n = 9 for k = 3, d = 2
and up to length m = n = 7 for k = 2, D = 3. The Markov matrices M are
generated randomly by choosing each element from a uniform distribution on
the interval [0, 1] and then normalising each row sum to 1. Two examples of
the exact D2 distribution are shown in Fig. 2. Note that the introduction of
random Markov matrices is to enable an efficient check of the above formulae
for a range of M , and is not intended to have any biological meaning. Maximum
likelihood estimates of Markov transition matrices from various genomes have
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Fig. 2. The exact distiribution of the D2 statistic for short sequences of length nA,
nB and words of length k from an alphabet of size d. The Markov matrix M has been
generated randomly in each case. Also shown (dashed curve) is the cumulative distri-
bution of the Pólya-Aeppli distribution with mean and variance set to the theoretical
values using the formulae of Sect. 4.

been published, for instance, by Chor et al. [5], which can be used in biological
applications. We note that the Chor estimates are close to satisfying the strand-
symmetry condition restrictions of Sect. 3 (data not shown).

For longer sequences of realistic biological length, the distribution of D2 can
be estimated from a Monte Carlo ensemble of random sequences generated from
the algorithm described in Sect. 2.1. Examples of cumulative distribution func-
tions for d = 4, k = 4 estimated from ensembles of 10, 000 pairs of independently
generated random sequences of length m = n = 100 and 400 are shown in Figs. 3
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Fig. 3. Two examples of empirical cumulative distribution of the D2 statistic estimated
from 10, 000 independently generated random sequences of length m = n = 100 for
words of length k = 4 and an alphabet of size d = 4. The Markov matrix M has been
generated randomly in each case. Also shown are the cumulative distribution of the
normal and Pólya-Aeppli distributions with mean and variance set to the theoretical
values using the formulae of Sect. 4.

and 4 respectively. The Markov matrix is again generated randomly, and it is
interesting to note that the mean of the distribution can vary considerably with
M . We have made a number of simulations, and find that in roughly the ex-
pected proportion of times the mean and variance calculated from the formulae
of Sect. 4 lie within the 95% confidence intervals computed from the ensemble.

For the case of sequences composed of i.i.d. letters certain rigorous results are
known for the asymptotic distribution of D2 as the sequence lengths m,n→∞.
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Fig. 4. The same as Figure 3, except m = n = 400.

For m = n, it has been shown that the limiting distribution is normal in
the regime k < 1/2 logb n + const. [3] and Pólya-Aeppli in the regime k >
2 logb n + const. [13]. Here b = 1/

∑
a∈A p

2
a where pa is the probability of oc-

currence of letter a. A Pólya-Aeppli random variable is the sum of a Poisson
number of geometric random variables, and is therefore an example of a com-
pound Poisson random variable. It often arises in the study of random word
counts as a Poisson number of clumps of overlapping words, each clump con-
taining a geometric number of k-words [18]. Although the asymptotic results for
D2 are not proved for Markovian sequences, it is a reasonable experiment to com-
pare our numerical simulations with these distributions as they may potentially
provide an accurate estimate of p-values in biological applications.
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One would not expect the asymptotic distributions to be an accurate fit
for the short sequences considered in Fig. 2. Nevertheless we have included the
Pólya-Aeppli distribution function and find it to be surprisingly close for the
d = 3 case. Disagreement arises in the tail of the distribution because, for com-
binatoric reasons, certain values of D2 within the range 0 to mn do not occur,
whereas the Pólya-Aeppli has support over the whole range (and also out to ∞,
albeit with very low probability).

If one were dealing with i.i.d. sequences with a uniform letter distribution,
then the parametersm = n = 100 or 400, k = 4 used for the simulations in Figs. 3
and 4 would inhabit the region between the normal and Pólya-Aeppli asymptotic
regimes described above. Both asymptotic distributions are superimposed on the
empirical distribution functions in Figs. 3 and 4. We observe that the normal
and Pólya-Aeppli do not differ greatly from one another, though the Pólya-
Aeppli does appear to give a better fit, particularly in the important tail of the
distribution relevant to estimating p-values.

6 Conclusions

This paper introduces the concept of periodic boundary conditions for Markovian
sequences as an elegant mathematical construct which avoids the inconvenience
of boundary effects in analytic calculations. We have demonstrated that the
mean and variance of the D2 word match statistic can be calculated analytically
and readily computed to any desired accuracy through formulae involving only
traces of products of matrices. Calculation of the mean and variance is fast as
powers of Hadamard products need only be calculated once for a given Marko-
vian model, and only need to be calculated up to the point of convergence. For
biological applications such as measuring sequence similarity or identifying re-
gions of regulatory motifs, sequences lengths tend to be of at least a few hundred
letters. In these cases loss of information about boundary effects is unlikely to
be a serious impediment. For instance, in previous studies of a database of cis-
regulatory modelled as a set of i.i.d. sequences was successfully studied using the
D2 statistics simply by imposing PBCs on the sequences prior to calculating the
D2 [7, 2].

The current work is a preliminary study designed to illustrate the computa-
tional effectiveness of imposing periodic boundary conditions when calculating
the D2 statistic. In ongoing work we are testing the agreement between the the-
oretical Markovian distributions studied herein and empirical distributions from
genomic DNA. In general, we find that the empirical distribution tends to have
heavier left and right tails, suggesting the existence of a subset of k-mers which
are over- or under-represented within the genomes studied [4].

Further work also needs to be done on extending the results to more viable
variants of theD2 statistic. It has been argued that a potential shortcoming of the
D2 statistic is that the signal of sequence similarity one is trying to detect maybe
hidden by its variability due to noise in each of the single sequences, and that to
overcome this problem one should instead calculate a ‘centred’ version of D2 in
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which word count vectors are replaced with those centred about their mean [13,
17]. There also exist ‘standardised’ versions of D2 [14, 9] designed to account
for biases arising from the fact that some words are naturally over-represented,
and ‘weighted’ versions [10] designed to account for higher substitution rates of
chemically similar amino acids in protein sequences. Extension of the mathemat-
ical formalisms developed herein to these D2 variants, as well as a more compete
study of the accuracy of approximating p-values with asymptotic distributions,
will be the subject of future work.
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