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Abstract For d > 2, we consider asymptotically equidistributed sequences of Sd codes,
with an upper bound δ on spherical cap discrepancy, and a lower bound ∆ on separation.
For such sequences, if 0 < s < d, then the difference between the normalized Riesz s energy
of each code, and the normalized s-energy double integral on the sphere is bounded above by
O
(

δ
1−s/d

∆−s N−s/d
)
, where N is the number of code points. For well separated sequences

of spherical codes, this bound becomes O
(

δ
1−s/d ). We apply these bounds to minimum

energy sequences, sequences of well separated spherical designs, sequences of extremal
fundamental systems, and sequences of equal area points.
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1 Introduction and Main Results

Consider the unit sphere Sd :=
{

x ∈ Rd+1 |‖x‖= 1
}
, for d > 2. Call a finite set of points

of Sd a spherical code. There is a continuing interest in the generation and use of spherical
codes which are in some sense well distributed, and the properties which can be used to dis-
tinguish better distributed codes from more poorly distributed ones. This paper examines the
relationship between three such properties of sequences of spherical codes. These properties
are the Riesz s energy, the spherical cap discrepancy, and the separation of code points.

It is known that a sequence of spherical codes with minimal Riesz s energy and increas-
ing numbers of points has “good” spherical cap discrepancy, and “good” separation, in a
sense which is made more precise below. The question addressed in this paper concerns a
partial converse to this result:

When does a sequence of spherical codes with “good” spherical cap discrepancy
and “good” separation also have “good” Riesz s energy?
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The following definitions make these concepts more precise. The normalized Riesz s
energy of a spherical code X is E(X)Us, where Us(r) := r−s, the Riesz potential function,
and E(X) is the normalized discrete energy functional

E(X)u :=
1
|X |2 ∑

x∈X
∑
y∈X
y6=x

u(‖x− y‖) .

The corresponding normalized continuous energy functional is given by the double integral

I u :=
∫
Sd

∫
Sd

u(‖x− y‖)dσ(x)dσ(y),

where σ is the spherical probability measure, the uniform measure on Sd normalized so that
σ(Sd) = 1. It is well known that for 0 < s < d, the normalized energy double integral of Us
has the value

I Us = 2d−s−1 Γ
(
(d +1)/2

)
Γ
(
(d− s)/2

)
√

π Γ(d− s/2)
. (1)

The normalized spherical cap discrepancy of a spherical code is the supremum over all
spherical caps of the difference between the normalized area of the cap and the proportion of
code points which lie in the cap. In other words, for y∈ Sd ,r ∈ (0,2], let S(y,r) be the closed
spherical cap {x | ‖x− y‖6 r}, and let σX be the normalized counting measure defined for
Y ∈ Sd by

σX (Y ) :=
|X ∩Y |
|X |

.

Then the normalized spherical cap discrepancy of X is

D(X) := sup
y∈Sd ,r∈(0,2]

|σ
(
S(y,r)

)
−σX

(
S(y,r)

)
|.

A sequence X :=(X1,X2, . . .), of spherical codes with corresponding cardinalities N` :=
|X`| is asymptotically equidistributed [10, Remark 4, p. 236], if the normalized spherical
cap discrepancy is bounded above by a positive decreasing function δ : N→ (0,2], with
δ (N)→ 0 as N→ ∞. Specifically,

D(X`)< δ (N`). (2)

The sequences of spherical codes of most interest for this paper are those such that the
minimum distance between code points is bounded below by a positive decreasing function
∆ : N→ (0,2],

‖x− y‖> ∆(N`) for all x,y ∈ X`. (3)

An easy area argument shows that the order of the lower bound ∆(N) for the separation of
the solution of the Tammes problem [38] (the sequence which has the largest separation for
each N) is Ω(N−1/d) [33, Theorem 2]. Therefore, for all sequences of Sd codes, ∆(N`)N

1/d
`

is bounded above by a constant. In other words, we must have

∆(N`) = O(N−1/d
` ). (4)
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A sequence of Sd codes is called well separated if there exists a separation constant
γ > 0 such that we can set ∆(N) = γN−1/d .

For the purposes of this paper, we define an admissible sequence of spherical codes to
be a sequence X , such that a discrepancy function δ , and a separation function ∆ exist,
satisfying the bounds (2) and (3) respectively.

Before stating our main result, we note here that this paper uses “big-Oh” and “big-
Omega” notation with inequalities in a somewhat unusual way, to avoid a proliferation of
unknown constants. For upper bounds, when we say that

f (n)6 g(n)+O
(
h(n)

)
as n→ ∞,

we mean that there exist positive constants C and M such that

f (n)6 g(n)+C
(
h(n)

)
for all n > M.

For lower bounds, when we say that

f (n)> g(n)+Ω
(
h(n)

)
as n→ ∞,

we mean that there exist positive constants C and M such that

f (n)> g(n)+C
(
h(n)

)
for all n > M.

If more than one O or Ω expression is used in an inequality, the implied constants may be
different from each other.

We now state our main result.

Theorem 1.1 For an admissible sequence X of Sd spherical codes, with discrepancy func-
tion δ , and separation function ∆ , the normalized Riesz s energy for 0 < s < d is bounded
by (

E(X`)−I
)

Us 6 O
(

δ (N`)
1−s/d

∆(N`)
−s N−s/d

`

)
, and (5)(

I −E(X`)
)

Us 6 O
(

δ (N`)
1−s/d). (6)

This result immediately implies the following.

Corollary 1.2 For a well separated admissible sequence X of Sd spherical codes, with
discrepancy function δ , the normalized Riesz s energy for 0 < s < d satisfies

E(X`)Us = I Us +O
(

δ (N`)
1−s/d). (7)

Remarks

Bounds in the best case
As stated by Beck [1, p. 10], for any sequence of spherical codes, the normalized spher-

ical cap discrepancy is bounded below such that

δ (N`) = Ω
(
N−1/2−1/(2d)
`

)
. (8)
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Thus, for a well separated sequence with the best possible normalized spherical cap discrep-
ancy, if the sequence is well separated, then the estimate (7) gives an upper bound for the
normalized Riesz s energy of no better than

E(X`)Us−I Us 6 O
(
N(s−d)(d+1)/(2d2)
`

)
.

In contrast, the best known upper bound for E(XN)Us−I Us for a minimum s-energy se-
quence Ωs, for d > 2 and s ∈ (0,d), is

E(Ωs,N)Us−I Us 6−cNs/d−1, with c > 0, (9)

as given by Kuijlaars and Saff [24, (1.6)].

Asymptotic equidistribution and weak-star convergence
It has long been known that such a sequence X of spherical codes is asymptotically

equidistributed if and only if it is weak-star convergent, i.e. the corresponding sequence
(σX`

) of normalized counting measures converges weakly to σ ,∫
Sd

f (x)dσX`
(x) :=

1
N`

∑
x∈X`

f (x)→
∫
Sd

f (x)dσ(x)

as `→ ∞ for all continuous f : Sd → R.
Theorem 4.1 of R. Ranga Rao [34, p. 665] states that given a measure µ on Rd+1 such

that µL −1 is continuous for every linear function L on Rd+1, a sequence of measures
converges weakly to µ if and only if it converges to µ for certain discrepancies defined
on half spaces. This theorem can be used to show that a sequence of Sd codes is weak-
star convergent if and only if it converges to zero in normalized spherical cap discrepancy.
Brauchart [7, Lemma 1.4] proves this equivalence relationship in another way, by appealing
to Grabner’s [18] Erdős-Turán inequality on the sphere. Blümlinger extends this result to
compact Riemannian manifolds [3].

Measures with bounded density
Götz obtains a result [17, Proposition 13] similar to Corollary 1.2, that is, an estimate

of Riesz energy in terms of ball discrepancy, but his result is for the difference in energy
double integral between two probability measures satisfying a density bound [17, (12)], and
so the result does not apply in our case. It is interesting to note, though, that if we set β = d
in [17, (12)], then the energy difference given by [17, Proposition 13] is also bounded by
C δ

1−s/d , where in this case δ is the discrepancy between the two probability measures.

Applications of Theorem 1.1

It is known that the following sequences of spherical codes are admissible.

1. Minimum energy sequences.
See Section 2.

2. Well separated sequences of spherical designs.
See Section 3.
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3. Sequences of extremal fundamental systems.
Let {p1, . . . , pDt} be a basis for the spherical polynomials of degree at most t. An
extremal fundamental system is a spherical code X which maximizes the determinant
detA(X), where A is the interpolation matrix of size Dt ×Dt with entries Ai, j := pi(x j).
See [35,36] for details. A sequence Ξ of extremal fundamental systems with increasing
degree t is known to be well separated [35]. Marzo and Ortega-Cerdà [30] have recently
shown that Ξ is asymptotically equidistributed. Corollary 1.2 therefore implies that the
normalized Riesz s energy of Ξ converges to the normalized energy double integral for
all s ∈ (0,d).

4. Well separated, diameter-bounded equal area sequences.
The sequence EQP(d) of recursive zonal equal area spherical codes, as described in the
author’s PhD thesis [27, 4.1], is well separated [27, Theorem 4.3.2] and has normal-
ized spherical cap discrepancy D

(
EQP(d,N)

)
= O

(
N−1/d

)
[27, Theorem 5.4.1]. Our

estimate (7) therefore yields the normalized energy estimate

E(EQP(d,N))Us = I Us +O
(
N(s−d)/d2)

.

2 Minimum energy sequences

Minimum Riesz s energy

For q > 0, let Ωq = (Ωq,1,Ωq,2, . . .) be a sequence of Sd codes such that |Ωq,N | = N and
such that Ωq,N has the minimum Riesz q energy of any Sd code with N code points. It is
known that for q∈ (0,d), Ωq is asymptotically equidistributed [26, Ch. 2, pp. 160–162] [10,
Theorem 3] [20, Theorem 1.1]. Brauchart [6, Theorem 2.2] gives a bound for the normalized
spherical cap discrepancy of Ωq of

D(Ωq,N) = O
(
N−α/d). (10)

where α := (d−q)/(d−q+2).
For q ∈ (d−2,d), Ωq is also known to be well separated [15, Theorem 1.5]. Therefore,

for q ∈ (d− 2,d) and s ∈ (0,d), Corollary 1.2 implies that E(Ωq,N)Us→I Us as N → ∞.
Using Brauchart’s bound (10) we obtain, for this case, the estimate

E(Ωq,N)Us = I Us +O
(
N−(1−s/d)α/d)= I Us +O

(
N−(1−s/d)(1−q/d)/(d−q+2)).

For general q > 0, the situation is more complicated, and the known results on discrep-
ancy and separation split into a number of cases. Let φq,s(N) be the order in N of the upper
bound on E(Ωq,N)Us−I Us given by (5) above, given the current best known values of
the upper bound δ (N) and lower bound ∆(N) for Ωq. Table 1 lists these results, giving
references.

The result for q = d in Table 1 is peculiar. When s < d/3, the upper bound

φd,s(N) = (logN)(3s/d−1)/2 (log logN)(1−s/d)/2

decreases to 0 as N → ∞, but when s > d/3, this upper bound increases with increasing
N. Kuijlaars and Saff comment that the order of the separation bound ∆(N) for Ωd “most
likely is not best possible” [24, p. 525]. This seems reasonable, since both Ωd+ε and Ωd−ε

are known to be well separated.
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q δ (N) ∆(N) φq,s(N)

(0,d−2] O
(
N−α/d) Ω

(
N−1/(q+2)) O

(
N−(1−s/d)α/d−s/d+s/(q+2))

(d > 3) [6, Ch. 2] [13, Th. 3.5]

(d−2,d−1) O
(
N−α/d) Ω

(
N−1/d) O

(
N−(1−s/d)α/d)

[6, Ch. 2] [15, Th. 1.5]

d−1 O
(
N−1/d logN

)
Ω
(
N−1/d) O

(
N−(1−s/d)/d(logN)−(1−s/d))

[16, Th. 4] [16, Th. 3]

(d−1,d) O
(
N−α/d) Ω

(
N−1/d) O

(
N−(1−s/d)α/d)

[6, Ch. 2] [25, Th. 8]

d O
(√

log logN
logN

)
Ω
(
(N logN)−1/d) O

(
(logN)(3s/d−1)/2 (log logN)(1−s/d)/2)

[11, Th. 1] [24, (1.13)]

(d,∞) → 0 Ω
(
N−1/d) → 0

[20, Th. 2.2] [24, (1.12)]

Table 1 Discrepancy, separation and s-energy bounds for minimum q-energy sequences

The result for q ∈ (0,d−2) in Table 1 is also remarkable. The exponent

f (d,q,s) :=−(1− s/d)(d−q)/(d−q+2)/d− s/d + s/(q+2)

is not always negative. In particular for φs,s(N), the upper bound from (5) for the normalized
Riesz s energy of the optimal Riesz s energy points, the exponent f (d,s,s) is not always
negative:

f (d,s,s) =−(1− s/d)(d− s)/(d− s+2)/d− s/d + s/(s+2)

=
(d−1)s3 +(−2d2 +2d−2)s2 +(d3−d2)s−2d2

d2 (s+2)(d− s+2)
.

For d > 5, f (d,s,s) takes on positive values for s in some interval within (0,d− 2). For
example, f (5,s,s) > 0 for s ∈ (4−

√
11,5/2), and our upper bound therefore diverges for

this range of s.
In fact, our upper bound φs,s(N) is never tight for any s ∈ (0,d), since it is always

positive, and the best known upper bound for E(Ωs,N)Us−I Us is given by (9), which is
negative.

Minimum logarithmic energy

For d > 2, the normalized logarithmic energy of a spherical code X is given by E(X)Ulog,
where Ulog(r) := − log(r) is the logarithmic potential function. Let Ωlog be a sequence
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of Sd codes with such that |Ωlog,N | = N and such that Ωlog,N has the minimum normal-
ized logarithmic energy for any Sd code with N code points. The best known bound on
the normalized spherical cap discrepancy of Ωlog is Brauchart’s bound [7, Theorem 1.6],
D(Ωlog,N) = O

(
N−1/(d+2)

)
.

For d = 2, the logarithmic energy points are also known to be well separated [32, Theo-
rem 1]. In this case, our estimate (7) implies the normalized energy estimate

E(Ωlog,N)Us = I Us +O
(
N−(1−s/2)/4) for s ∈ (0,2).

3 Well separated sequences of spherical designs

A spherical t-design is a spherical code such that the corresponding normalized counting
measure gives an equal weight quadrature functional which exactly integrates all spherical
polynomials of degree at most t [14]. In [22] it is proved that for a well separated sequence of
spherical designs on S2 such that each t-design has (t +1)2 points, the normalized Coulomb
energy (i.e. Riesz 1 energy) has the same first term and a second term of the same order
as the minimum normalized Coulomb energy for S2 codes. Hesse [21] generalizes these to
cover the Riesz s energy for 0 < s < 2.

To compare the results of [22] and [21] to energy bounds of the type treated here, we
need a variant of Corollary 1.2. From [18, Theorem 1] [19, (2.1)] we know that there is a
constant CG such that for any spherical t-design Xt on S2, we have

D(Xt)6
CG

t +1
. (11)

We therefore need to modify Corollary 1.2 to treat sequences X of spherical codes with
normalized spherical cap discrepancy bounded by

D(X`)< δ (`). (12)

Corollary 3.1 For a well separated sequence X of Sd spherical codes, with normalized
spherical cap discrepancy bounded by (12), the normalized Riesz s energy for 0 < s < d
satisfies

E(X`)Us = I Us +O
(

δ (`)1−s/d). (13)

We define a well separated admissible sequence of Sd designs with separation constant
γ to be a sequence of spherical designs X = (X1,X2, . . .), with each spherical design Xt
having strength t, where X is well separated, with separation constant γ . We can now
compare the results of [22] and [21] with the result obtained by combining the estimate (13)
with the bound (11) on the normalized spherical cap discrepancy of spherical designs. First
we restate the main results from [22] with notation adjusted to match this paper, and recall
from (1) the well known result that I U1 = 1.

Theorem 3.2 Let X be a well separated admissible sequence of S2 designs with separation
constant γ. Then the normalized Coulomb energy E(Xt)U1 of each spherical design Xt ∈X
of cardinality Nt is bounded above by

E(Xt)U1 6 1+Cγ (t +1)−3/2 N1/4
t − 1

2
1

t +3/2
− 1

2
(t +1)(t +2)

t +3/2
N−1

t .

The constant Cγ > 0 depends on the separation constant γ, but is independent of t.
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Theorem 3.3 Let X be a well separated admissible sequence of S2 designs with separa-
tion constant γ, such that for some positive constant µ, |Xt | = Nt 6 µ(t + 1)2. Then the
normalized Coulomb energy of each Xt ∈X is bounded above by

E(Xt)U1 6 1+C(γ,µ) N−1/2
t ,

where C(γ,µ) > 0 is independent of t.

It is not yet known whether an infinite sequence of spherical designs exists which sat-
isfies the premise of Theorem 3.3. In [4], Bondarenko et al. show that a sequence exists
satisfying the required bound on cardinality, but their paper does not address the question
of separation of the points. If a sequence X satisfying the premise of Theorem 3.3 exists,
the theorem implies that its normalized Coulomb energy converges to the corresponding
normalized energy double integral at the rate of O

(
t−1
)
, that is

E(Xt)U1 6 1+O
(
t−1).

Applying our estimate (13) and the bound (11) to a well separated admissible sequence X
of spherical designs on S2, we obtain

E(Xt)U1 6 1+O
(
t−1/2).

This is a slower rate of convergence than predicted by Theorem 3.3, but the result does not
depend on the relationship between cardinality and strength required by Theorem 3.3.

If we use Theorem 3.2 with the infinite sequence of spherical designs of Korevaar and
Meyers [23, Theorem 2.3], which has cardinality O

(
t3
)
, we obtain

E(Xt)U1 6 1+O
(
t−3/4).

This assumes that this sequence is well separated. Judging from the construction given in
[23, Section 5], this assumption seems reasonable. Thus Theorem 3.2 gives a faster rate of
convergence for this sequence than is predicted by Corollary 3.1.

If instead of the normalized Coulomb energy, we use the normalized Riesz s energy for
s ∈ (0,2), then for a well separated admissible sequence X of spherical designs on S2, the
estimate (13) and the bound (11) yield

E(Xt)Us 6 I Us +O
(
ts/2−1). (14)

Hesse’s result [21, Theorem 2] implies that for a sequence X of spherical designs which
satisfies the premise of Theorem 3.3, the Riesz s energy for s ∈ (0,2) satisfies

E(Xt)Us 6 I Us +O
(
ts−2).

Again, this result is better than our corresponding result (14).
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4 Results used to prove Theorem 1.1

Our proof of Theorem 1.1 needs a few well known results, which we state here. We denote
the Lebesgue area measure of the sphere Sd by

ωd :=
2π(d+1)/2

Γ( d+1
2 )

.

This usage of ωd agrees with Müller [31], but not with Landkof [26, Ch. 1, p. 45], who
would put ωd+1 where we have ωd .

Lemma 4.1 For R ∈ (0,2] and x ∈ Sd , the normalized area integral Vd(R) := σ (S(x,R))
can be evaluated by

Vd(R) =
ωd−1

ωd

∫ R

0
rd−1

(
1− r2

4

)d/2−1

dr,

independent of the point x.

Corollary 4.2 For R ∈ (0,T ], T ∈ (0,2], the normalized area integral Vd(R) satisfies

Vd(R) ∈
[
CL,d(T ),CH,d

) Rd

d
, where

CL,d(T ) :=
(

1− T 2

4

)d/2−1

CH,d , and CH,d :=
ωd−1

ωd
. (15)

Lemma 4.3 For R ∈ (0,2] and any x ∈ Sd , for any integrable function u : (0,2]→ R, the
single integral

J (x;R)u :=
∫
‖x−y‖6R

u(‖x− y‖)dσ(y), can be evaluated by

J (x;R)u = J d(R)u :=
∫ R

0
u(r)dVd(r) =

ωd−1

ωd

∫ R

0
u(r)rd−1

(
1− r2

4

)d/2−1

dr, (16)

which is independent of x.

Corollary 4.4 For any integrable function u : (0,2]→ R, the double integral I u can be
evaluated by I u = J d(2)u, where J d is defined by (16).

Corollary 4.5 For s ∈ (0,d), R ∈ (0,T ], T ∈ (0,2], the integral J d(R)Us satisfies

J d(R)Us ∈
[
CL,d(T ),CH,d

) Rd−s

d− s
, (17)

where CL,d and CH,d are defined by (15).

From the results above we derive the following estimate.

Lemma 4.6 Let X be a spherical code with cardinality |X |=N > 2 and minimum Euclidean
distance bounded below by ∆ 6

√
2. For x ∈ X , for R ∈ (∆ ,

√
2], the normalized counting

measure σX of the spherical cap S(x,R) satisfies

σX
(
S(x,R)

)
=
|X ∩S(x,R)|
|X |

6 25d/2−1
(

R
∆

)d

N−1. (18)



10 Paul Leopardi

Proof For θ ∈ [0,π], define ϒ(θ) := 2sin(θ/2), to convert spherical to Euclidean distance.
Now fix ∆ and define

ϕ := ϒ
-1(∆)/2 = sin−1(∆/2).

The spherical distance ϕ is therefore less than or equal to the packing radius of X . This
implies that we can place each point y of X in a spherical cap S(y,ϒ(ϕ)) with no two caps
overlapping. This places an upper bound on σX , of the form

σX (R)6
Vd
(

ϒ(ϒ-1(R)+ϕ)
)

Vd
(

ϒ(ϕ)
) . (19)

Since ϕ ∈ (0,π/2], we have ϒ(ϕ) = 2sin(ϕ/2)> sinϕ = ∆/2, and since

ϒ
-1(R)+ϕ < ϒ

-1(R)+2ϕ = ϒ
-1(R)+ϒ

-1(∆)< ϒ
-1(R+∆), we see that

Vd
(

ϒ(ϕ)
)
> Vd(∆/2), and Vd

(
ϒ(ϒ-1(R)+ϕ)

)
< Vd(R+∆).

From (19) we therefore have σX (R)6 Vd(R+∆)/Vd(∆/2). Since ∆ 6
√

2, (15) gives us

σX (R)6
CH,d (R+∆)d

CL,d(
√

2)(∆/2)d
= 2d CH,d

CL,d(
√

2)

(
R+∆

∆

)d

.

To obtain (18) we note that for R > ∆ , we have 2R > R+∆ and so(
R+∆

∆

)d

< 2d
(

R
∆

)d

. ut

A simple packing argument for the whole sphere, when combined with the area estimate
from Corollary 4.2 leads to a refinement of our bound (4).

Lemma 4.7 Let X be a spherical code with cardinality |X |=N > 2 and minimum Euclidean
distance bounded below by ∆ . Then ∆ must satisfy the bound

∆
dN 6 23d/2−1 d

CH,d
, (20)

where CH,d is defined by (15).

Proof Because ∆ is a lower bound on the minimum Euclidean distance, we can use the
same argument as in the proof of Lemma 4.6 to show that we can place a spherical cap
of Euclidean radius ∆/2 around each point of X , with no two caps overlapping. Using this
observation, and applying the estimate from Corollary 4.2, we must therefore have

1 > N Vd(∆/2)> N
(

1− T 2

4

)d/2−1

CH,d
∆ d

2d d
,

for any T ∈ [∆/2,2]. Setting T =
√

2, which is always possible, we obtain

1 > N 21−d/2CH,d
∆ d

2d d
,

which leads directly to the bound (20). ut
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5 Proof of Theorem 1.1

We fix d and drop all subscripts d where this does not cause confusion. We fix s ∈ (0,d),
fix a sequence X having the required properties. We also fix `, drop all subscripts `, and
examine the spherical code X := {x1, . . . ,xN}. We use the abbreviations E := E(X),U :=Us,
∆ := ∆(N), δ := δ (N).

We calculate the normalized energy EU using a sum of Riemann-Stieltjes integrals, one
for each of the N nodes. We have

EU =
1
N

N

∑
k=1

Ek U

where for any integrable function u : (0,2]→ R,

Ek u :=
1
N

N

∑
j=1
j 6=k

u
(∥∥xk− x j

∥∥) .
We use the punctured normalized counting function gk defined by

gk(r) := σX
(
S(xk,r)\{xk}

)
=
|X ∩S(xk,r)|−1

N
.

This gives us

Ek u =
∫ 2

0
u(r)dgk(r) =

∫ 2

∆

u(r)dgk(r),

where the last equation is a result of the separation condition (3). If u is differentiable on
(∆ ,2] we can integrate by parts to obtain

Ek u = [u(r)gk(r)]2∆ −
∫ 2

∆

gk(r)du(r) = u(2)(1−N−1)−
∫ 2

∆

gk(r)du(r).

Since U(r) = r−s, we have dU(r) =−sr−s−1 dr, and so

Ek U = 2−s(1−N−1)+
∫ 2

∆

sr−s−1 gk(r)dr. (21)

Upper bound

We use the packing argument of Lemma 4.6 to show that

gk(r)6C1 ∆
−dN−1rd−N−1, where C1 := 25d/2−1.

From the normalized spherical cap discrepancy δ and Corollary 4.2 we also know that

gk(r)6 V (r)+δ −N−1 6C2 rd +δ −N−1, where C2 :=
CH,d

d
.
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We now find the Euclidean radius ρ where these two upper bounds are equal. This is given
by

ρ =

(
1

C1−C2 ∆ dN

)1/d

δ
1/d

∆N1/d . (22)

Using Lemma 4.7, we see that C2 ∆ dN 6 23d/2−1, so that

C1−C2 ∆
dN > 25d/2−1−23d/2−1 > 0.

Therefore

ρ = O
(

δ
1/d

∆ N1/d). (23)

Since C1−C2 ∆ dN <C1, we also have

ρ = Ω
(

δ
1/d

∆ N1/d). (24)

Since ∆ N1/d = O(1) and since δ → 0, we must therefore have ρ → 0. We also know from
(8) that δ N is at least Ω(1). Therefore 0 < ∆ < ρ < 2, for N sufficiently large.

We now have

gk(r)6 h(r) :=


0, r ∈ [0,∆ ]

C1 ∆−dN−1rd−N−1, r ∈ (∆ ,ρ)

V (r)+δ −N−1, r ∈ [ρ,2].

On substitution back into (21) we obtain

Ek U = 2−s(1−N−1)+
∫

ρ

∆

sr−s−1 gk(r)dr+
∫ 2

ρ

sr−s−1 gk(r)dr

6 2−s(1−N−1)+C1
s

d− s
∆
−dN−1 (ρd−s−∆

d−s)

+
∫ 2

ρ

sr−s−1 V (r)dr+δ (ρ−s−2−s)−N−1 (∆−s−2−s).

We see that this upper bound is independent of our code point index k and therefore we have

EU 6 2−s(1−N−1)+C1
s

d− s
∆
−dN−1 (ρd−s−∆

d−s)

+
∫ 2

ρ

sr−s−1 V (r)dr+δ (ρ−s−2−s)−N−1 (∆−s−2−s).

Using (16), we have

I U =
∫ 2

0
U(r)dV (r) =U(2)−

∫ 2

0
DU(r)V (r)dr = 2−s +

∫ 2

0
sr−s−1 V (r)dr.

Using (22), and integrating by parts, we therefore obtain

EU−I U 6−2−sN−1 +C1
s

d− s
∆
−dN−1 (ρd−s−∆

d−s)+ρ
−s V (ρ)

−
∫

ρ

0
r−s dV (r)+δ (ρ−s−2−s)−N−1 (∆−s−2−s).
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We now use the estimate (17) to obtain

EU−I U 6C1
s

d− s
∆
−dN−1

ρ
d−s +C2ρ

d−s +δ ρ
−s

− (C1
s

d− s
+1)∆−sN−1−C3

1
d− s

ρ
d−s−2−s

δ .

where C3 :=CL,d(
√

2). Substituting the order estimate for ρ from (23), we obtain

EU−I U 6 O
(

δ
1−s/d

∆
−sN−s/d)+O

(
δ

1−s/d
∆

d−sN1−s/d).
Since ∆ dN is at most O(1), we obtain our upper bound (5).

Lower bound

We define the Euclidean radius τ by V (τ) = δ +N−1. Using (8), we see that

τ = O
(

δ
1/d ) and τ = Ω

(
δ

1/d ). (25)

Since ∆ = O(N−1/d) and since δ → 0, we must therefore have 0 < ∆ < τ < 2, for N
sufficiently large.

Using arguments similar to those for the upper bound, we obtain

gk(r)> λ (r) :=

{
0, r ∈ [0,τ]
V (r)−δ −N−1, r ∈ [τ,2].

On substituting back into (21), we obtain

Ek U = 2−s(1−N−1)+
∫ 2

∆

sr−s−1 gk(r)dr

> 2−s(1−N−1)+
∫ 2

τ

sr−s−1 V (r)dr− (δ +N−1)(τ−s−2−s).

We see that this lower bound is independent of our code point index k and we therefore have

EU > 2−s(1−N−1)+
∫ 2

τ

sr−s−1 V (r)dr− (δ +N−1)(τ−s−2−s).

Similarly to the argument for the upper bound, we obtain

I U−EU 6 2−sN−1 +
∫

τ

0
sr−s−1 V (r)dr+(δ +N−1)(τ−s−2−s)

6 O
(
N−1)+O

(
τ

d−s)+O
(

δ τ
−s)+O

(
N−1

τ
−s).

Using (25) we now have

I U−EU 6 O
(
N−1)+O

(
δ

1−s/d )+O
(
N−1

δ
−s/d ),

yielding our lower bound (6). ut
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Further remarks

1. The spherical cap discrepancy has been well studied [1] [2, Chapters 7 and 8] [10,18,
29]. The papers [5,7] explore some relationships between spherical cap discrepancy and
energy, in relation to generalizations of the Erdős-Turán inequality [18] and Stolarky’s
invariance principle [37], treating the energy as the limit of a continuous energy func-
tional.
Other relationships between discrepancy and energy can be found if the notion of dis-
crepancy is generalized. Stolarky’s original invariance principle [37, Theorem 2] is ex-
pressed in terms of a discrepancy defined in terms of a kernel function.
Damelin et al. [9,12] generalize discrepancy and energy results on the sphere to compact
symmetric spaces. Their main result is that if the discrepancy and energy are defined in
terms of the same positive definite kernel, then the discrepancy is the square root of the
energy. To apply the result to spherical codes, the kernel must be a reproducing kernel,
and therefore continuous. This rules out the Riesz s-energy considered in the current
paper, since for 0 < s < d the corresponding kernel has a singularity on the diagonal.
The paper of Levesley and Sun [28] gives closely related results. In another closely
related recent paper [8], Brauchart and Dick re-examine Stolarky’s invariance principle
in terms of reproducing kernel Hilbert spaces and L2 spherical cap discrepancy.

2. In view of Blümlinger’s results [3], and the results mentioned in the previous remark,
the techniques used to prove Theorem 1.1 might be generalized to treat compact con-
nected Riemannian manifolds. In this case, the potential would be a function of geodesic
distance in the manifold, rather than Euclidean distance in some embedding space, and
the discrepancy would be based on geodesic balls.
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