# Quadrature using sparse grids on products of spheres 

Paul Leopardi

Mathematical Sciences Institute, Australian National University.
For presentation at 3rd Workshop on High-Dimensional Approximation UNSW, Sydney, 16 February 2009.

## Topics

- Weighted tensor product spaces on spheres
- Component-by-component construction
- Variations on sparse grid quadrature
- What's left to do?


## Polynomials on the unit sphere

Sphere $\mathbb{S}^{s}:=\left\{x \in \mathbb{R}^{s+1} \mid \sum_{k=1}^{s+1} x_{k}^{2}=1\right\}$.
$\mathbb{P}_{\mu}^{(s+1)}$ : spherical polynomials of degree at most $\mu$.
$\mathbb{H}_{\ell}^{(s+1)}$ : spherical harmonics of degree $\ell$, dimension $N_{\ell}^{(s+1)}$.
$\mathbb{P}_{\mu}^{(s+1)}=\bigoplus_{\ell=0}^{\mu} \mathbb{H}_{\ell}^{(s+1)}$ has spherical harmonic basis

$$
\left\{Y_{\ell, k}^{(s+1)} \mid \ell \in 0 \ldots \mu, k \in 1 \ldots N_{\ell}^{(s+1)}\right\} .
$$

## Function space $H_{1, \gamma}^{(s, r)}$ on a single sphere

For $f \in L_{2}\left(\mathbb{S}^{s}\right), f(x) \sim \sum_{\ell=0}^{\infty} \sum_{k=1}^{N_{\ell}^{(s+1)}} \hat{f}_{\ell, k} Y_{\ell, k}^{(s+1)}(x)$.
For positive weight $\gamma$, Reproducing Kernel Hilbert Space

$$
H_{1, \gamma}^{(s, r)}:=\left\{f: \mathbb{S}^{s} \rightarrow \mathbb{R} \mid\|f\|_{1, \gamma}<\infty\right\}
$$

where $\|f\|_{1, \gamma}:=\langle f, f\rangle_{\gamma}^{1 / 2}$ and

$$
\begin{aligned}
\langle f, g\rangle_{1, \gamma} & :=\sum_{\ell=0}^{\infty} \sum_{k=1}^{N_{\ell}^{(s+1)}} B_{s, r, \gamma}(\ell) \hat{f}_{\ell, k} \hat{g}_{\ell, k}, \\
B_{s, r, \gamma}(\ell) & :=\quad 1(\text { if } \ell=0) ; \quad \gamma^{-1}(\ell(\ell+s-1))^{r}(\text { if } \ell \geq 1) .
\end{aligned}
$$

## Reproducing kernel of $\boldsymbol{H}_{1, \gamma}^{(s, r)}$

This is

$$
\begin{aligned}
K_{1, \gamma}^{(s, r)}(x, y) & :=\sum_{\ell=0}^{\infty} \sum_{k=1}^{N_{\ell}^{(s+1)}} \frac{Y_{\ell, k}^{(s+1)}(x) Y_{\ell, k}^{(s+1)}(y)}{B_{s, r, \gamma}(\ell)} \\
& =1+\gamma A_{s, r}(x \cdot y), \quad \text { where for } z \in[-1,1] \\
A_{s, r}(z) & :=\sum_{\ell=1}^{\infty} \frac{N_{\ell}^{(s+1)}}{(\ell(\ell+s-1))^{r}} \widetilde{C}_{\ell}^{\left(\frac{s-1}{2}\right)}(z),
\end{aligned}
$$

with normalized ultraspherical polynomial

$$
\widetilde{C}_{\ell}^{\lambda}(z):=\frac{C_{\ell}^{\lambda}(z)}{C_{\ell}^{\lambda}(1)}
$$

## The weighted tensor product space $\boldsymbol{H}_{d, \gamma}^{(s, r)}$

For $\gamma:=\left(\gamma_{1}, \ldots, \gamma_{d}\right)$, on $\left(\mathbb{S}^{s}\right)^{d}$ define the tensor product space

$$
H_{d, \gamma}^{(s, r)}:=\bigotimes_{j=1}^{d} H_{1, \gamma_{j}}^{(s, r)}
$$

For $f \in H_{d, \gamma}^{(s, r)}, \quad x=\left(x_{1}, \ldots, x_{d}\right) \in\left(\mathbb{S}^{s}\right)^{d}$,
$f(x)=\sum_{\ell \in \mathbb{N}^{d}} \sum_{k \in \mathcal{K}(d, \ell)} \hat{f}_{\ell, k} \prod_{j=1}^{d} Y_{\ell_{j}, k_{j}}^{(s+1)}\left(x_{j}\right)$, where
$\mathcal{K}(d, \ell):=\left\{k \in \mathbb{N}^{d} \mid k_{j} \in 1 \ldots N_{\ell_{j}}^{(s+1)}\right.$ for $\left.j \in 1 \ldots d\right\}$.
Reproducing kernel of $\boldsymbol{H}_{d, \gamma}^{(s, r)}$ is
$K_{d, \gamma}(x, y):=\prod_{j=1}^{d} K_{1, \gamma_{j}}^{(s, r)}\left(x_{j}, y_{j}\right)=\prod_{j=1}^{d}\left(1+\gamma_{j} A_{s, r}\left(x_{j} \cdot y_{j}\right)\right)$.

## Equal weight quadrature error on $\boldsymbol{H}_{d, \gamma}^{(s, r)}$

Worst case error of equal weight quadrature $\boldsymbol{Q}_{\boldsymbol{m}, \boldsymbol{d}}$ with $\boldsymbol{m}$ points:

$$
\begin{aligned}
e_{m, d}^{2}\left(Q_{m, d}\right) & =-1+\frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{h=1}^{m} K_{d, \gamma}\left(x_{i}, x_{h}\right) \\
& =-1+\frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{h=1}^{m} \prod_{j=1}^{d}\left(1+\gamma_{j} A_{s, r}\left(x_{i, j} \cdot x_{h, j}\right)\right) \\
E\left(e_{m, d}^{2}\right) & =\frac{1}{m}\left(-1+\prod_{j=1}^{d}\left(1+\gamma_{j} A_{s, r}(1)\right)\right) \\
& \leq \frac{1}{m} \exp \left(A_{s, r}(1) \sum_{j=1}^{d} \gamma_{j}\right)
\end{aligned}
$$

## Spherical designs on $\mathbb{S}^{s}$

A spherical design of strength $t$ on $\mathbb{S}^{\boldsymbol{s}}$ is an equal weight quadrature rule $Q$ with $m$ points $\left(x_{1}, \ldots, x_{m}\right)$,
$Q f:=\sum_{k=1}^{m} f\left(x_{k}\right)$, such that, for all $p \in \mathbb{P}_{t}\left(\mathbb{S}^{s}\right)$,

$$
Q p=\int_{\mathbb{S}^{s}} p(y) d \omega(y) /\left|\mathbb{S}^{s}\right|
$$

The linear programming bounds give $t=\mathbf{O}\left(m^{1 / d}\right)$.
On the sphere $\mathbb{S}^{2}$ spherical designs of strength $t$ are known to exist for $m=\mathbf{O}\left(t^{3}\right)$ and conjectured for $m=(t+1)^{2}$. Spherical $t$-designs have recently been found numerically for $m \geq(t+1)^{2} / 2+O(1)$ for $t$ up to 126 .
(Delsarte, Goethals and Seidel, 1977; Hardin and Sloane, 1996; Chen and Womersley, 2006; Womersley, 2008)

## Construction using permutations

The idea of Hesse, Kuo and Sloan, 2007 for quadrature on $\left(\mathbb{S}^{2}\right)^{d}$ is to use a spherical design $z=\left(z_{1}, \ldots, z_{m}\right)$ of strength $t$ for the first sphere and then successively permute the points of the design to obtain the coordinates for each subsequent sphere.

The algorithm chooses permutations
$\Pi_{1}, \ldots, \Pi_{d}: 1 \ldots m \rightarrow 1 \ldots m$, giving

$$
x_{i}=\left(z_{\Pi_{1}(i)}, \ldots, z_{\Pi_{d}(i)}\right)
$$

to ensure that the resulting squared worst case quadrature error is better than the average $\boldsymbol{E}\left(e_{m, d}^{2}\right)$.
(Hesse, Kuo and Sloan, 2007)

## Error estimate for permutation construction

Hesse, Kuo and Sloan prove that if $\left(z_{1}, \ldots, z_{m}\right)$ is a spherical $t$-design with $m=\mathbf{O}\left(t^{2}\right)$ or if $r>3 / 2$ and $m=\mathbf{O}\left(t^{3}\right)$ for $t$ large enough, then

$$
\begin{aligned}
D_{m}^{2}:=\left.e_{m, 1}^{2}\right|_{\gamma_{1}=1} & =\frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{h=1}^{m} A_{2, r}\left(z_{\Pi_{j}(i)} \cdot z_{\Pi_{j}(h)}\right) \\
& \leq \frac{A_{2, r}(1)}{m}
\end{aligned}
$$

This ensures that for $\boldsymbol{m}$ large enough, $\boldsymbol{M}_{\boldsymbol{m}, \boldsymbol{d}}^{2}$, the average squared worst case error over all permutations, satisfies

$$
M_{m, d}^{2} \leq E\left(e_{m, d}^{2}\right)
$$

## Weighted Korobov spaces

Consider $s=1 . \boldsymbol{H}_{1, \gamma}^{(1, r)}$ is a RKHS on the unit circle,

$$
\boldsymbol{H}_{d, \gamma}^{(1, r)} \text { is a RKHS on the } \boldsymbol{d} \text {-torus. }
$$

This is a weighted Korobov space of periodic functions on $[0,2 \pi)^{d}$.

The Hesse, Kuo and Sloan construction in these spaces gives a rule with the same 1 -dimensional projection properties as a lattice rule: the points are equally spaced.
(Wasilkowski and Woźniakowski, 1999; Hesse, Kuo and Sloan, 2007)

## The Smolyak construction on $\boldsymbol{H}_{d, 1}^{(1, r)}$

The Smolyak construction and variants have been well studied on unweighted and weighted Korobov spaces.

Smolyak construction (unweighted case):
For $\boldsymbol{H}_{1,1}^{(1, r)}$, define $Q_{1,-1}:=0$ and define a sequence of equal weight rules $Q_{1,0}, Q_{1,1}, \ldots$ on $[\mathbf{0}, \mathbf{2 \pi})$, exact for trigonometric polynomials of degree $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0}<\boldsymbol{t}_{\mathbf{1}}<\ldots$.

Define $\Delta_{q}:=Q_{1, q}-Q_{1, q-1}$ and for $H_{d, 1}^{(1, r)}$, define

$$
Q_{d, q}:=\sum_{0 \leq a_{1}+\ldots+a_{d} \leq q} \Delta_{a_{1}} \otimes \ldots \otimes \Delta_{a_{d}}
$$

(Smolyak, 1963; Wasilkowski and Woźniakowski, 1995; Gerstner and Griebel, 1998)

## Smolyak vs lattice rules on $\boldsymbol{H}_{d, 1}^{(1, r)}$

Frank and Heinrich (1996) computes a discrepancy equivalent to the worst case error of quadrature on $\boldsymbol{H}_{\boldsymbol{d}, \mathbf{1}}^{(\mathbf{1}, \boldsymbol{r})}$.

Smolyak quadrature using the trapezoidal rule is compared to the rank 1 lattice rules of Haber (1983) and the rank 2 lattice rules of Sloan and Walsh (1990), in 3, 4 and 6 dimensions.

In all cases, the rank 2 rule outperforms the rank 1 rule, which beats the Smolyak-trapezoidal rule.
(Haber, 1983; Sloan and Walsh, 1990; Frank and Heinrich, 1996)

## The WTP variant of Smolyak on $\boldsymbol{H}_{d, \gamma}^{(1, r)}$

The WTP algorithm of Wasilkowski and Woźniakowski (1999) generalizes Smolyak by allowing other choices for the index sets a. (W and W (1999) treats spaces of non-periodic functions.)

For $\boldsymbol{H}_{d, \gamma}^{(1, r)}$, define

$$
W_{d, n}:=\sum_{a \in P_{n, d}(\gamma)} \Delta_{a_{1}} \otimes \ldots \otimes \Delta_{a_{d}}
$$

where $\boldsymbol{P}_{\mathbf{1}, \boldsymbol{d}}(\gamma) \subset \boldsymbol{P}_{\mathbf{2}, \boldsymbol{d}}(\gamma) \subset \mathbb{N}^{d},\left|\boldsymbol{P}_{\boldsymbol{n}, \boldsymbol{d}}(\gamma)\right|=\boldsymbol{n}$.
W and $\mathrm{W}(1999)$ suggests to define $\boldsymbol{P}_{\boldsymbol{n}, \boldsymbol{d}}(\gamma)$ by including the $\boldsymbol{n}$ rules $\Delta_{a_{1}} \otimes \ldots \otimes \Delta_{a_{d}}$ with largest norm.

## WTP algorithm using spherical designs

For $\boldsymbol{H}_{d, \gamma}^{(s, r)}$ with $s>\mathbf{1}$, we can define a WTP algorithm based on spherical designs on $\mathbb{S}^{s}$. Consider $s=2$. Define a sequence of equal weight rules $Q_{0}, Q_{1}, \ldots$ using spherical designs of increasing strength $t_{0}=0<t_{1}<\ldots$ and cardinality $m_{0}=1<m_{1}<\ldots$.

The Smolyak and WTP constructions then proceed as per $s=1$.

One difference between $s=\mathbf{1}$ and $s=\mathbf{2}$ is that spherical designs are not nested.
(Wasilkowski and Woźniakowski, 1999)

## Error estimate for a single product rule

Based on the estimates of Hesse, Kuo and Sloan (2007),

$$
e_{m, 1}^{2}\left(Q_{m, 1}\right)=\frac{\gamma_{1}}{m^{2}} \sum_{i=1}^{m} \sum_{h=1}^{m} A_{2, r}\left(x_{i} \cdot x_{h}\right)
$$

we obtain for the product rule $R:=Q_{m_{1}, 1} \otimes \ldots \otimes Q_{m_{d}, 1}$,

$$
\begin{aligned}
e^{2}(R) & =-1+\prod_{j=1}^{d} \frac{1}{m_{j}^{2}} \sum_{i=1}^{m_{j}} \sum_{h=1}^{m_{j}}\left(1+\gamma_{j} A_{2, r}\left(x_{j_{i}} \cdot x_{j_{h}}\right)\right) \\
& \leq-1+\prod_{j=1}^{d}\left(1+\frac{\gamma_{j}}{m_{j}} A_{2, r}(1)\right)
\end{aligned}
$$

## Error estimate for a single product rule

If $m:=\prod_{j=1}^{d} m_{j}$ then we have

$$
\begin{aligned}
e^{2}(R) & \leq \frac{1}{m}\left(-m+\prod_{j=1}^{d}\left(m_{j}+\gamma_{j} A_{2, r}(1)\right)\right) \\
& \geq \frac{1}{m}\left(-1+\prod_{j=1}^{d}\left(1+\gamma_{j} A_{2, r}(1)\right)\right) .
\end{aligned}
$$

So this upper bound for such a product rule is worse than the average worst case error.
(Hesse, Kuo and Sloan, 2007)

## Optimal linear combination of product rules

Since the Smolyak and WTP algorithms are based on tensor products of differences $\boldsymbol{\Delta}_{a_{j}}$, they are each equivalent to a specific linear combination of product rules $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{\boldsymbol{N}}$.
We can instead find the coefficients $\boldsymbol{\alpha}_{\boldsymbol{k}}$ giving the best worst case error of $\boldsymbol{Q}=\sum_{p=1}^{N} \boldsymbol{\alpha}_{\boldsymbol{p}} \boldsymbol{R}_{\boldsymbol{p}}$ by minimizing

$$
\begin{aligned}
e^{2}(Q) & =\left\langle I^{*}-Q^{*}, I^{*}-Q^{*}\right\rangle_{d, \gamma} \\
& =1-2 \sum_{k=1}^{N} \alpha_{p}+\sum_{p=1}^{N} \sum_{q=1}^{N} \alpha_{p} \alpha_{q}\left\langle R_{p}^{*}, R_{q}^{*}\right\rangle_{d, \gamma}
\end{aligned}
$$

where $I^{*}$ is the representer of the integral on $\left(\mathbb{S}^{2}\right)^{d}$, $Q^{*}$ is the representer of the rule $Q$, etc.
(Kuo and Sloan, 2005)

## Optimal linear combination of product rules

The squared error is quadratic in the $\boldsymbol{\alpha}_{\boldsymbol{p}}$ and stationary when

$$
\sum_{q=1}^{N} \alpha_{q}\left\langle R_{p}^{*}, R_{q}^{*}\right\rangle_{d}=1
$$

for $p \in 1 \ldots N$.
(Larkin, 1970; Kuo and Sloan, 2005)

## Almost everything is still to do

- Error estimates for tensor product algorithms. What is the improvement in error for the best linear combination of product rules over the best single product rule?
- Best rate of increase of strength of spherical designs. Should it double very step?
- Best index sets.

What is the best way to take weights into account?

- Maximum determinant interpolatory quadrature rules. Are these better than spherical designs?
- Constraints on $\gamma$ for strong tractability.
- Numerical experiments.
- Extension to higher dimensional spheres; other compact sets.

