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Reproducing kernel Hilbert space H on M

A Reproducing Kernel Hilbert Space (RKHS) H of real functions
on a manifold M is a Hilbert space with inner product (,) and a
kernel

K: Mx M — R,
such that for all * € M, if ks is defined by

kx(y) := K(x,y) forally € M, then
kr € H and (kg,f) = f(x) forall f € H.
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KS function space H (&)

1, on a single sphere

~

N(5+1) s
For f € La(S%), f(@) ~ S20 Yty Fen¥is' (@)-
For positive weight -y, define the RKHS

HYD = {f:8° = R | [|fll1,y < oo},

where || £y := (£, )12 and

1
so NEHD

(£r9)1v = foodoo+77"> DY (€(€+s—1)" forde

£=1 k=1

(Kuo and Sloan, 2005)
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Reproducing kernel of H; (s ")

This is

K(S T)(w,y) =14+ ~vAsr(x-y), whereforze [-1,1],
o) (3+1)

As,,.( ) = £ = Pe(2),
® ;(£(£+s—1)) e

where P is an ultraspherical polynomial, scaled appropriately.

(Kuo and Sloan, 2005)
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The weighted tensor product space H, (s ")

For v := (Y1, .-574), on (S*)? define the tensor product space

HED = @4 gD

3’7 j=1 1"7_7' )

Reproducing kernel of H(s ™

d
K$D (x,y) = [[ K57 (5, 95)
Jj=1

(Kuo and Sloan, 2005)
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. (s r)
Equal weight quadrature error on H

Worst case error of equal weight m-point quadrature Qm,d,.y:

2
(Qa) = sw  (@-Q%D)f)

”f”H(s,r) Sl
=—-1+ —Z Z K(ST)(mz,mh)
i=1 h=1

Expected worst case squared error for m equidistributed points:

d
B(E@S0) = o (= 1+ TT (17540 ()

d
P (Asr(1) Z’YJ’)'

1
< —ex
m

(Kuo and Sloan, 2005)
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Construction using permutations

The idea of Hesse, Kuo and Sloan, 2007 for quadrature on (S2)9
is to use a spherical design z = (21,...,2m) of strength ¢ for
the first sphere and then successively permute the points of the
design to obtain the coordinates for each subsequent sphere.

The algorithm chooses permutations
II4,...,IlIg:1...m — 1...m, giving

x; = (210, (5)s - + + 5 2114 (3))

to ensure that the resulting squared worst case quadrature error is

better than the average E(ez(Qg:?ﬂ ) .

(Hesse, Kuo and Sloan, 2007)



The rate of convergence of sparse grid quadrature on the torus
LComponent-by-component construction

Weighted Korobov spaces on T¢

Consider s = 1. H(l’r) is a RKHS on the unit circle St =T,

H(l’r) is a RKHS on the d-torus T?.

This is a weighted Korobov space of periodic functions on
[0, 27)<.

The Hesse, Kuo and Sloan construction in these spaces gives a rule
with the same 1-dimensional projection properties as a lattice rule:
the points are equally spaced.

(Wasilkowski and Wozniakowski, 1999; Hesse, Kuo and Sloan, 2007)
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General quadrature weights on H é,s,’yr)

For X := {x1,...,2m}, if we define

m
Quf =) wif(zw),
k=1
G":’j = <ka’i’ ka’j> - K(S " (mza 213_7),
then the worst case error e, for Q., satisfies

6,12” = ”1 - Qw”2 = <1 — Qu,1 — Qw>

m
= 1—22wk+wTGw.
k=1



The rate of convergence of sparse grid quadrature on the torus
LWeighted tensor product quadrature

Optimal quadrature weights on H c(;,’yr)

Since

m
ei=1—2Z'wk—|—wTG'w,
k=1
the weights w are optimal when Gw = [1,...,1]T.

. 2 _ m
In this case, e, =1 — > ;' wg.
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The Smolyak construction on (S')¢ = T4

The Smolyak construction and variants have been well studied on
unweighted and weighted Korobov spaces.

Smolyak construction (unweighted Korobov space case):

For H(1 ") , define @Q1,—1 := 0 and define a sequence of equal
weight rules Q1,0,Q1,1,... on [0,27), exact for trigonometric
polynomials of degree to =0 < t; < ...

Define Ag := Q1,¢ — Qu,q—1 and for HY;", define

Qa,q := Z Ay, ®...0 Ag,.
0<ai+...4aq<q

(Smolyak, 1963; Wasilkowski and Wozniakowski, 1995; Gerstner and Griebel, 1998)
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. 1,r
The WTP variant of Smolyak on H(g - )
9

The WTP algorithm of Wasilkowski and Wozniakowski (1999)
generalizes Smolyak by treating spaces of non-periodic functions,
by allowing optimal weights, and by allowing other choices for the
index sets a.

For Hé’ljf) , define

Wani= >  Ag ®...Q Aqg,,
a€P, qa(7v)

where Py q4(v) C P2,4(v) C N4, | Pra(y)| = n.

W and W (1999) suggests to define Py, g(7y) by including the n
rules Ag, @ ...Q Ag, with largest norm.

(Wasilkowski and Wozniakowski, 1999)
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WTP rules using spherical designs

For H A ") we can define a WTP rule based on spherical designs.
Define a sequence of optimal weight rules Qg, Q1,... using
unions of spherical designs of increasing strength

to =0<t; <...andcardinality mg=1<m3 < ...

The WTP construction then proceeds similarly to S .
One difference between S!' and S? is that the spherical designs

themselves cannot be nested in general.

(Wasilkowski and Wozniakowski, 1999)
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Generic WTP algorithm for S?

1. Begin with a sequence of spherical designs X7, X2,... Xy,
with increasing cardinality, nondecreasing strength.

2. For each h, form the optimal weight rule Qp from the point
set U?zl X, and the difference rule Ay = Qn — Qn—_1.

3. Form products of the difference rules and rank them in order
of decreasing norm divided by the number of additional points.

4. Form WTP rules by adding product difference rules in rank
order.
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The Hesse, Kuo and Sloan example space

In Hesse, Kuo and Sloan, a numerical example is given with
r =3, 75 = 0.97. In other words,

d
(2 3)(a:,y) = H Kﬁ;i;: (xj,y;5) = H 1+0.99Az3(z; - yj)),

where

X 2+1

Azp(z) =)

= (e + 1))3PZ(Z)'
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Error of WTP rule for (S?)¢,d = 2,4,8,16
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Estimated upper bound of error of WTP rule

WTP algorithm: Upper bound on cost of given error: d=2k, p,0.001, v=0.4
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HKS vs WTP: ($*)%,r=3,9g=0.9,7 =g’

f(x) = 5.15 x*-0.49
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HKS vs WTP: (S$*)%,r=3,9g =0.5,7 =g’

f(x) = 1.84 x*-0.72

—HKS error

s ~——HKS optimal error
E Monte Carlo error
= rate
0.001
\ Power Regression for
~— WTP error
0.0001
0.00001
1 10 100 1000 10000

Points



The rate of convergence of sparse grid quadrature on the torus
LNurnerica\l results: products of spheres

HKS vs WTP: ($*)%,r=3,9g=0.1,y =g’

1
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Why does WTP (initially) perform poorly?

WTP points are too close together.

» Partly [??] because, for one sphere, nesting is forced.

» Mostly [?7] because, for higher d, initially only one sphere at
a time is changed.

HKS points are better separated. [?7]

[Not always: let's look at (S')4 = T9 ]
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HKS: T?,r = 3,~v = 0.97, 100 points
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HKS vs WTP: T4, r =3,g = 0.1,y = g’

f(x) = 0.49 x*-1.57
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HKS vs WTP: T4, » =3,9g = 0.9,y = ¢’
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HKS vs WTP: T8 r» =3,9g = 0.9,y = ¢’
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HKS vs WTP: T'%,r =3,9g = 0.9,v = ¢’
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Closeup: T'6,r =3,9 = 0.9,v = g’
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Error of WTP: T4, d = 2,4,8,16,30, g = 0.1
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Error of WTP: T¢,d = 2,4,8,16,30, g = 0.5
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Error of WTP: T¢,d = 2,4,8,16,30, g = 0.9
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