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Weighted tensor product spaces

An RKHS on D of functions with mean zero

Let D ⊂ Rs+1 be a compact s -dimensional manifold with
probability measure µ, and let H be a reproducing kernel Hilbert
space (rkhs) of functions f : D → R, such that∫

D
f(x) dµ(x) = 0 for all f ∈ H,

with kernel K : D ×D → R such that for all x ∈ D ,
the function kx defined by kx(y) := K(x, y) satisfies

kx ∈ H, and, for all f ∈ H, 〈kx, f〉H = f(x).

(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)
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Weighted tensor product spaces

The weighted space Hγ

For 0 < γ 6 1, extend H into the space Hγ of all functions of
the form

g = a1 + f,

where 1(x) := 1, a ∈ R, and f ∈ H, with norm

‖g‖2Hγ := |a|2 +
1

γ
‖f‖2H .

Hγ is an rkhs with reproducing kernel

Kγ(x, y) = 1 + γK(x, y),

where K is the reproducing kernel of H.
(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)
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Weighted tensor product spaces

The weighted tensor product space Hd,γ

Let γ := (γ1, . . . , γd) , with 1 > γ1 > . . . > γd > 0.

On Dd define the tensor product rkhs

Hd,γ :=

d⊗
h=1

Hγh.

The reproducing kernel of Hd,γ is

Kd,γ(x, y) :=
d∏

h=1

Kγh(xh, yh).

(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)
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Dimension adaptive sparse grid quadrature

Quadrature rules on Hd,γ

For {x1, . . . , xn} ⊂ Dd , the quadrature rule

Qf :=

n∑
i=1

wif(xi)

is a continuous linear functional on Hd,γ , satisfying

Qf = 〈q, f〉Hd,γ ,

where

q :=

n∑
i=1

wik
d,γ
xi
, kd,γxi (y) := Kd,γ(xi, y).

(Wasilkowski and Woźniakowski 1999; Hickernell and Woźniakowski 2001)
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Dimension adaptive sparse grid quadrature

Optimal quadrature weights on Hd,γ

The worst case error

e(q) := sup
‖f‖Hd,γ61

∣∣∣∣∫
Dd
f(x)dµd(x)− 〈q, f〉Hd,γ

∣∣∣∣
satisfies

e(q)2 = ‖1− q‖2Hd,γ = 〈1− q, 1− q〉Hd,γ

= 1− 2

n∑
i=1

wi + wTGw, where

Gi,j := 〈kd,γxi , k
d,γ
xj
〉 = Kd,γ(xi, xj).

The weights w are optimal when Gw = [1, . . . , 1]T .
(Wasilkowski and Woźniakowski 1999)
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Dimension adaptive sparse grid quadrature

Optimal weight for one quadrature point

(Illustration by Osborn, 2009)
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Dimension adaptive sparse grid quadrature

Optimal weights for two quadrature points

(Illustration by Osborn, 2009)
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Dimension adaptive sparse grid quadrature

Optimal quadrature in Hγ

Consider a sequence of quadrature points x1, x2, . . . ∈ D, and a
sequence of positive integers m0 < m1 < . . .

For j > 0, let qγj denote the optimal quadrature rule in

V γ
j := span{kγx1

, . . . , kγxmj
} ⊂ Hγ.

Define the pair-wise orthogonal spaces Uγj by Uγ0 = V γ
0 ,

and by the orthogonal decomposition V γ
j+1 = V γ

j ⊕ U
γ
j+1.

Since the qγj are optimal,

δγj+1 := qγj+1 − q
γ
j ∈ U

γ
j+1, and

δγ0 := qγ0 ∈ U
γ
0 = V γ

0 .

(Gerstner and Griebel 1998; Wasilkowski and Woźniakowski 1999)
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Dimension adaptive sparse grid quadrature

Multi-indices and down-sets

Elements of J := Nd are treated as multi-indices, with a partial
order such that for i, j ∈ J , i 6 j if and only if ih 6 jh for all
h from 1 to d .

For a multi-index i ∈ J, let ↓ i denote the down-set of i,
defined by ↓ i := {j ∈ J | j 6 i}.

Subsets of J are partially ordered by set inclusion.
For a subset X ⊂ J, let ↓X denote the down-set of X,
defined by ↓X :=

⋃
i∈X ↓ i.

Then ↓X is the smallest set Y ⊇ X such that if i ∈ Y and
j 6 i then j ∈ Y . Thus ↓ ↓X = ↓X.
(Davey and Priestley 1990)
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Dimension adaptive sparse grid quadrature

Sparse grid quadrature in Hd,γ

A sparse grid quadrature rule in Hd,γ is of the form

q ∈ VI :=
∑
j∈I

d⊗
h=1

V γh
jh

for some index set I ⊂ J = Nd.
(Gerstner and Griebel 1998; Wasilkowski and Woźniakowski 1999)



Sparse grid quadrature as a knapsack problem

Dimension adaptive sparse grid quadrature

Sparse grid quadrature in Hd,γ (cont.)

From the orthogonal decomposition V γ
j =

⊕j
i=1U

γ
i

one derives the multidimensional orthogonal decomposition

VI =
⊕
j∈↓ I

d⊗
h=1

Uγhjh ,

An optimal q ∈ VI is obtained as

qI =
∑
j∈↓ I

d⊗
h=1

δγhjh .

Thus both VI and qI are obtained in terms of the down-set ↓ I,
effectively restricting our choice of the set I to down-sets.
(Gerstner and Griebel 1998; Hegland 2003)
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Dimension adaptive sparse grid quadrature

A dimension adaptive algorithm to choose I

Here, m
(h)
jh

:= dimUγhjh , δ
(h)
jh

:= δγhjh ,

nj :=
∏d
h=1m

(h)
jh
, ∆j :=

⊗d
h=1 δ

(h)
jh
.

Algorithm 1: A dimension adaptive algorithm.

Data: accuracy ε , incremental rules ∆j and costs nj for j ∈ J
Result: ε approximation q and index set I
I := {0}; q := ∆0 ;
while ‖1− q‖ > ε do

i := argmaxj{‖∆j‖2 /nj | I ∪ {j} is a down-set} ;

I := I ∪ {i}; q := q + ∆i ;

(Hegland 2003; Gerstner and Griebel 2003)
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Lattice-constrained knapsack problems

Our optimization problem

Our optimization problem is to maximize

p(X) :=
∑
i∈X

pi,

subject to

n(↓X) :=
∑
i∈↓X

ni 6 N, (1)

where pi := ‖∆i‖2 ∈ R+ and ni and N are in N+ , that is,
the pi are positive real numbers and the ni and N are positive
integers.
(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)



Sparse grid quadrature as a knapsack problem

Lattice-constrained knapsack problems

The admissibility condition of problem (1)

The solution of the optimisation problem (1) satisfies an
admissibility condition:

Proposition 1

If X is a solution of the optimisation problem (1) then

X = ↓X. (2)

(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)
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Lattice-constrained knapsack problems

The related classical knapsack problem

A widely studied problem in optimisation is the knapsack problem.
The knapsack problem related to our problem (1) is to maximize

p(X) =
∑
i∈X

pi,

subject to

n(X) =
∑
i∈X

ni 6 N, (3)

where pi ∈ R+ and ni and N are in N .
(Dantzig 1957)
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Lattice-constrained knapsack problems

A lattice-constrained knapsack problem

We can now formulate a converse of Proposition 1.

Proposition 2

If X is a solution of the knapsack problem (3), and satisfies the
admissibility condition X = ↓X, then it is a solution of the
optimization problem (1).

This justifies our calling problem (1) a lattice-constrained knapsack
problem.
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Lattice-constrained knapsack problems

Monotonicity

One says that p ∈ RJ
+ is monotonically decreasing

if i < j implies that pi > pj .

If i < j implies that pi > pj ,

one says that p ∈ RJ
+ is strictly decreasing.

The definitions of “monotonically increasing” and
“strictly increasing” are similar.
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Lattice-constrained knapsack problems

Monotonicity implies admissibility

The following proposition holds.

Proposition 3

If p ∈ RJ
+ is monotonically decreasing and n ∈ NJ

+ is
monotonically increasing, there exists a solution of the knapsack
problem (3) which also solves the optimization problem (1).

If p is strictly decreasing, then any solution of (3) is a solution
of (1).

One can therefore use any method to solve the knapsack
problem (3), check admissibility (2), and then swap multi-indices
to get a solution of problem (1).
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Lattice-constrained knapsack problems

Enumeration by decreasing efficiency

The algorithm we adapt is based on efficiency ri := pi/ni, and
generates the initial values of an enumeration i(t) of J, t ∈ N+,
satisfying

ri(t) > ri(t+1).

The algorithm recursively generates i(t+1) from i(t), until for
some T the condition

n(X(T )) 6 N < n(X(T+1))

holds, where

X(t) :=

t⋃
s=1

i(s).

(Dantzig 1957; Bungartz and Griebel 1999)
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Lattice-constrained knapsack problems

Enumeration by decreasing efficiency (cont.)

One then gets

Proposition 4

The construction of i(t) terminates for some t = T.

Also, if p is strictly decreasing, n is monotonically increasing, and
n(X(T )) = N, then X(T ) is a solution of problem (1).

(Dantzig 1957; Bungartz and Griebel 1999)
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Lattice-constrained knapsack problems

Finite construction

The construction of the enumeration requires sorting an infinite
sequence and is thus not feasible in general, but, in the case where
p is monotonically decreasing and n is monotonically increasing,
the enumeration can be done recursively in finite time.

In this case r is monotonically decreasing. By construction,
ri(t) > ri(t+1), so the enumeration cannot have i(t) > i(t+1).

It follows that i(1) = 0.
(Hegland 2003; Gerstner and Griebel 2003)
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Lattice-constrained knapsack problems

Minimal elements

The element i is a minimal element of a subset of J if there are
no elements j < i in that subset. The minimum is thus with
respect to the lattice defined by the partial order in J .

Since i(t) is an enumeration of J, no element occurs twice, and
so i(t+1) ∈ XC

(t) := J \X(t) .

Any later element i(t+1+s) in the enumeration cannot be smaller
than i(t+1), so i(t+1) is a minimal element of XC

(t) .

The set M(t) of minimal elements of XC
(t) is finite.

One can thus find j = i(t+1) with largest rj in this set.
(Hegland 2003; Gerstner and Griebel 2003)



Sparse grid quadrature as a knapsack problem

Lattice-constrained knapsack problems

Construction of set of minimal elements M(t)

To construct the set of minimal elements of XC
(t) , we define

S(i), the forward neighbourhood of i ∈ J, as

S(i) := {j ∈ J | i < j and (i 6 ` < j ⇒ ` = i)} ,

that is, S(i) is the set of minimal elements of {j ∈ J | i < j}.

Let e be the standard basis of RJ .

To construct M(t) , start with

M(1) = S(i(1)) = S(0) = {e1, . . . , ed} .

Then given M(t−1) and i(t), obtain

M(t) =
(
M(t−1) \ {i(t)}

)
∪ S(i(t)).

(Hegland 2003; Gerstner and Griebel 2003)
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Lattice-constrained knapsack problems

Review of the dimension adaptive algorithm

Algorithm 2: A dimension adaptive algorithm.

Data: accuracy ε , incremental rules ∆j and costs nj for j ∈ J
Result: ε approximation q and index set I
I := {0}; q := ∆0 ;
while ‖1− q‖ > ε do

i := argmaxj{‖∆j‖2 /nj | I ∪ {j} is a down-set} ;

I := I ∪ {i}; q := q + ∆i ;


