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Setting: the unit sphere Sd

The unit sphere, spherical codes, area measure

For d > 2 consider the unit sphere

Sd :=
{
x ∈ Rd+1 | ‖x‖ = 1

}
.

Let σd be the area measure on Sd .

Let σ := σd/σd(Sd), so σ(Sd) = 1.
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Setting: the unit sphere Sd

Normalized spherical cap discrepancy

For any probability measure µ on Sd , the normalized spherical
cap discrepancy is

D(µ) := sup
x∈Sd, 0<θ<π

|µ
(
Bx(θ)

)
− σ

(
Bx(θ)

)
|,

where Bx(θ) is the spherical cap of spherical radius θ about the
point x .
(Beck and Chen 1987)
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Setting: the unit sphere Sd

Normalized spherical cap discrepancy of a
spherical code

Call a finite set of points of Sd a spherical code.

For a spherical code X ⊂ Sd , let σX be the normalized counting
measure defined for Y ⊂ Sd by

σX(Y ) :=
|X ∩ Y |
|X|

.

The normalized spherical cap discrepancy of X is
D(X) = D(σX).

This is the maximum over all spherical caps of the difference
between the normalized area of the cap and the proportion of code
points which lie in the cap. (Beck and Chen 1987)
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Setting: the unit sphere Sd

Asymptotic equidistribution

A sequence X := (X1, X2, . . .), of spherical codes is
asymptotically equidistributed if D(X`) < δ(|X`|), where δ is a
positive decreasing function δ : N→ (0, 1], with δ(N)→ 0 as
N →∞ .
(Damelin and Grabner 2003)
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Setting: the unit sphere Sd

Normalized Riesz s energy

The normalized Riesz s energy of a finite set X ⊂ Sd is
E(X)Us , where Us(r) := r−s, the Riesz potential function,
and E(X) is the normalized discrete energy functional

E(X)u :=
1

|X|2
∑
x∈X

∑
y∈X
y 6=x

u (‖x− y‖) .

The corresponding normalized continuous energy functional is
given by the double integral

I u :=

∫
Sd

∫
Sd
u (‖x− y‖) dσ(y) dσ(x).

(Riesz 1938, Smith 1956, Landkof 1972, Wagner 1990)



Discrepancy, separation and energy

Setting: the unit sphere Sd

Separation of points

We are interested in spherical codes such that the minimum
distance between code points is bounded below by a positive
decreasing function ∆ : N→ (0, 2],

‖x− y‖ > ∆(|X`|) for all x, y ∈ X`.

(Tammes 1930, Rankin 1955)
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Setting: the unit sphere Sd

Well separated sequences of codes

The order of the lower bound ∆(N) for the separation of the
sequence with the largest separation for each N is Ω(N−1/d) .

Therefore, for all sequences of Sd codes,
∆(|X`|) = O(|X`|−1/d).

A sequence of Sd codes is called well separated if there exists a
separation constant γ > 0 such that we can set
∆(N) = γN−1/d .
(Tammes 1930, Rankin 1955)
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Setting: the unit sphere Sd

Main result for Sd

For the following result, an admissible sequence of spherical codes
is a sequence X such that a discrepancy function δ and a
separation function ∆ exist, satisfying their respective bounds.

The (simplified) main result for Sd is then:

Theorem 1

For an admissible sequence X of Sd spherical codes, with
discrepancy function δ, and separation function ∆, the
normalized Riesz s energy for 0 < s < d is bounded by

|
(

E(X`)− I
)
Us| = O

(
δ(|X`|)1−s/d ∆(|X`|)−s |X`|−s/d

)
.
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Setting: the unit sphere Sd

Corollary for well separated sequences

This result immediately implies the following.

Corollary 2

For a well separated admissible sequence X of Sd spherical
codes, with discrepancy function δ, the normalized Riesz s energy
for 0 < s < d satisfies

E(X`)Us = I Us + O
(
δ(|X`|)1−s/d

)
.
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Examples of sequences of spherical codes

Sequences of spherical codes whose energy
converges to the continuous limit

1. Minimum energy sequences.
(Landkof 1972, Damelin and Grabner 2003, Brauchart 2005, Hardin and Saff 2005)

2. Well-separated spherical designs.
(Grabner and Tichy 1993, Hesse and L 2008, L 2011).

I For strength t , spherical cap discrepancy is O(t−1) .

3. Sequences of extremal fundamental systems.
(Marzo and Ortega-Cerdà 2010).

4. Well-separated, diameter-bounded equal area sequences.
(Alexander 1972, Stolarsky 1973, Rakhmanov, Saff and Zhou 1994, Zhou 1995, Kuijlaars and Saff 1998, L

2007).
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Examples of sequences of spherical codes

Minimum energy sequences (1)

For q > 0, let Ωq = (Ωq,1, Ωq,2, . . .) be a sequence of Sd
codes such that |Ωq,N | = N and such that Ωq,N has the
minimum Riesz q energy of any Sd code with N code points. It
is known that for q ∈ (0, d), Ωq is asymptotically
equidistributed.

Brauchart (2005) gives a bound for the normalized spherical cap
discrepancy of Ωq of

D(Ωq,N) = O
(
N−α/d

)
. (1)

where α := (d− q)/(d− q + 2) .
(Landkof 1972, Damelin and Grabner 2003, Brauchart 2005, Hardin and Saff 2005)
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Examples of sequences of spherical codes

Minimum energy sequences (2)

For q ∈ (d− 2, d), Ωq is also known to be well separated.
Therefore, for q ∈ (d− 2, d) and s ∈ (0, d), Corollary 2 implies
that E(Ωq,N)Us → I Us as N →∞ .

Using Brauchart’s bound (1) we obtain, for this case, the estimate

E(Ωq,N)Us = I Us + O
(
N−(1−s/d)α/d)

= I Us + O
(
N−(1−s/d)(1−q/d)/(d−q+2)

)
.

For general q > 0, the situation is more complicated, and the
known results on discrepancy and separation split into a number of
cases.
(Brauchart 2005, Dragnev and Saff 2007, L 2011)
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Examples of sequences of spherical codes

Sequences of extremal fundamental systems

Let {p1, . . . , pDt} be a basis for the spherical polynomials of
degree at most t . An extremal fundamental system is a spherical
code X which maximizes the determinant detA(X) , where A
is the interpolation matrix of size Dt ×Dt with entries
Ai,j := pi(xj) .
A sequence Ξ of extremal fundamental systems with increasing
degree t is known to be well separated (Reimer 1990). Marzo and
Ortega-Cerdà have recently (2010) shown that Ξ is asymptotically
equidistributed.
Corollary 2 therefore implies that the normalized Riesz s energy of
Ξ converges to the normalized energy double integral for all
s ∈ (0, d) .
(Reimer 1990, Sloan and Womersley 2004, Marzo and Ortega-Cerdà 2010)



Discrepancy, separation and energy

Examples of sequences of spherical codes

Well separated, diameter-bounded equal area
sequences

The sequence EQP(d) of recursive zonal equal area spherical
codes, as described in the PhD thesis (L 2007) is well separated
and has normalized spherical cap discrepancy
D
(

EQP(d,N)
)

= O
(
N−1/d

)
.

Corollary 2 therefore yields the normalized energy estimate

E(EQP(d,N))Us = I Us + O
(
N (s−d)/d2).

(Alexander 1972, Stolarsky 1973, Rakhmanov, Saff and Zhou 1994, Zhou 1995, Kuijlaars and Saff 1998, L 2007)
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Setting: compact connected Riemannian manifolds

Compact connected Riemannian manifolds

Let M be a smooth, connected d -dimensional Riemannian
manifold, without boundary, with metric g and geodesic distance
dist , such that M is compact in the metric topology of dist .

(Sinclair and Tanaka, 2007, Figure 1)
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Setting: compact connected Riemannian manifolds

Compact connected Riemannian manifolds

Let M be a smooth, connected d -dimensional Riemannian
manifold, without boundary, with metric g and geodesic distance
dist , such that M is compact in the metric topology of dist .

Let σM be the volume measure on M given by the volume
element corresponding to g and dist .

Since M is compact, it has finite volume.

Let σ := σM/σM(M), so σ(M) = 1.
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Setting: compact connected Riemannian manifolds

Normalized ball discrepancy

For any probability measure µ on M , the normalized ball
discrepancy is

D(µ) := sup
x∈M, 0<r<diam(M)

|µ
(
Bx(r)

)
− σ

(
Bx(r)

)
|,

where diam(M) is the diameter of M and Bx(r) is the
geodesic ball of radius r about the point x .
(Blümlinger 1990, Damelin and Grabner 2003)
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Setting: compact connected Riemannian manifolds

Normalized Riesz s energy

The normalized Riesz s energy of an M code, a finite set
X ⊂M, is E(X)Us , where Us(r) := r−s, the Riesz potential
function, and E(X) is the normalized discrete energy functional

E(X)u :=
1

|X|2
∑
x∈X

∑
y∈X
y 6=x

u (dist(x, y)) .

The corresponding normalized continuous energy functional is
given by the double integral

I u :=

∫
M

∫
M
u (dist(x, y)) dσ(y) dσ(x).

(Hare and Roginskaya 2003, Damelin, et al. 2008)
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Setting: compact connected Riemannian manifolds

Convergence of the energy of M codes

Conjecture 1

Let M be a compact connected Riemannian manifold without
boundary.

For a well-separated admissible sequence X of M codes, the
normalized Riesz s energy converges to the energy double integral
of the normalized volume measure σ as |X`| → ∞ . That is,

|
(

E(X`)− I
)
Us| → 0 as |X`| → ∞.
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Setting: compact connected Riemannian manifolds

Proof (sketch)

The proof proceeds along the lines of the proof in (L 2011), except
for two points.

1. The normalized potential function∫
M
Us (dist(x, y)) dσ(y)

varies with x , unlike the case of the sphere. This makes the
conclusion of Conjecture 1 weaker.

2. The volume of a geodesic ball does not behave in exactly the
same way as the volume of a spherical cap. Luckily the appropriate
estimate is good enough to obtain the result.
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Setting: compact connected Riemannian manifolds

The key estimate

Blümlinger (1990, Lemma 2) gives an estimate related to the
Bishop-Gromov inequality. In our notation, it states:

Lemma 3

Let M be a compact connected d -dimensional Riemannian
manifold without boundary. Then

σd
(
Bx(r)

)
σ0(r)

− 1 = O(r2)

uniformly in M , where σ0(r) is the volume of the Euclidean ball
of radius r in Rd .

Therefore (roughly) the volume of a small enough geodesic ball in
M is similar to the volume of a spherical cap of the same radius in
Sd . (Bishop and Crittenden 1964, Gromov 1981, Grove 1987, Echenburg 1987, Blümlinger 1990)
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