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Topics

I Weighted tensor product spaces on spheres

I Component-by-component construction

I Variations on sparse grid quadrature

I What’s left to do?
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Weighted tensor product spaces on spheres

Polynomials on the unit sphere

Sphere Ss := {x ∈ Rs+1 |
∑s+1
k=1 x2

k = 1} .

P(s+1)
µ : spherical polynomials of degree at most µ .

H(s+1)
` : spherical harmonics of degree ` , dimension N

(s+1)
` .

P(s+1)
µ =

⊕µ
`=0 H(s+1)

` has spherical harmonic basis

{Y
(s+1)
`,k | ` ∈ 0 . . . µ, k ∈ 1 . . . N

(s+1)
` }.
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Weighted tensor product spaces on spheres

Function space H
(s,r)
1,γ on a single sphere

For f ∈ L2(Ss), f(x) ∼
∑∞
`=0

∑N
(s+1)
`

k=1 f̂`,kY
(s+1)
`,k (x).

For positive weight γ , Reproducing Kernel Hilbert Space

H
(s,r)
1,γ := {f : Ss → R | ‖f‖1,γ < ∞},

where ‖f‖1,γ := 〈f, f〉1/2γ and

〈f, g〉1,γ :=
∞∑
`=0

N
(s+1)∑̀
k=1

Bs,r,γ(`)f̂`,kĝ`,k,

Bs,r,γ(`) := 1 (if ` = 0); γ−1
(
`(` + s − 1)

)r (if ` ≥ 1).

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

Reproducing kernel of H
(s,r)
1,γ

This is

K
(s,r)
1,γ (x, y) :=

∞∑
`=0

N
(s+1)∑̀
k=1

Y
(s+1)
`,k (x)Y (s+1)

`,k (y)

Bs,r,γ(`)

= 1 + γAs,r(x · y), where for z ∈ [−1, 1],

As,r(z) :=
∞∑
`=1

N
(s+1)
`(

`(` + s − 1)
)r C̃

( s−1
2

)

` (z),

with normalized ultraspherical polynomial

C̃λ
` (z) :=

Cλ
` (z)

Cλ
` (1)

.

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

The weighted tensor product space H
(s,r)
d,γ

For γ := (γ1, . . . , γd) , on (Ss)d define the tensor product space

H
(s,r)
d,γ :=

⊗d
j=1 H

(s,r)
1,γj

.

For f ∈ H
(s,r)
d,γ , x = (x1, . . . , xd) ∈ (Ss)d ,

f(x) =
∑
`∈Nd

∑
k∈K(d,`) f̂`,k

∏d
j=1 Y

(s+1)
`j ,kj

(xj), where

K(d, `) := {k ∈ Nd | kj ∈ 1 . . . N
(s+1)
`j

for j ∈ 1 . . . d}.

Reproducing kernel of H
(s,r)
d,γ is

Kd,γ(x, y) :=
d∏
j=1

K
(s,r)
1,γj

(xj, yj) =
d∏
j=1

(
1 + γjAs,r(xj · yj)

)
.

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

Equal weight quadrature error on H
(s,r)
d,γ

Worst case error of equal weight quadrature Qm,d with m points:

e2
m,d(Qm,d) = −1 +

1

m2

m∑
i=1

m∑
h=1

Kd,γ(xi, xh)

= −1 +
1

m2

m∑
i=1

m∑
h=1

d∏
j=1

(
1 + γjAs,r(xi,j · xh,j)

)
,

E(e2
m,d) =

1

m

(
− 1 +

d∏
j=1

(
1 + γjAs,r(1)

))

≤
1

m
exp

(
As,r(1)

d∑
j=1

γj
)
.

(Kuo and Sloan, 2005)
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Component-by-component construction

Spherical designs on Ss

A spherical design of strength t on Ss is an equal weight
quadrature rule Q with m points (x1, . . . , xm) ,
Qf :=

∑m
k=1 f(xk) , such that, for all p ∈ Pt(Ss) ,

Q p =
∫

Ss
p(y) dω(y)/|Ss|.

The linear programming bounds give t = O(m1/d) .

On the sphere S2 spherical designs of strength t are known to
exist for m = O(t3) and conjectured for m = (t + 1)2 .
Spherical t -designs have recently been found numerically for
m ≥ (t + 1)2/2 + O(1) for t up to 126.
(Delsarte, Goethals and Seidel, 1977; Hardin and Sloane, 1996; Chen and Womersley, 2006; Womersley, 2008)
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Component-by-component construction

Construction using permutations

The idea of Hesse, Kuo and Sloan, 2007 for quadrature on (S2)d

is to use a spherical design z = (z1, . . . , zm) of strength t for
the first sphere and then successively permute the points of the
design to obtain the coordinates for each subsequent sphere.

The algorithm chooses permutations
Π1, . . . , Πd : 1 . . . m → 1 . . . m , giving

xi = (zΠ1(i), . . . , zΠd(i))

to ensure that the resulting squared worst case quadrature error is
better than the average E(e2

m,d) .
(Hesse, Kuo and Sloan, 2007)
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Component-by-component construction

Error estimate for permutation construction

Hesse, Kuo and Sloan prove that if (z1, . . . , zm) is a spherical
t -design with m = O(t2) or if r > 3/2 and m = O(t3) for t
large enough, then

D2
m := e2

m,1|γ1=1
=

1

m2

m∑
i=1

m∑
h=1

A2,r(zΠj(i) · zΠj(h))

≤
A2,r(1)

m
.

This ensures that for m large enough, M2
m,d , the average

squared worst case error over all permutations, satisfies

M2
m,d ≤ E(e2

m,d) .

(Hesse, Kuo and Sloan, 2007)
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Variations on sparse grid quadrature

Weighted Korobov spaces

Consider s = 1 . H
(1,r)
1,γ is a RKHS on the unit circle,

H
(1,r)
d,γ is a RKHS on the d -torus.

This is a weighted Korobov space of periodic functions on
[0, 2π)d .

The Hesse, Kuo and Sloan construction in these spaces gives a rule
with the same 1-dimensional projection properties as a lattice rule:
the points are equally spaced.
(Wasilkowski and Woźniakowski, 1999; Hesse, Kuo and Sloan, 2007)
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Variations on sparse grid quadrature

The Smolyak construction on H
(1,r)
d,1

The Smolyak construction and variants have been well studied on
unweighted and weighted Korobov spaces.

Smolyak construction (unweighted case):

For H
(1,r)
1,1 , define Q1,−1 := 0 and define a sequence of equal

weight rules Q1,0, Q1,1, . . . on [0, 2π) , exact for trigonometric
polynomials of degree t0 = 0 < t1 < . . . .

Define ∆q := Q1,q − Q1,q−1 and for H
(1,r)
d,1 , define

Qd,q :=
∑

0≤a1+...+ad≤q
∆a1 ⊗ . . . ⊗ ∆ad.

(Smolyak, 1963; Wasilkowski and Woźniakowski, 1995; Gerstner and Griebel, 1998)
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Variations on sparse grid quadrature

Smolyak vs lattice rules on H
(1,r)
d,1

Frank and Heinrich (1996) computes a discrepancy equivalent to

the worst case error of quadrature on H
(1,r)
d,1 .

Smolyak quadrature using the trapezoidal rule is compared to the
rank 1 lattice rules of Haber (1983) and the rank 2 lattice rules of
Sloan and Walsh (1990), in 3, 4 and 6 dimensions.

In all cases, the rank 2 rule outperforms the rank 1 rule, which
beats the Smolyak-trapezoidal rule.

(Haber, 1983; Sloan and Walsh, 1990; Frank and Heinrich, 1996)
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Variations on sparse grid quadrature

The WTP variant of Smolyak on H
(1,r)
d,γ

The WTP algorithm of Wasilkowski and Woźniakowski (1999)
generalizes Smolyak by allowing other choices for the index sets a .
(W and W (1999) treats spaces of non-periodic functions.)

For H
(1,r)
d,γ , define

Wd,n :=
∑

a∈Pn,d(γ)

∆a1 ⊗ . . . ⊗ ∆ad,

where P1,d(γ) ⊂ P2,d(γ) ⊂ Nd, |Pn,d(γ)| = n .

W and W (1999) suggests to define Pn,d(γ) by including the n
rules ∆a1 ⊗ . . . ⊗ ∆ad with largest norm.
(Wasilkowski and Woźniakowski, 1999)
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Variations on sparse grid quadrature

WTP algorithm using spherical designs

For H
(s,r)
d,γ with s > 1 , we can define a WTP algorithm based on

spherical designs on Ss . Consider s = 2 . Define a sequence of
equal weight rules Q0, Q1, . . . using spherical designs of
increasing strength t0 = 0 < t1 < . . . and cardinality
m0 = 1 < m1 < . . . .

The Smolyak and WTP constructions then proceed as per s = 1 .

One difference between s = 1 and s = 2 is that spherical
designs are not nested.
(Wasilkowski and Woźniakowski, 1999)
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Variations on sparse grid quadrature

Error estimate for a single product rule

Based on the estimates of Hesse, Kuo and Sloan (2007),

e2
m,1(Qm,1) =

γ1

m2

m∑
i=1

m∑
h=1

A2,r(xi · xh),

we obtain for the product rule R := Qm1,1 ⊗ . . . ⊗ Qmd,1 ,

e2(R) = −1 +
d∏
j=1

1

m2
j

mj∑
i=1

mj∑
h=1

(
1 + γjA2,r(xji · xjh)

)
≤ −1 +

d∏
j=1

(
1 +

γj

mj
A2,r(1)

)
.

(Hesse, Kuo and Sloan, 2007)
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Variations on sparse grid quadrature

Error estimate for a single product rule

If m :=
∏d
j=1 mj then we have

e2(R) ≤
1

m

−m +
d∏
j=1

(
mj + γjA2,r(1)

)
≥

1

m

−1 +
d∏
j=1

(
1 + γjA2,r(1)

) .

So this upper bound for such a product rule is worse than the
average worst case error.
(Hesse, Kuo and Sloan, 2007)
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Variations on sparse grid quadrature

Optimal linear combination of product rules

Since the Smolyak and WTP algorithms are based on tensor
products of differences ∆aj , they are each equivalent to a specific
linear combination of product rules R1, . . . , RN .
We can instead find the coefficients αk giving the best worst case
error of Q =

∑N
p=1 αpRp by minimizing

e2(Q) = 〈I∗ − Q∗, I∗ − Q∗〉d,γ

= 1 − 2
N∑
k=1

αp +
N∑
p=1

N∑
q=1

αpαq〈R∗p, R∗q〉d,γ,

where I∗ is the representer of the integral on (S2)d ,
Q∗ is the representer of the rule Q , etc.
(Kuo and Sloan, 2005)
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Variations on sparse grid quadrature

Optimal linear combination of product rules

The squared error is quadratic in the αp and stationary when

N∑
q=1

αq〈R∗p, R∗q〉d = 1

for p ∈ 1 . . . N .

(Larkin, 1970; Kuo and Sloan, 2005)
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What’s left to do?

Almost everything is still to do

I Error estimates for tensor product algorithms.
What is the improvement in error for the best linear
combination of product rules over the best single product rule?

I Best rate of increase of strength of spherical designs.
Should it double very step?

I Best index sets.
What is the best way to take weights into account?

I Maximum determinant interpolatory quadrature rules.
Are these better than spherical designs?

I Constraints on γ for strong tractability.

I Numerical experiments.

I Extension to higher dimensional spheres; other compact sets.
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