Spherical codes with good separation, discrepancy and energy

Paul Leopardi
paul.leopardi@maths.anu.edu.au

Mathematical Sciences Institute, Australian National University.
For presentation at ICIAM 2007, Zurich, July 2007
Based on PhD thesis at the University of New South Wales
supervised by Ian Sloan and Rob Womersley, supported by UNSW and MASCOS.

Outline of talk

EQ codes: The Recursive Zonal Equal Area spherical codes,
$\operatorname{EQP}(d, \mathcal{N}) \subset \mathbb{S}^{d}$, with $|\operatorname{EQP}(d, \mathcal{N})|=\mathcal{N}$.

- Overview of properties of the EQ codes
- Some precedents
- Definitions: coordinates, partitions, diameter bounds
- The Recursive Zonal Equal Area (EQ) partition
- Details of properties of the EQ codes
- Separation and discrepancy bounds imply energy bounds
- Separation and diameter bounds imply energy bounds
- More details of properties (if time permits)

The spherical code $\operatorname{EQP}(2,33)$ on $\mathbb{S}^{2} \subset \mathbb{R}^{3}$

Geometric properties of the EQ codes

For $\operatorname{EQP}(\boldsymbol{d}, \boldsymbol{\mathcal { N }})$
Good:

- Centre points of regions of diameter $=\mathrm{O}\left(\mathcal{N}^{-1 / d}\right)$,
- Mesh norm (covering radius) $=\mathrm{O}\left(\mathcal{N}^{-1 / d}\right)$,
- Minimum distance and packing radius $=\Omega\left(\mathcal{N}^{-1 / d}\right)$.

Bad:

- Mesh ratio $=\Omega(\sqrt{d})$,
- Packing density $\leqslant \frac{\pi^{d / 2}}{2^{d} \Gamma(d / 2+1)}$ as $\boldsymbol{\mathcal { N }} \rightarrow \infty$.

Approximation properties of the EQ codes

Not so bad?

- Normalized spherical cap discrepancy $=O\left(\mathcal{N}^{-1 / d}\right)$,
- Normalized s-energy

$$
E_{s}= \begin{cases}I_{s} \pm \mathrm{O}\left(\mathcal{N}^{-1 / d}\right) & 0<s<d-1 \\ I_{s} \pm \mathrm{O}\left(\mathcal{N}^{-1 / d} \log \mathcal{N}\right) & s=d-1 \\ I_{s} \pm \mathrm{O}\left(\mathcal{N}^{s / d-1}\right) & d-1<s<d \\ \mathrm{O}\left(\log \mathcal{N}^{s)}\right. & s=d \\ \mathrm{O}\left(\mathcal{N}^{s / d-1}\right) & s>d\end{cases}
$$

Ugly:

- Cannot be used for polynomial interpolation: proven for large enough $\boldsymbol{\mathcal { N }}$, conjectured for small \mathcal{N}.

Relationships between properties of EQ codes

Some precedents

The EQ partition is based on Zhou's (1995) construction for \mathbb{S}^{2} as modified by Saff, and on Sloan's sketch of a partition of \mathbb{S}^{3} (2003).

Separation without equidistribution: Hamkins (1996) and Hamkins and Zeger (1997) constructed \mathbb{S}^{d} codes with asymptotically optimal packing density.

Equidistibution without separation: Many constructions for \mathbb{S}^{2}, eg. mapped Hammersley, Halton, (t, s) etc. sequences.
Feige and Schechtman (2002) constructed a diameter bounded equal area partition of \mathbb{S}^{d}. Put one point in each region.

Equal-area partitions of $\mathbb{S}^{d} \subset \mathbb{R}^{d}$

An equal area partition of $\mathbb{S}^{d} \subset \mathbb{R}^{d}$ is a finite set \mathcal{P} of Lebesgue measurable subsets of \mathbb{S}^{d}, such that

$$
\bigcup_{R \in \mathcal{P}} R=\mathbb{S}^{d}
$$

and for each $\boldsymbol{R} \in \mathcal{P}$,

$$
\sigma(\boldsymbol{R})=\frac{\sigma\left(\mathbb{S}^{d}\right)}{|\mathcal{P}|}
$$

where σ is the Lebesgue area measure on $\mathbb{S}^{\boldsymbol{d}}$.

Diameter bounded sets of partitions

The diameter of a region $\boldsymbol{R} \subset \mathbb{R}^{d+1}$ is defined by

$$
\operatorname{diam} R:=\sup \{\|\mathrm{x}-\mathrm{y}\| \mid \mathrm{x}, \mathrm{y} \in R\}
$$

A set $\boldsymbol{\Xi}$ of partitions of $\mathbb{S}^{d} \subset \mathbb{R}^{\boldsymbol{d + 1}}$ is diameter-bounded with diameter bound $\boldsymbol{K} \in \mathbb{R}_{+}$if for all $\mathcal{P} \in \boldsymbol{\Xi}$, for each $\boldsymbol{R} \in \mathcal{P}$,

$$
\operatorname{diam} \boldsymbol{R} \leqslant \boldsymbol{K}|\mathcal{P}|^{-1 / d}
$$

Key properties of the EQ partition of \mathbb{S}^{d}

$\operatorname{EQ}(\boldsymbol{d}, \mathcal{N})$ is the recursive zonal equal area partition of \mathbb{S}^{d} into \mathcal{N} regions.

The set of partitions $\operatorname{EQ}(d):=\left\{\operatorname{EQ}(d, \mathcal{N}) \mid \mathcal{N} \in \mathbb{N}_{+}\right\}$.
The EQ partition satisfies:
Theorem 1. For $\boldsymbol{d} \geqslant 1, \mathcal{N} \geqslant 1, \mathrm{EQ}(\boldsymbol{d}, \mathcal{N})$ is an equal-area partition.

Theorem 2. For $\boldsymbol{d} \geqslant 1, \mathrm{EQ}(\boldsymbol{d})$ is diameter-bounded.

Spherical polar coordinates on \mathbb{S}^{d}

Spherical polar coordinates describe $\mathrm{x} \in \mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ by one longitude, $\boldsymbol{\xi}_{1} \in \mathbb{R}$ (modulo 2π), and $\boldsymbol{d}-1$ colatitudes, $\xi_{j} \in[0, \pi]$, for $j \in\{2, \ldots, d\}$.

The spherical polar to Cartesian coordinate map
$\odot: \mathbb{R} \times[0, \pi]^{d-1} \rightarrow \mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ is
$\odot\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right)=\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)$,

$$
\begin{aligned}
& \text { where } x_{1}:=\cos \xi_{1} \prod_{j=2}^{d} \sin \xi_{j}, \\
& x_{2}:=\prod_{j=1}^{d} \sin \xi_{j} \\
& x_{k}:=\cos \xi_{k-1} \prod_{j=k}^{d} \sin \xi_{j},
\end{aligned} \quad k \in\{3, \ldots, d+1\} .
$$

Spherical caps, zones, and collars

The spherical cap $\boldsymbol{S}(\mathbf{p}, \boldsymbol{\theta}) \subset \mathbb{S}^{d}$ is

$$
S(\mathrm{p}, \theta):=\left\{\mathrm{q} \in \mathbb{S}^{d} \mid \mathrm{p} \cdot \mathrm{q} \geqslant \cos (\theta)\right\}
$$

For $d>1$, a zone can be described by

$$
Z(\tau, \beta):=\left\{\odot\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{S}^{d} \mid \xi_{d} \in[\tau, \beta]\right\}
$$

where $0 \leqslant \boldsymbol{\tau}<\boldsymbol{\beta} \leqslant \boldsymbol{\pi}$.
$Z(0, \beta)$ is a North polar cap and $Z(\tau, \pi)$ is a South polar cap.
If $0<\boldsymbol{\tau}<\boldsymbol{\beta}<\boldsymbol{\pi}, \boldsymbol{Z}(\boldsymbol{\tau}, \boldsymbol{\beta})$ is a collar.

EQ(3,99) Steps 1 to 2

EQ $(3,99)$ Steps 3 to 5

$E Q(3,99)$ Steps 6 to 7

Centre points of regions of $\operatorname{EQ}(d, \mathcal{N})$

The placement of the centre point $\boldsymbol{a}=\odot(\boldsymbol{\alpha})$ of a region

$$
\begin{gathered}
\boldsymbol{R}=\odot\left(\left[\tau_{1}, \boldsymbol{\beta}_{1}\right] \times \ldots \times\left[\tau_{d}, \boldsymbol{\beta}_{d}\right]\right) \text { is } \\
\alpha_{1}:= \begin{cases}0 & \boldsymbol{\beta}_{1}=\tau_{1}(\bmod 2 \pi) \\
\left(\tau_{1}+\beta_{1}\right) / 2(\bmod 2 \pi) & \text { otherwise }\end{cases}
\end{gathered}
$$

and for $j>1$,

$$
\alpha_{j}:= \begin{cases}0 & \tau_{j}=0 \\ \pi & \boldsymbol{\beta}_{j}=\pi \\ \left(\tau_{j}+\beta_{j}\right) / 2 & \text { otherwise }\end{cases}
$$

Minimum distance and packing radius

The minimum distance of $\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{d}$ is

$$
\min \operatorname{dist} X:=\min _{x \neq y \in X}\|x-y\|
$$

and the packing radius of \boldsymbol{X} is

$$
\operatorname{prad} X:=\min _{\mathrm{x} \neq \mathrm{y} \in X} \cos ^{-1}(\mathrm{x} \cdot \mathrm{y}) / 2
$$

It can be shown that \min dist $\operatorname{EQP}(d, \mathcal{N})=\Omega\left(\mathcal{N}^{-1 / d}\right)$, and therefore $\quad \operatorname{prad} \operatorname{EQP}(d, \mathcal{N})=\Omega\left(\mathcal{N}^{-1 / d}\right)$.

Minimum distance of $\operatorname{EQP}(4)$ codes

Normalized spherical cap discrepancy

We use the probability measure $\stackrel{*}{\sigma}:=\sigma / \sigma\left(\mathbb{S}^{d}\right)$.
For $\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{\boldsymbol{d}}$ the normalized spherical cap discrepancy is

$$
\operatorname{disc} X:=\sup _{\mathrm{y} \in \mathrm{~S}^{d}} \sup _{\theta \in[0, \pi]}\left|\frac{|X \cap S(\mathrm{y}, \theta)|}{\mathcal{N}}-\stackrel{*}{\sigma}(S(\mathrm{y}, \theta))\right| .
$$

It can be shown that

$$
\operatorname{disc} \operatorname{EQP}(d, \mathcal{N})=\mathrm{O}\left(\mathcal{N}^{-1 / d}\right)
$$

Normalized s-energy

For $\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{d}, s \in \mathbb{R}$, the normalized s-energy is

$$
E_{s}(X):=\mathcal{N}^{-2} \sum_{i=1}^{\mathcal{N}} \sum_{x_{i} \neq \mathrm{x}_{j} \in X}\left\|\mathrm{x}_{i}-\mathrm{x}_{j}\right\|^{-s}
$$

and the normalized energy double integral for $0<s<d$ is

$$
I_{s}:=\int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}}\|\mathrm{x}-\mathrm{y}\|^{-s} d \stackrel{*}{\sigma}(\mathrm{x}) d \stackrel{*}{\sigma}(\mathrm{y}) .
$$

Separation and discrepancy imply energy

Theorem 3.

Let $\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots\right)$ be a sequence of \mathbb{S}^{d} codes for which there exist $c_{1}, c_{2}>0$ and $0<\boldsymbol{q}<\mathbf{1}$ such that each $\boldsymbol{X}_{\mathcal{N}}=\left\{\mathrm{x}_{\mathcal{N}, 1}, \ldots, \mathrm{x}_{\mathcal{N}, \mathcal{N}}\right\}$ satisfies

$$
\begin{aligned}
\left\|\mathrm{x}_{\mathcal{N}, i}-\mathrm{x}_{\mathcal{N}, j}\right\| & >c_{1} \mathcal{N}^{-1 / d}, \quad(i \neq j) \\
\operatorname{disc} X_{\mathcal{N}} & \leqslant c_{2} \mathcal{N}^{-q}
\end{aligned}
$$

Then for the normalized s energy for $0<s<d$, we have for some $c_{\mathbf{3}} \geqslant 0$,

$$
\boldsymbol{E}_{s}\left(\boldsymbol{X}_{\mathcal{N}}\right) \leqslant I_{s}+c_{3} \mathcal{N}^{(s / d-1) q}
$$

Separation and diameter imply energy

Theorem 4.

Let $\left(\left(\boldsymbol{X}_{1}, \mathcal{P}_{\mathbf{1}}\right),\left(\boldsymbol{X}_{\mathbf{2}}, \mathcal{P}_{\mathbf{2}}\right), \ldots\right)$ be a sequence of pairs of $\mathbb{S}^{\boldsymbol{d}}$ codes and equal area partitions such that $\left|\boldsymbol{X}_{\mathcal{N}}\right|=\left|\mathcal{P}_{\mathcal{N}}\right|=\boldsymbol{\mathcal { N }}$, each $\mathbf{x}_{\mathcal{N}, i} \in \boldsymbol{X}_{\mathcal{N}}$ lies in $\boldsymbol{R}_{\mathcal{N}, i} \in \mathcal{P}_{\mathcal{N}}$, and such that $\left(\boldsymbol{X}_{\mathbf{1}}, \boldsymbol{X}_{\mathbf{2}}, \ldots\right)$ is well separated and $\left(\mathcal{P}_{\mathbf{1}}, \mathcal{P}_{2}, \ldots\right)$ is diameter bounded.

Then for the normalized senergy we have

$$
E_{s}\left(X_{\mathcal{N}}\right)= \begin{cases}I_{s} \pm \mathrm{O}\left(\mathcal{N}^{-1 / d}\right) & 0<s<d-1 \\ I_{s} \pm \mathrm{O}\left(\mathcal{N}^{-1 / d} \log \mathcal{N}\right) & s=d-1 \\ I_{s} \pm \mathrm{O}\left(\mathcal{N}^{s / d-1}\right) & d-1<s<d \\ \mathrm{O}\left(\log \mathcal{N}^{s}\right) & s=d \\ \mathrm{O}\left(\mathcal{N}^{s / d-1}\right) & s>d\end{cases}
$$

Comparison to minimum energy

For $s>d-1$, Theorem 4 yields energy bounds of the same order as $\mathcal{E}_{s}(\mathcal{N})$, the minimum normalized s energy for \mathcal{N} points on \mathbb{S}^{d}.

$$
\mathcal{E}_{s}(\mathcal{N})= \begin{cases}I_{s}-\Theta\left(\mathcal{N}^{s / d-1}\right) & 0<s<d \\ & \text { (Wagner; } \\ & \text { Rakhmanov, Saff \& Zhou; } \\ & \text { Brauchart) } \\ \mathrm{O}(\log \mathcal{N}) & s=d \quad \text { (Kuijlaars \& Saff) } \\ \mathrm{O}\left(\mathcal{N}^{s / d-1}\right) & s>d \quad \text { (Hardin \& Saff) }\end{cases}
$$

$d-1$ energy of $\operatorname{EQP}(2), \operatorname{EQP}(3), \operatorname{EQP}(4)$

$2 d$ energy of $\operatorname{EQP}(2), \operatorname{EQP}(3), \operatorname{EQP}(4)$

Mesh norm (covering radius)

The mesh norm of $\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{d}$ is

$$
\operatorname{mesh} \operatorname{norm} X:=\sup _{\mathbf{y} \in \mathbb{S}^{d}} \min _{\mathrm{x} \in X} \cos ^{-1}(\mathrm{x} \cdot \mathrm{y})
$$

Since $\operatorname{EQ}(\boldsymbol{d})$ is diameter bounded, mesh norm $\operatorname{EQP}(d, \mathcal{N})=\mathrm{O}\left(\mathcal{N}^{-1 / d}\right)$.

Mesh ratio and packing density

The mesh ratio of $\boldsymbol{X}:=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathcal{N}}\right\} \subset \mathbb{S}^{\boldsymbol{d}}$ is mesh ratio $\boldsymbol{X}:=$ mesh norm $\boldsymbol{X} / \operatorname{prad} \boldsymbol{X}$.

The packing density of \boldsymbol{X} is

$$
\text { pdens } \boldsymbol{X}:=\mathcal{N}^{*} \boldsymbol{\sigma}(\boldsymbol{S}(\mathrm{x}, \operatorname{prad} \boldsymbol{X}))
$$

Regions of $\operatorname{EQ}(\boldsymbol{d}, \boldsymbol{\mathcal { N }})$ near equators \rightarrow cubic as $\boldsymbol{\mathcal { N }} \rightarrow \infty$, so mesh ratio $\operatorname{EQP}(d, \mathcal{N})=\Omega(\sqrt{d}), \quad$ and
pdens $\operatorname{EQP}(d, \mathcal{N}) \leqslant \frac{\pi^{d / 2}}{2^{d} \Gamma(d / 2+1)} \quad$ as $\mathcal{N} \rightarrow \infty$.

Packing density of EQP(4) codes

For EQSP Matlab code

See SourceForge web page for EQSP:
Recursive Zonal Equal Area Sphere Partitioning Toolbox:
http://eqsp.sourceforge.net

