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Applications of integration on products of spheres

Applications of integration on products of
spheres

Applications include quantum mechanics, and transport and
multiple scattering problems in various areas, including acoustics,
optical scattering, and neutron transport.

One prototypical problem is scattering by a sequence of objects,
with some decay after each object.

This can be modelled using a multiple integral of a function on a
product of spheres.
(Zakowicz at al. 2003; Sato 1988; Altmann 1988; Kaplan et al. 2001; Vineyard 1954)
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Quadrature on function spaces

An abstract look at quadrature

We start with some normed linear space F of real valued
functions defined on some domain D .

To make things simpler and more concrete, suppose D is a
compact subset of some R(s+1), with a probability measure µ ,
meaning µ(D) = 1 .

The integral Int is a linear functional on F , that is, an element
of the dual space F∗ .

For f ∈ F ,

〈Int, f〉 :=

∫
D
f(x) dµ(x).
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Quadrature on function spaces

An abstract look at quadrature (cont.)

In this framework, a quadrature rule is a finite linear combination of
point evaluation functionals, which approximates the integral Int .

For f ∈ F ,

〈Q, f〉 :=

n∑
i=1

wif(xi).

For this to make sense, each point evaluation functional must be
well defined. This constrains our choice of the space F .

The theory turns out to be simpler if we choose F to be a
reproducing kernel Hilbert space (rkhs) of functions on D .
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Quadrature on function spaces

An RKHS on D

F is a reproducing kernel Hilbert space of functions f : D → R
with inner product 〈·, ·〉F if F is a Hilbert space with this inner
product and there is some kernel K : D ×D → R such that
for all x ∈ D , the function kx defined by kx(y) := K(x, y)
satisfies

kx ∈ F , and, for all f ∈ F , 〈kx, f〉F = f(x).

Thus each kx is the representer in the sense of Riesz of the point
evaluation functional 〈Kx, f〉 := f(x), for every point of F ,
and each of these functionals is bounded and therefore continuous.
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Weighted tensor product spaces

An RKHS on D of functions with mean zero

Let D ⊂ Rs+1 be a compact s -dimensional manifold with
probability measure µ, and let H be a reproducing kernel Hilbert
space (rkhs) of functions f : D → R, such that∫

D
f(x) dµ(x) = 0 for all f ∈ H,

with kernel K : D ×D → R such that for all x ∈ D ,
the function kx defined by kx(y) := K(x, y) satisfies

kx ∈ H, and, for all f ∈ H, 〈kx, f〉H = f(x).

(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)
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Weighted tensor product spaces

The weighted space Hγ

For 0 < γ 6 1, extend H into the space Hγ of all functions of
the form

g = a1 + f,

where 1(x) := 1, a ∈ R, and f ∈ H, with norm

‖g‖2Hγ := |a|2 +
1

γ
‖f‖2H .

Hγ is an rkhs with reproducing kernel

Kγ(x, y) = 1 + γK(x, y),

where K is the reproducing kernel of H.
(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)
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Weighted tensor product spaces

The weighted tensor product space Hd,γ

Let γ := (γ1, . . . , γd) , with 1 > γ1 > . . . > γd > 0.

On Dd define the tensor product rkhs

Hd,γ :=

d⊗
h=1

Hγh.

The reproducing kernel of Hd,γ is

Kd,γ(x, y) :=
d∏

h=1

Kγh(xh, yh).

(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)
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Dimension adaptive sparse grid quadrature

Quadrature rules on Hd,γ

For {x1, . . . , xn} ⊂ Dd , the quadrature rule

〈Q, f〉 :=

n∑
i=1

wif(xi)

is a continuous linear functional on Hd,γ , satisfying

〈Q, f〉 = 〈q, f〉Hd,γ ,

where

q :=

n∑
i=1

wik
d,γ
xi
, kd,γxi (y) := Kd,γ(xi, y).

(Wasilkowski and Woźniakowski 1999; Hickernell and Woźniakowski 2001)
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Dimension adaptive sparse grid quadrature

Optimal quadrature weights on Hd,γ

The worst case error

e(q) := sup
‖f‖Hd,γ61

∣∣∣∣∫
Dd
f(x)dµd(x)− 〈q, f〉Hd,γ

∣∣∣∣
satisfies

e(q)2 = ‖1− q‖2Hd,γ = 〈1− q, 1− q〉Hd,γ

= 1− 2

n∑
i=1

wi + wTGw, where

Gi,j := 〈kd,γxi , k
d,γ
xj
〉Hd,γ = Kd,γ(xi, xj).

The weights w are optimal when Gw = [1, . . . , 1]T .
(Wasilkowski and Woźniakowski 1999)
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Dimension adaptive sparse grid quadrature

Optimal weight for one quadrature point

(Illustration by Osborn, 2009)
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Dimension adaptive sparse grid quadrature

Optimal weights for two quadrature points

(Illustration by Osborn, 2009)
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Dimension adaptive sparse grid quadrature

Optimal quadrature in Hγ

Consider a sequence of quadrature points x1, x2, . . . ∈ D, and a
sequence of positive integers m0 < m1 < . . .

For j > 0, let qγj denote the optimal quadrature rule in

V γ
j := span{kγx1

, . . . , kγxmj
} ⊂ Hγ.

Define the pair-wise orthogonal spaces Uγj by Uγ0 = V γ
0 ,

by the orthogonal decomposition V γ
j+1 = V γ

j ⊕ U
γ
j+1.

Since the qγj are optimal,

δγj+1 := qγj+1 − q
γ
j ∈ U

γ
j+1, and

δγ0 := qγ0 ∈ U
γ
0 = V γ

0 .

(Gerstner and Griebel 1998; Wasilkowski and Woźniakowski 1999)
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Dimension adaptive sparse grid quadrature

Multi-indices and down-sets

Elements of J := Nd are treated as multi-indices, with a partial
order such that for i, j ∈ J , i 6 j if and only if ih 6 jh for all
h from 1 to d .

For a multi-index i ∈ J, let ↓ i denote the down-set of i,
defined by ↓ i := {j ∈ J | j 6 i}.

Subsets of J are partially ordered by set inclusion.
For a subset I ⊂ J, let ↓ I denote the down-set of I,
defined by ↓ I :=

⋃
i∈I ↓ i.

Then ↓ I is the smallest set Y ⊇ I such that if i ∈ Y and
j 6 i then j ∈ Y . Thus ↓ ↓ I = ↓ I.
(Davey and Priestley 1990)
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Dimension adaptive sparse grid quadrature

Sparse grid quadrature in Hd,γ

A sparse grid quadrature rule in Hd,γ is of the form

q ∈ VI :=
∑
j∈I

d⊗
h=1

V γh
jh

for some index set I ⊂ J = Nd.

The orthogonal decomposition V γ
j =

⊕j
i=1 U

γ
i

yields the multidimensional orthogonal decomposition

VI =
⊕
j∈↓ I

d⊗
h=1

Uγhjh ,

(Gerstner and Griebel 1998; Wasilkowski and Woźniakowski 1999; Hegland 2003)
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Dimension adaptive sparse grid quadrature

Sparse grid quadrature in Hd,γ (cont.)

An optimal q ∈ VI is

qI =
∑
j∈↓ I

d⊗
h=1

δγhjh .

Thus both VI and qI are obtained in terms of the down-set ↓ I,
effectively restricting our choice of I to down-sets.
(Gerstner and Griebel 1998; Hegland 2003)
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Lattice-constrained knapsack problems

Our optimization problem

The optimization problem uses the following definitions.

Definition 1

For index j ∈ J , define

ν
(k)
jk

:= dimU
γd,k
jk

, νj :=

d∏
k=1

ν
(k)
jk
,

∆j :=
d⊗
k=1

δ
(k)
jk
, pj := ‖∆j‖2 .

Also, define P := 1− ε2.

Here, jk is the k th component of the index j.
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Lattice-constrained knapsack problems

Our optimization problem (cont.)

Our optimization problem is to

Minimize ν(I) :=
∑
i∈I

νi

subject to I = ↓ I, p(I) :=
∑
i∈I

pi > P, (1)

for P = 1− ε2 , where pi := ‖∆i‖2 ∈ R+ and νi ∈ N+ .

This is a down-set constrained binary knapsack problem.

(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)
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Lattice-constrained knapsack problems

A dimension adaptive algorithm to choose I

Algorithm 1: A greedy dimension adaptive algorithm.

Data: accuracy ε , incremental rules ∆j and costs νj for j ∈ J

Result: ε approximation q and index set I

I := {0};
q := ∆0 ;

while ‖1− q‖ > ε do

i := argmaxj{‖∆j‖2 /νj | I ∪ {j} is a down-set} ;

I := I ∪ {i}; q := q + ∆i ;

(Hegland 2003; Gerstner and Griebel 2003)
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Lattice-constrained knapsack problems

The related classical knapsack problem

A widely studied problem in optimisation is the knapsack problem.
The knapsack problem related to our problem (1) is to

Minimize ν(I) :=
∑
i∈I

νi

subject to p(I) :=
∑
i∈I

pi > P, (2)

for P = 1− ε2 , where pi := ‖∆i‖2 ∈ R+ and νi ∈ N+ .

This is problem (1) without the down-set constraint.

(Dantzig 1957)
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Lattice-constrained knapsack problems

Adding the lattice-constraint back in

The following proposition holds.

Proposition 1

If I is a solution of the knapsack problem (2), and satisfies the
admissibility condition I = ↓ I, then it is a solution of the
optimization problem (1).

This justifies our calling problem (1) a lattice-constrained knapsack
problem.
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Lattice-constrained knapsack problems

Monotonicity

The sequence p ∈ RJ
+ is monotonically decreasing

if i < j implies that pi > pj .

If i < j implies that pi > pj ,

then p ∈ RJ
+ is strictly decreasing.

The definitions of “monotonically increasing” and
“strictly increasing” are similar.
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Lattice-constrained knapsack problems

Algorithm 1 is optimal, given monotonicity

The following theorem holds.

Theorem 2

If p ∈ RJ
+ is strictly decreasing and ν ∈ NJ

+ is monotonically
increasing, each set I given by Algorithm 1 is a solution of the
optimization problem (1) for P = p(I).

The proof involves formulating the corresponding greedy algorithm
for the knapsack problem (2), then showing that if monotonicity
holds, this algorithm generates the same sequence of sets I as
Algorithm 1. It is known since Dantzig (1957) that the greedy
algorithm for the knapsack problem is optimal when P = p(I) .

(Dantzig 1957)
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Lattice-constrained knapsack problems

The work of Wasilkowski and Woźniakowski

Wasilkowski and Woźniakowski (1999) define a Weighted Tensor
Product algorithm similar to Algorithm 1 and prove a relationship
between cost and error bounds, given the following conditions on
the difference rules δγj∥∥∥δγj ∥∥∥H(r)

1,γ

6
√
γCDj, for all j > 1. (3)

(j + 1) Djρ 6 1, for all j > 1, (4)

for some 0 < D < 1 and some positive C and ρ .

(Wasilkowski and Woźniakowski 1999)
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Lattice-constrained knapsack problems

The work of Wasilkowski and Woźniakowski

Denote the sequence of rules generated by the algorithm of

Wasilkowski and Woźniakowski by q
(WW)
ε,d . The following theorem

holds as a corollary to a more complicated bound corresponding to
Theorem 21 of Wasilkowski and Woźniakowski (1999).

Theorem 3

For every positive δ there exists a positive c(d, δ) such that the

cost of the quadrature rule q
(WW)
ε,d is bounded by

cost(q
(WW)
ε,d ) 6 c(d, δ)

(
1

ε

)ρ+δ
.

Since the sequence of rules q
(DA)
ε,d generated by Algorithm 1 is

optimal, these rules satisfy the same bound.
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Numerical results

Specifics for S2 – spherical designs

We use a sequence of rules on a single sphere S2 , which yields
“good enough” worst case quadrature error with optimal weights.
We choose a sequence of unions of spherical designs with
increasing numbers of points, and non-decreasing strengths.

For the unit sphere S2, a spherical design of strength t and
cardinality m is a set of m points X = {x1, . . . , xm} ⊂ S2
such that the equal weight quadrature rule

〈QX , p〉 :=
1

m

m∑
h=1

p(xh)

is exact for all spherical polynomials p of total degree at most t .
Spherical designs do not nest, in general. For the numerical
examples, the unions of spherical designs have strength at most 1.

(Delsarte, Goethals and Seidel 1977)
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Numerical results

Spherical designs used in numerical example

For the numerical examples, a combination of (approximate)
extremal (E) and low cardinality (L) spherical designs are used.

These approximate spherical designs were all provided by
Womersley.

Index j 0 1 2 3 4 5 6 7 8 9 10 11
Type L L E L E L E L E L E L

Strength t 0 1 1 3 3 7 7 15 15 31 31 63
Card. m 1 2 4 8 16 32 64 129 256 513 1024 2049

For the successive unions of these rules criteria (3) and (4) hold
with D = 2−r/2, C ∼ 1.453 as above, and ρ = 2/r.

(Chen and Womersley 2006; Womersley 2009)
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Numerical results

Parameters used in numerical examples

Our numerical examples use r = 3 and γk = gk , for g = 0.1 ,
0.5 , and 0.9 .

For the da and ww weighted tensor product algorithms, each
program run uses r = 3 ; g = 0.1 , 0.5 , or 0.9 ; dimension d ,
from d = 1 to 16 ; maximum 1 -norm for indices, typically 20 ;
and maximum number of points, up to 100 000 .
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Numerical results

Typical convergence behaviour

(S2)4 , r = 3 , γ4,k = 0.5k
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Numerical results

Error of DA rules for γd,k = 0.1k .

(S2)d , d = 1, 2, 4, 8, 16 ; r = 3
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Numerical results

Error of DA rules for γd,k = 0.9k .

(S2)d , d = 1, 2, 4, 8, 16 ; r = 3
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