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An RKHS on D of functions with mean zero

Let D C R*t! be a compact s-dimensional manifold with
probability measure p, and let H be a reproducing kernel Hilbert
space (RKHS) of functions f : D — R, such that

/ f(x)du(x) =0 forall f € H,
D

with kernel IC : D X D — R such that for all x € D,
the function k; defined by ky(y) := K(x,y) satisfies

ke € H, and, forall f e H, (kz, flu = f(x).

(Hickernell and WozZniakowski 2001; Sloan and Wozniakowski 2001; Kuo and Sloan, 2005)
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The weighted space H”

For 0 < v < 1, extend H into the space ‘H” of all functions of
the form

g=al+ f7
where 1(x) := 1, a € R, and f € #, with norm
2 2, 1 2
91134 = lal® + = |l fll5 -
vy
‘H7 is an RKHS with reproducing kernel

K:’Y(:IZ, y) =1+ "/’C(ZB, y)’

where K is the reproducing kernel of H.

(Hickernell and Wozniakowski 2001; Sloan and Wozniakowski 2001; Kuo and Sloan, 2005)
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The weighted tensor product space H%?”

Let v := (Y1y+++37Ya), With 1 >y > ... >~4 > 0.

On D% define the tensor product RKHS

HEY = é H™.

h=1
The reproducing kernel of H%?Y is

d
K& (@, y) := [[ K™ (zhs yn)-
h=1

(Hickernell and Wozniakowski 2001; Sloan and Wozniakowski 2001; Kuo and Sloan, 2005)
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Quadrature rules on H%Y
For {x1,...,xn} C D%, the quadrature rule
n
Qf :=> wif(x:)
=1

is a continuous linear functional on H%7, satisfying

Qf = (q, f)’Hdv’Y’

where
n
q:=) wiky?, kI(y) =K (2i,y).
1=1

(Wasilkowski and Wozniakowski 1999; Hickernell and Wozniakowski 2001)
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Optimal quadrature weights on H%?

The worst case error

e(q) :=
I lhgar <1

/ F(@)dpa(@) — (g, Fpm

satisfies
2 _ 2 .
e(q)” = |11 — qllFa~r = (1 —q,1 — q)3av
n
=1-2 Zwi + wTGw, where
=1

Gij 1= (kg)s k) = K (i, ).

The weights w are optimal when Gw = [1,...,1]T.

(Wasilkowski and Wozniakowski 1999)
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Optimal weight for one quadrature point

K

// (ks ko)

(lllustration by Osborn, 2009)
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LDirnension adaptive sparse grid quadrature

Optimal weights for two quadrature points

/v"

(lllustration by Osborn, 2009)
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. .
Optimal quadrature in H”

Consider a sequence of quadrature points x1,x2,... € D, and a
sequence of positive integers mg < mq < ...

For 3 > 0, let q] denote the optimal quadrature rule in

V;’ := span{k] ,..., kzmj} CH.

Define the pair-wise orthogonal spaces U} by Uj = V¢,
L v _ v v
and by the orthogonal decomposition V;; =V, @ U/ ;.
Since the g are optimal,
6.;'Y+1 = q;+1 - q;l S U]+1, and
dg :=qg €U) =V

(Gerstner and Griebel 1998; Wasilkowski and Wozniakowski 1999)
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Multi-indices and down-sets

Elements of J := N¢ are treated as multi-indices, with a partial
order such that for 2,7 € J, 2 < j if and only if 2 < jp for all
h from 1 to d.

For a multi-index 7 € J, let | ¢ denote the down-set of 12,
defined by Li:={j €J|j < i}

Subsets of J are partially ordered by set inclusion.
For a subset X C J, let | X denote the down-set of X,

defined by | X := {J;cx 4 i-

Then | X is the smallest set Y D X such thatif ¢ € Y and
j<ithenjeY. Thus || X =]X.

(Davey and Priestley 1990)
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Sparse grid quadrature in H%Y

A sparse grid quadrature rule in H%? is of the form
qevi= Y @vr
JjeI h=1

for some index set I C J = N4,

(Gerstner and Griebel 1998; Wasilkowski and Wozniakowski 1999)
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Sparse grid quadrature in H%?Y (cont.)

From the orthogonal decomposition VJ7 = 1_1 U’y
one derives the multidimensional orthogonal decomp05|tion

d
vi= @ ®ui,
jeLIh=1

An optimal g € V1 is obtained as

a=Y ®57h

jELT h=1

Thus both Vi and qr are obtained in terms of the down-set | I,
effectively restricting our choice of the set I to down-sets.

(Gerstner and Griebel 1998; Hegland 2003)
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A dimension adaptive algorithm to choose I

Here, mx:) 1= c(l’l;n U;Lh, (53(-:) = 6%2),
d d
n; = Hh:l mjh ) Aj = h=1 6jh .

Algorithm 1: A dimension adaptive algorithm.
Data: accuracy €, incremental rules A; and costs nj; for j € [
Result: € approximation g and index set I
I:={0}; q:= Ayp;
while ||1 — g|| > € do
= argma:::j{HAjH2 /mj | TU{j} is a down-set};
I:=1TU{i}; q:=q+ A; ;

(Hegland 2003; Gerstner and Griebel 2003)
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Our optimization problem

Our optimization problem is to maximize
p(X) = Z Dis
i€X

subject to

n({X):= > n; <N, (1)

i€l X

where p; := ||As]|> € R4 and n; and N are in N, that is,
the p; are positive real numbers and the n; and IN are positive
integers.

(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)



Sparse grid quadrature as a knapsack problem
LLattice-constrained knapsack problems

The admissibility condition of problem (1)

The solution of the optimisation problem (1) satisfies an
admissibility condition:

Proposition 1

If X is a solution of the optimisation problem (1) then

X =/X. (2)

(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)
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The related classical knapsack problem

A widely studied problem in optimisation is the knapsack problem.
The knapsack problem related to our problem (1) is to maximize

p(X) = Z Di,
i€EX
subject to
n(X) =Y n; <N, (3)
1eX

where p; € Ry and m; and IN are in N.

(Dantzig 1957)
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A lattice-constrained knapsack problem

We can now formulate a converse of Proposition 1.

Proposition 2

If X is a solution of the knapsack problem (3), and satisfies the
admissibility condition X = | X, then it is a solution of the
optimization problem (1).

This justifies our calling problem (1) a lattice-constrained knapsack
problem.
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Monotonicity

One says that p € R‘_]]i_ is monotonically decreasing
if ¢ < j implies that p; > p;.

If 2 < j implies that p; > pj,
one says that p € R‘i is strictly decreasing.

The definitions of “monotonically increasing” and
“strictly increasing” are similar.
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Monotonicity implies admissibility

The following proposition holds.

Proposition 3

If p e ]R‘E_ is monotonically decreasing and n € Nﬂ_ is
monotonically increasing, there exists a solution of the knapsack
problem (3) which also solves the optimization problem (1).

If p is strictly decreasing, then any solution of (3) is a solution
of (1).

One can therefore use any method to solve the knapsack
problem (3), check admissibility (2), and then swap multi-indices
to get a solution of problem (1).
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Enumeration by decreasing efficiency

The algorithm we adapt is based on efficiency r; := p;/n;, and
generates the initial values of an enumeration () of J, ¢t € N4,
satisfying

Tit) 2 Tit+1).

The algorithm recursively generates ¢(t11) from ¢(®), until for
some T the condition

n(X ) < N < n(X(r41))
holds, where
t
X = .
s=1

(Dantzig 1957; Bungartz and Griebel 1999)
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Enumeration by decreasing efficiency (cont.)

One then gets

Proposition 4

The construction of 1(t) terminates for some t = T.

Also, if p is strictly decreasing, m is monotonically increasing, and
n(X(r)) = N, then X () is a solution of problem (1).

(Dantzig 1957; Bungartz and Griebel 1999)
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Finite construction

The construction of the enumeration requires sorting an infinite
sequence and is thus not feasible in general, but, in the case where
p is monotonically decreasing and n is monotonically increasing,
the enumeration can be done recursively in finite time.

In this case r is monotonically decreasing. By construction,
T;(t) = T;t+1), SO the enumeration cannot have i® > 4+

It follows that ¢(1) = 0.

(Hegland 2003; Gerstner and Griebel 2003)
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Minimal elements

The element % is a minimal element of a subset of J if there are
no elements 7 < ¢ in that subset. The minimum is thus with
respect to the lattice defined by the partial order in J.

Since ) is an enumeration of J, no element occurs twice, and
SO ’l:(t+1) € Xg) = ,]I \ X(t) .

Any later element i(**t1%9) in the enumeration cannot be smaller
than ¢(t+tD) | so ¢+ is a minimal element of X((tj).

The set M4y of minimal elements of X(Ct') is finite.

One can thus find j = i®*1) with largest r; in this set.

(Hegland 2003; Gerstner and Griebel 2003)
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Construction of set of minimal elements M)

To construct the set of minimal elements of X(Ct') , we define
S (), the forward neighbourhood of 7 € J, as

S@):={jel|i<jand (i<L€<j=L€=1)},
that is, S(2) is the set of minimal elements of {7 € J | ¢ < j}.

Let e be the standard basis of RY.

To construct My, start with
M@y = S(iM) = 5(0) = {e1,...,ea}.

Then given M(;_y) and i® obtain
My = (M- \ {i¥}) U SE®).

(Hegland 2003; Gerstner and Griebel 2003)
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Review of the dimension adaptive algorithm

Algorithm 2: A dimension adaptive algorithm.

Data: accuracy €, incremental rules A; and costs n; for j € [
Result: € approximation g and index set I
I:={0}; q:= Aop;
while ||1 — g|| > € do
= arglrnaxj{HAjH2 /mnj | TU{j} is a down-set};
I:=TuU{i}; q:=q+ A; ;




