Sparse grid quadrature as a knapsack problem

Paul Leopardi

Mathematical Sciences Institute, Australian National University. For presentation at HDA 2011, Bonn. Joint work with Markus Hegland, ANU.

30 June 2011

Topics

- Weighted tensor product spaces
- Dimension adaptive sparse grid quadrature
- Lattice-constrained knapsack problems

An RKHS on \mathcal{D} of functions with mean zero

Let $\mathcal{D} \subset \mathbb{R}^{s+1}$ be a compact s-dimensional manifold with probability measure $\boldsymbol{\mu}$, and let \mathcal{H} be a reproducing kernel Hilbert space (RKHS) of functions $f: \mathcal{D} \rightarrow \mathbb{R}$, such that

$$
\int_{\mathcal{D}} f(x) d \mu(x)=0 \text { for all } f \in \mathcal{H}
$$

with kernel $\mathcal{K}: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ such that for all $\boldsymbol{x} \in \mathcal{D}$, the function $\boldsymbol{k}_{\boldsymbol{x}}$ defined by $\boldsymbol{k}_{\boldsymbol{x}}(\boldsymbol{y}):=\mathcal{K}(\boldsymbol{x}, \boldsymbol{y})$ satisfies

$$
\boldsymbol{k}_{\boldsymbol{x}} \in \mathcal{H}, \quad \text { and, for all } f \in \mathcal{H}, \quad\left\langle\boldsymbol{k}_{\boldsymbol{x}}, \boldsymbol{f}\right\rangle_{\mathcal{H}}=\boldsymbol{f}(\boldsymbol{x})
$$

The weighted space \mathcal{H}^{γ}

For $\mathbf{0}<\gamma \leqslant \mathbf{1}$, extend \mathcal{H} into the space \mathcal{H}^{γ} of all functions of the form

$$
g=a 1+f
$$

where $1(x):=1, a \in \mathbb{R}$, and $f \in \mathcal{H}$, with norm

$$
\|g\|_{\mathcal{H}^{\gamma}}^{2}:=|a|^{2}+\frac{1}{\gamma}\|f\|_{\mathcal{H}^{\prime}}^{2} .
$$

\mathcal{H}^{γ} is an RKHS with reproducing kernel

$$
\mathcal{K}^{\gamma}(x, y)=1+\gamma \mathcal{K}(x, y)
$$

where \mathcal{K} is the reproducing kernel of \mathcal{H}.
(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)

The weighted tensor product space $\mathcal{H}^{d, \gamma}$

$$
\text { Let } \gamma:=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \text {, with } 1 \geqslant \gamma_{1} \geqslant \ldots \geqslant \gamma_{d}>0 \text {. }
$$

On \mathcal{D}^{d} define the tensor product RKHS

$$
\mathcal{H}^{d, \gamma}:=\bigotimes_{h=1}^{d} \mathcal{H}^{\gamma_{h}} .
$$

The reproducing kernel of $\mathcal{H}^{d, \gamma}$ is

$$
\mathcal{K}^{d, \gamma}(x, y):=\prod_{h=1}^{d} \mathcal{K}^{\gamma_{h}}\left(x_{h}, y_{h}\right)
$$

(Hickernell and Woźniakowski 2001; Sloan and Woźniakowski 2001; Kuo and Sloan, 2005)

Quadrature rules on $\mathcal{H}^{d, \gamma}$

For $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{D}^{d}$, the quadrature rule

$$
Q f:=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

is a continuous linear functional on $\mathcal{H}^{d, \gamma}$, satisfying

$$
Q f=\langle\boldsymbol{q}, \boldsymbol{f}\rangle_{\mathcal{H}^{d, \gamma}},
$$

where

$$
q:=\sum_{i=1}^{n} w_{i} k_{x_{i}}^{d, \gamma}, \quad k_{x_{i}}^{d, \gamma}(y):=\mathcal{K}^{d, \gamma}\left(x_{i}, y\right)
$$

(Wasilkowski and Woźniakowski 1999; Hickernell and Woźniakowski 2001)

Optimal quadrature weights on $\mathcal{H}^{d, \gamma}$

The worst case error

$$
e(q):=\sup _{\|f\|_{\mathcal{H}^{d}, \gamma} \leqslant 1}\left|\int_{\mathcal{D}^{d}} f(x) d \mu_{d}(x)-\langle q, f\rangle_{\mathcal{H}^{d, \gamma}}\right|
$$

satisfies

$$
\begin{aligned}
e(q)^{2} & =\|1-q\|_{\mathcal{H}^{d, \gamma}}^{2}=\langle 1-q, 1-q\rangle_{\mathcal{H}^{d, \gamma}} \\
& =1-2 \sum_{i=1}^{n} w_{i}+w^{T} G w, \quad \text { where } \\
G_{i, j} & :=\left\langle k_{x_{i}}^{d, \gamma}, k_{x_{j}}^{d, \gamma}\right\rangle=\mathcal{K}^{d, \gamma}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

The weights \boldsymbol{w} are optimal when $\boldsymbol{G w}=[1, \ldots, 1]^{T}$.
(Wasilkowski and Woźniakowski 1999)

Optimal weight for one quadrature point

(Illustration by Osborn, 2009)

Optimal weights for two quadrature points

Optimal quadrature in \mathcal{H}^{γ}

Consider a sequence of quadrature points $x_{1}, x_{2}, \ldots \in \mathcal{D}$, and a sequence of positive integers $m_{0}<m_{1}<\ldots$

For $\boldsymbol{j} \geqslant \mathbf{0}$, let $\boldsymbol{q}_{\boldsymbol{j}}^{\gamma}$ denote the optimal quadrature rule in

$$
V_{j}^{\gamma}:=\operatorname{span}\left\{k_{x_{1}}^{\gamma}, \ldots, k_{x_{m_{j}}}^{\gamma}\right\} \subset \mathcal{H}^{\gamma} .
$$

Define the pair-wise orthogonal spaces U_{j}^{γ} by $U_{0}^{\gamma}=V_{0}^{\gamma}$, and by the orthogonal decomposition $V_{j+1}^{\gamma}=V_{j}^{\gamma} \oplus U_{j+1}^{\gamma}$.

Since the q_{j}^{γ} are optimal,

$$
\begin{aligned}
\delta_{j+1}^{\gamma} & :=q_{j+1}^{\gamma}-q_{j}^{\gamma} \in U_{j+1}^{\gamma}, \quad \text { and } \\
\delta_{0}^{\gamma} & :=q_{0}^{\gamma} \in U_{0}^{\gamma}=V_{0}^{\gamma} .
\end{aligned}
$$

Multi-indices and down-sets

Elements of $\mathbb{J}:=\mathbb{N}^{d}$ are treated as multi-indices, with a partial order such that for $\boldsymbol{i}, \boldsymbol{j} \in \mathbb{J}, \boldsymbol{i} \leqslant \boldsymbol{j}$ if and only if $\boldsymbol{i}_{\boldsymbol{h}} \leqslant \boldsymbol{j}_{\boldsymbol{h}}$ for all h from 1 to d.

For a multi-index $\boldsymbol{i} \in \mathbb{J}$, let $\downarrow \boldsymbol{i}$ denote the down-set of \boldsymbol{i}, defined by $\downarrow i:=\{j \in \mathbb{J} \mid j \leqslant i\}$.

Subsets of \mathbb{J} are partially ordered by set inclusion. For a subset $\boldsymbol{X} \subset \mathbb{J}$, let $\downarrow \boldsymbol{X}$ denote the down-set of \boldsymbol{X}, defined by $\downarrow \boldsymbol{X}:=\bigcup_{i \in X} \downarrow i$.

Then $\downarrow \boldsymbol{X}$ is the smallest set $\boldsymbol{Y} \supseteq \boldsymbol{X}$ such that if $\boldsymbol{i} \in \boldsymbol{Y}$ and $\boldsymbol{j} \leqslant \boldsymbol{i}$ then $\boldsymbol{j} \in \boldsymbol{Y}$. Thus $\downarrow \downarrow \boldsymbol{X}=\downarrow \boldsymbol{X}$.

Sparse grid quadrature in $\mathcal{H}^{d, \gamma}$

A sparse grid quadrature rule in $\mathcal{H}^{d, \gamma}$ is of the form

$$
q \in V_{I}:=\sum_{j \in I} \bigotimes_{h=1}^{d} V_{j_{h}}^{\gamma_{h}}
$$

for some index set $I \subset \mathbb{J}=\mathbb{N}^{d}$.
(Gerstner and Griebel 1998; Wasilkowski and Woźniakowski 1999)

Sparse grid quadrature in $\mathcal{H}^{d, \gamma}$ (cont.)

From the orthogonal decomposition $V_{j}^{\gamma}=\bigoplus_{i=1}^{j} U_{i}^{\gamma}$ one derives the multidimensional orthogonal decomposition

$$
V_{I}=\bigoplus_{j \in \downarrow I} \bigotimes_{h=1}^{d} U_{j_{h}}^{\gamma_{h}}
$$

An optimal $\boldsymbol{q} \in \boldsymbol{V}_{\boldsymbol{I}}$ is obtained as

$$
q_{I}=\sum_{j \in \downarrow I} \bigotimes_{h=1}^{d} \delta_{j_{h}}^{\gamma_{h}}
$$

Thus both $\boldsymbol{V}_{\boldsymbol{I}}$ and $\boldsymbol{q}_{\boldsymbol{I}}$ are obtained in terms of the down-set $\downarrow \boldsymbol{I}$, effectively restricting our choice of the set \boldsymbol{I} to down-sets.

A dimension adaptive algorithm to choose I

Here, $\boldsymbol{m}_{j_{h}}^{(h)}:=\operatorname{dim} \boldsymbol{U}_{j_{h}}^{\gamma_{h}}, \quad \delta_{j_{h}}^{(h)}:=\delta_{j_{h}}^{\gamma_{h}}$,
$n_{j}:=\prod_{h=1}^{d} m_{j_{h}}^{(h)}, \quad \Delta_{j}:=\bigotimes_{h=1}^{d} \delta_{j_{h}}^{(h)}$.

Algorithm 1: A dimension adaptive algorithm.
Data: accuracy $\boldsymbol{\epsilon}$, incremental rules $\boldsymbol{\Delta}_{\boldsymbol{j}}$ and costs $\boldsymbol{n}_{\boldsymbol{j}}$ for $\boldsymbol{j} \in \mathbb{J}$ Result: $\boldsymbol{\epsilon}$ approximation \boldsymbol{q} and index set \boldsymbol{I}
$I:=\{0\} ; \quad q:=\Delta_{0}$;
while $\|\mathbf{1}-q\|>\epsilon$ do $i:=\operatorname{argmax}_{j}\left\{\left\|\Delta_{j}\right\|^{2} / n_{j} \mid I \cup\{j\}\right.$ is a down-set $\} ;$ $I:=I \cup\{i\} ; \quad q:=q+\Delta_{i} ;$
(Hegland 2003; Gerstner and Griebel 2003)

Our optimization problem

Our optimization problem is to maximize

$$
p(X):=\sum_{i \in X} p_{i}
$$

subject to

$$
\begin{equation*}
n(\downarrow X):=\sum_{i \in \downarrow X} n_{i} \leqslant N \tag{1}
\end{equation*}
$$

where $\boldsymbol{p}_{\boldsymbol{i}}:=\left\|\boldsymbol{\Delta}_{\boldsymbol{i}}\right\|^{2} \in \mathbb{R}_{+}$and $\boldsymbol{n}_{\boldsymbol{i}}$ and \boldsymbol{N} are in \mathbb{N}_{+}, that is, the $\boldsymbol{p}_{\boldsymbol{i}}$ are positive real numbers and the $\boldsymbol{n}_{\boldsymbol{i}}$ and \boldsymbol{N} are positive integers.
(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)

The admissibility condition of problem (1)

The solution of the optimisation problem (1) satisfies an admissibility condition:

Proposition 1

If \boldsymbol{X} is a solution of the optimisation problem (1) then

$$
\begin{equation*}
\boldsymbol{X}=\downarrow \boldsymbol{X} \tag{2}
\end{equation*}
$$

(Gerstner and Griebel 1998; Hegland 2003; Gerstner and Griebel 2003)

The related classical knapsack problem

A widely studied problem in optimisation is the knapsack problem. The knapsack problem related to our problem (1) is to maximize

$$
p(X)=\sum_{i \in X} p_{i}
$$

subject to

$$
\begin{equation*}
n(X)=\sum_{i \in X} n_{i} \leqslant N \tag{3}
\end{equation*}
$$

where $\boldsymbol{p}_{\boldsymbol{i}} \in \mathbb{R}_{+}$and $\boldsymbol{n}_{\boldsymbol{i}}$ and \boldsymbol{N} are in \mathbb{N}.
(Dantzig 1957)

A lattice-constrained knapsack problem

We can now formulate a converse of Proposition 1.

Proposition 2

If \boldsymbol{X} is a solution of the knapsack problem (3), and satisfies the admissibility condition $\boldsymbol{X}=\downarrow \boldsymbol{X}$, then it is a solution of the optimization problem (1).

This justifies our calling problem (1) a lattice-constrained knapsack problem.

Monotonicity

One says that $\boldsymbol{p} \in \mathbb{R}_{+}^{\mathbb{J}}$ is monotonically decreasing if $\boldsymbol{i}<\boldsymbol{j}$ implies that $\boldsymbol{p}_{\boldsymbol{i}} \geqslant \boldsymbol{p}_{\boldsymbol{j}}$.

If $\boldsymbol{i}<\boldsymbol{j}$ implies that $\boldsymbol{p}_{\boldsymbol{i}}>\boldsymbol{p}_{\boldsymbol{j}}$,
one says that $p \in \mathbb{R}_{+}^{\mathbb{J}}$ is strictly decreasing.
The definitions of "monotonically increasing" and "strictly increasing" are similar.

Monotonicity implies admissibility

The following proposition holds.

Proposition 3

If $\boldsymbol{p} \in \mathbb{R}_{+}^{\mathbb{J}}$ is monotonically decreasing and $\boldsymbol{n} \in \mathbb{N}_{+}^{\mathbb{J}}$ is monotonically increasing, there exists a solution of the knapsack problem (3) which also solves the optimization problem (1).

If \boldsymbol{p} is strictly decreasing, then any solution of (3) is a solution of (1).

One can therefore use any method to solve the knapsack problem (3), check admissibility (2), and then swap multi-indices to get a solution of problem (1).

Enumeration by decreasing efficiency

The algorithm we adapt is based on efficiency $\boldsymbol{r}_{\boldsymbol{i}}:=\boldsymbol{p}_{\boldsymbol{i}} / \boldsymbol{n}_{\boldsymbol{i}}$, and generates the initial values of an enumeration $i^{(t)}$ of $\mathbb{J}, t \in \mathbb{N}_{+}$, satisfying

$$
\boldsymbol{r}_{\boldsymbol{i}^{(t)}} \geqslant \boldsymbol{r}_{\boldsymbol{i}^{(t+1)}}
$$

The algorithm recursively generates $\boldsymbol{i}^{(t+1)}$ from $\boldsymbol{i}^{(t)}$, until for some \boldsymbol{T} the condition

$$
n\left(X_{(T)}\right) \leqslant N<n\left(X_{(T+1)}\right)
$$

holds, where

$$
X_{(t)}:=\bigcup_{s=1}^{t} i^{(s)}
$$

Enumeration by decreasing efficiency (cont.)

One then gets

Proposition 4

The construction of $\boldsymbol{i}^{(t)}$ terminates for some $\boldsymbol{t}=\boldsymbol{T}$.

Also, if \boldsymbol{p} is strictly decreasing, \boldsymbol{n} is monotonically increasing, and $\boldsymbol{n}\left(\boldsymbol{X}_{(\boldsymbol{T})}\right)=\boldsymbol{N}$, then $\boldsymbol{X}_{(\boldsymbol{T})}$ is a solution of problem (1).
(Dantzig 1957; Bungartz and Griebel 1999)

Finite construction

The construction of the enumeration requires sorting an infinite sequence and is thus not feasible in general, but, in the case where \boldsymbol{p} is monotonically decreasing and \boldsymbol{n} is monotonically increasing, the enumeration can be done recursively in finite time.

In this case \boldsymbol{r} is monotonically decreasing. By construction, $\boldsymbol{r}_{\boldsymbol{i}^{(t)}} \geqslant \boldsymbol{r}_{\boldsymbol{i}^{(t+1)}}$, so the enumeration cannot have $\boldsymbol{i}^{(t)} \geqslant \boldsymbol{i}^{(t+1)}$.

It follows that $\boldsymbol{i}^{(1)}=\mathbf{0}$.
(Hegland 2003; Gerstner and Griebel 2003)

Minimal elements

The element \boldsymbol{i} is a minimal element of a subset of \mathbb{J} if there are no elements $\boldsymbol{j}<\boldsymbol{i}$ in that subset. The minimum is thus with respect to the lattice defined by the partial order in \mathbb{J}.

Since $\boldsymbol{i}^{(t)}$ is an enumeration of \mathbb{J}, no element occurs twice, and so $\boldsymbol{i}^{(t+1)} \in X_{(t)}^{C}:=\mathbb{J} \backslash \boldsymbol{X}_{(t)}$.

Any later element $\boldsymbol{i}^{(t+1+s)}$ in the enumeration cannot be smaller than $i^{(t+1)}$, so $\boldsymbol{i}^{(t+1)}$ is a minimal element of $\boldsymbol{X}_{(t)}^{C}$.

The set $\boldsymbol{M}_{(t)}$ of minimal elements of $\boldsymbol{X}_{(t)}^{C}$ is finite. One can thus find $\boldsymbol{j}=\boldsymbol{i}^{(t+1)}$ with largest $r_{\boldsymbol{j}}$ in this set. (Hegland 2003; Gerstner and Griebel 2003)

Construction of set of minimal elements $M_{(t)}$

To construct the set of minimal elements of $\boldsymbol{X}_{(t)}^{C}$, we define $\boldsymbol{S}(\boldsymbol{i})$, the forward neighbourhood of $i \in \mathbb{J}$, as

$$
S(i):=\{j \in \mathbb{J} \mid i<j \text { and }(i \leqslant \ell<j \Rightarrow \ell=i)\}
$$

that is, $S(i)$ is the set of minimal elements of $\{j \in \mathbb{J} \mid i<j\}$.
Let e be the standard basis of $\mathbb{R}^{\mathbb{J}}$.

To construct $M_{(t)}$, start with $M_{(1)}=S\left(i^{(1)}\right)=S(0)=\left\{e_{1}, \ldots, e_{d}\right\}$.

Then given $\boldsymbol{M}_{(t-1)}$ and $\boldsymbol{i}^{(t)}$, obtain $M_{(t)}=\left(M_{(t-1)} \backslash\left\{i^{(t)}\right\}\right) \cup S\left(i^{(t)}\right)$.
(Hegland 2003; Gerstner and Griebel 2003)

Review of the dimension adaptive algorithm

Algorithm 2: A dimension adaptive algorithm.
Data: accuracy $\boldsymbol{\epsilon}$, incremental rules $\boldsymbol{\Delta}_{\boldsymbol{j}}$ and costs $\boldsymbol{n}_{\boldsymbol{j}}$ for $\boldsymbol{j} \in \mathbb{J}$
Result: $\boldsymbol{\epsilon}$ approximation \boldsymbol{q} and index set \boldsymbol{I}
$I:=\{0\} ; \quad q:=\Delta_{0}$;
while $\|1-q\|>\epsilon$ do
$i:=\operatorname{argmax}_{j}\left\{\left\|\Delta_{j}\right\|^{2} / n_{j} \mid I \cup\{j\}\right.$ is a down-set $\} ;$
$I:=I \cup\{i\} ; \quad q:=q+\Delta_{i} ;$

