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Abstract

It is known that the Williamson construction for Hadamard matri-
ces can be generalized to constructions using sums of tensor products.
This paper describes a specific construction using real monomial rep-
resentations of Clifford algebras, and its connection with graphs of
amicability and anti-amicability. It is proven that this construction
works for all such representations where the order of the matrices is a
power of 2. Some related results are given for small dimensions.

1 Introduction

Williamson’s construction for Hadamard matrices [50] uses the real monomial
representation for the unit quaternions. This construction has been gener-
alized in a number of directions, including constructions based on a Cayley
table for the octonions [49, 32]. Another direction of generalization is that
of Goethals and Seidel [23]. One type of generalization of Williamson’s con-
struction seems to have been overlooked: to generalize from the Quaternions
to real monomial representations of Clifford algebras. This is remarkable
because all of the ingredients for this generalization have been in place for a
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long time. Clifford algebras have been used in the study of orthogonal de-
signs since at least 1974 [51] [22, Sections 3.10, 5.3]. Gastineau-Hills, in his
Ph.D. thesis of 1980, used the concept of anti-amicability, along with Kro-
necker products, and quasi-Clifford algebras to study systems of orthogonal
designs [19, 20]. That work is related to the current investigation.

This paper describes a specific construction for Hadamard matrices, using
real monomial representations of Clifford algebras, and its connection with
graphs of amicability and anti-amicability. The aim of the paper is not to
use the construction to find Hadamard matrices with previously unknown
orders, but to better understand the relationships between amicability and
anti-amicability for {−1, 1} matrices.

The paper is organized as follows. Section 2 develops Kronecker prod-
uct constructions for Hadamard matrices, by placing tighter and tighter re-
strictions on two n-tuples of matrices. Section 3 examines the relationship
between the first n-tuple of matrices and canonical bases for the real repre-
sentations of Clifford algebras. Section 4 investigates the second n-tuple of
matrices in terms of graphs of amicability and anti-amicability. Section 5
places the construction in its historical context, and looks at prospects for
further research.

2 Kronecker product constructions for Hada-

mard matrices

The construction considered in this paper is motivated by the Williamson
construction [50] and by the properties of real monomial representations of
the basis elements of Clifford algebras. Rather than presenting the construc-
tion at the outset, this section shows how the construction can be arrived at
by specialization from a more general construction.

Our first generalization of the Williamson construction is the most general
considered here. In this construction, we aim to find

Ak ∈ {−1, 0, 1}n×n, Bk ∈ {−1, 1}b×b, k ∈ {1, . . . , n},

where the Ak are monomial matrices, and construct

H :=
n∑
k=1

Ak ⊗Bk, (H0)

such that

H ∈ {−1, 1}nb×nb and HHT = nbI(nb), (H1)
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i.e. H is a Hadamard matrix of order nb.
Here we use monomial matrices, that is matrices with only one non-zero

entry in each row and each column. This starting point could be generalized
even further, but the use of n monomial matrices of order n here agrees with
the Williamson construction, is sufficient for the constructions below, and
simplifies the exposition.

Due to well-known and easily verified properties of the Kronecker product
(e.g. [37, (2.8)], ) if the order of the products in (H0) is reversed to yield the
construction

G :=
n∑
k=1

Bk ⊗ Ak, (G0)

we obtain the equivalent result

G ∈ {−1, 1}nb×nb and GGT = nbI(nb). (G1)

We now begin to specialize the construction. Since

HHT =
n∑
j=1

Aj ⊗Bj

n∑
k=1

ATk ⊗BT
k ,

we will impose stronger conditions on the construction by making the non-
zero contribution to HHT come from the diagonal of this double sum, i.e.

n∑
j=1

AjA
T
j ⊗BjB

T
j = nbI(nb),

n∑
j=1

n∑
k=j+1

(
AjA

T
k ⊗BjB

T
k + AkA

T
j ⊗BkB

T
j

)
= 0. (H2)

We also define the equivalent conditions (G2), with the Kronecker product
reversed.

We now impose even stronger conditions by making each off-diagonal
contribution separately sum to zero, i.e.

n∑
k=1

AkA
T
k ⊗BkB

T
k = nbI(nb),

AjA
T
k ⊗BjB

T
k + AkA

T
j ⊗BkB

T
j = 0 (j 6= k). (H3)

We also define the equivalent conditions (G3), with the Kronecker product
reversed.
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Up until now, because we have retained the Kronecker product in our
conditions, it is not clear how to find 2n matrices (A1, . . . , An), (B1, . . . , Bn),
which simultaneously satisfy these conditions, other than by a brute force
search. We therefore impose the still stronger conditions

Aj ∗ Ak = 0 (j 6= k),
n∑
k=1

Ak ∈ {−1, 1}n×n,

AkA
T
k = I(n),

AjA
T
k + λj,kAkA

T
j = 0 (j 6= k),

BjB
T
k − λj,kBkB

T
j = 0 (j 6= k),

λj,k ∈ {−1, 1},
n∑
k=1

BkB
T
k = nbI(b), (4)

where ∗ is the Hadamard matrix product.
It is straightforward to check the following implications.

Theorem 1. Conditions (4) on constructions (G0) and (H0) imply (G3) and
(H3), which imply conditions (G2) and (H2), which, in turn, imply (G1) and
(H1).

The coupling between the A and B matrices is mediated by the λ pa-
rameters. If we find an n-tuple of A matrices satisfying conditions (4), we
can then use the resulting λ values to search for an n-tuple of B matrices
satisfying conditions (4), to complete the sums (G0) and (H0).

Example 1: Sylvester-like construction. For our first example, we set
n = 2, b = 2. For the A matrices, we use two signed permutation matrices
obtained from the 2× 2 matrix used for the Sylvester construction,

A1 =

[
1 .
. −

]
, A2 =

[
. 1
1 .

]
.

Here, λ1,2 = 1. (Here and below, to reduce clutter in the display of matrices,
we use the conventions ‘−’ = −1, ‘.’ = 0.)

To satisfy conditions (4), we need to find B1, B2 ∈ {−1, 1}2×2 such that

B1B
T
1 +B2B

T
2 = 4I(2), B1B

T
2 −B2B

T
1 = 0,

in other words, B1 and B2 must satisfy the Gram sum condition and be
pairwise amicable. An amicable pair of Hadamard matrices of order b satisfies
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this requirement. For example, if we use the amicable pair

B1 =

[
1 1
1 −

]
, B2 =

[
1 −
1 1

]
,

our constructions (G0) and (H0) yield

G =


1 1 1 −
1 − − −
1 1 − 1
1 − 1 1

 , H =


1 1 1 −
1 − 1 1
1 − − −
1 1 − 1

 .
Example 2: Anti-amicable construction. For our second example, we
also have n = 2, b = 2, but we now want an example with λ1,2 = −1. For
the A matrices, we use the two commuting permutation matrices,

A1 =

[
1 .
. 1

]
, A2 =

[
. 1
1 .

]
Since we now have λ1,2 = −1, to satisfy conditions (4), we need to find

B1, B2 ∈ {−1, 1}2×2 such that

B1B
T
1 +B2B

T
2 = 4I(2), B1B

T
2 +B2B

T
1 = 0.

In other words, B1 and B2 must satisfy the Gram sum condition and be
pairwise anti -amicable. For example, if we use

B1 =

[
− 1
1 1

]
, B2 =

[
− −
− 1

]
,

our constructions (G0) and (H0) yield

G =


− − 1 −
− − − 1
1 − 1 1
− 1 1 1

 , H =


− 1 − −
1 1 − 1
− − − 1
− 1 1 1

 .
More examples. A Williamson-like construction has n = 4, and satis-
fies conditions (4) using 4 pairwise anti-amicable A matrices and 4 pairwise
amicable B matrices. For example, we can use 4 A matrices such that

A1 = I(4), ATk = −Ak (k > 1), λj,k = 1 (j 6= k).
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An octonion-like construction has n = 8, and satisfies conditions (4) using
8 pairwise anti-amicable A matrices and 8 pairwise amicable B matrices. For
example, we can use 8 A matrices such that

A1 = I(8), ATk = −Ak (k > 1), λj,k = 1 (j 6= k).

Following from the work of Hurwitz [28], Radon [43], Taussky [49] and
others, it is known that the only values of n for which an n-tuple of A matrices
of order n with λj,k = 1 for all (j 6= k) can be found are n = 1, 2, 4, 8 [21].
(The case n = 1 is vacuously true.) It is no coincidence that these are the
dimensions of the real, complex, Quaternion and Octonion algebras over the
real numbers.

To go further than n = 8 with our constructions (H0) and (G0), with our
strongest conditions (4), we need to allow at least one case of λj,k to equal
−1. This leads us to consider the Clifford algebras.

To recap, we aim to find n-tuples (A1, . . . , An), and (B1, . . . , Bn), with

Ak ∈ {−1, 0, 1}n×n, Bk ∈ {−1, 1}b×b,

and all Ak monomial, satisfying conditions (4). For the A matrices, in the
next section, we examine signed groups, cocycles and Clifford algebras. For
the B matrices, in Section 4, we examine graphs of amicability and anti-
amicability.

3 Signed groups and Clifford algebras

In this section, we examine in greater detail the properties of the n-tuples
of A matrices that satisfy conditions (4). We then describe the real Clif-
ford algebras and their underlying finite groups in terms of Craigen’s signed
groups, and Horadam and de Launey’s cocycles. Finally, we show how the
real monomial representations of Clifford algebras allow the construction of
A matrices satisfying conditions (4).

Gastineau-Hills’ systems of orthogonal designs. First, we note that
an n-tuple (A1, . . . , An) of matrices satisfying conditions (4) gives rise to a
special case of a regular n-system of orthogonal designs, of order n, genus
(δj,k), type (1; . . . ; 1), with p1 = . . . = pn = 1, with λj,k = (−1)(1+δj,k),
according to the definition and notation of Gastineau-Hills [19, Section (5.1),
p. 36]. The special case arises because we require that Aj ∗ Ak = 0 for all
(j 6= k), not just when λj,k = 1.
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Let (A1, . . . , An) satisfy conditions (4). For j 6= k we define Ej,k :=
AjA

T
k = AjA

−1
k . Then

Ej,k ∈ {−1, 0, 1}n×n, Ej,k = −λj,kET
j,k, Ej,kE

T
j,k = I(n),

E2
j,k = −λj,kI(n), Ej,kEk,l = Ej,l, Ej,kEk,j = I(n). (5)

In other words, the E matrices are orthogonal (−1, 0, 1) matrices, are either
symmetric or skew, and the square of an E matrix is therefore either I(n) or
−I(n). The condition Aj ∗Ak = 0 implies that Ej,k always has zero diagonal.

At this point, we could go on to follow Gastineau-Hills [19, Section (7), pp.
58-61], and examine quasi-Clifford algebras, but there is a point of distinction
between between the analysis there and what is needed in our case. The E
matrices defined and examined by Gastineau-Hills [19, p. 59] may obey
more relations than are listed at [19, (7.4), p. 60], and consequently, the set
of generators listed there may not be minimal.

Signed groups and cocycles. Rather than pursuing Gastineau-Hills’ con-
struction of quasi-Clifford algebras any further, we now briefly examine signed
groups, and go on to look at the canonical generation of a specific class of
signed groups, leading a construction for the real representation of certain
the real Clifford algebras.

A signed group [10] is a finite group E of even order containing a distin-
guished element of order 2 in its centre. This distinguished element is called
−1.

The group E can be considered to be a central extension of the abelian
group C := {−1, 1} ≡ Z2 by some group G, such that the elements of E can
be written as ordered pairs, (s,g),with s ∈ C, and g ∈ G [11] [13, Chapter
12]. This is easy to see: given the group E, the set C forms a normal subgroup
of E. Take a transversal G of C in E. The set G is not yet a group, but we
can define a multiplication as follows. Each pair of elements g,h ∈ G yields
the element gh ∈ E under the multiplication of E. Define the multiplication
in G by (gh)G := sgh if sgh ∈ G, where s ∈ S.

Given a group G, the multiplication in the extension E is determined by
a sign function ψ : G×G→ S such that

(s,g)(t,h) =
(
st ψ(g,h),gh

)
.

Here the multiplications are in S and in G respectively.

Remark. Many authors (e.g. Isaacs [30]) use the opposite convention, and
say that E is a central extension of G by C.
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Remark. It has been noted by Craigen [11] that since multiplication in E is
associative, we automatically have

(r, f)
(
(s,g)(t,h)

)
= (rst ψ(f ,gh)ψ(g,h), fgh)

=
(
(r, f)(s,g)

)
(t,h) = (rst ψ(f ,g)ψ(fg,h), fgh).

So ψ is a cocycle in the sense of Horadam, de Launey and Flannery [27] [26,
Chapter 6] [13, Chapter 12].

For much more on the relationship between central extensions of Z2 and
cocycles, see de Launey and Smith [15, Section 2], and de Launey and
Kharaghani [14, Section 2.2]. Chapter 12 of de Launey and Flannery [13]
treats central extensions and cocycles in more generality.

Signed groups yielding the real Clifford algebras. We now construct
the signed groups relevant to the real Clifford algebras. The signed group
Gp,q of order 21+p+q is extension of Z2 by Zp+q2 , defined by the signed group
presentation

Gp,q :=

〈
e{k} (k ∈ Sp,q) |

e2
{k} = −1 (k < 0), e2

{k} = 1 (k > 0),

e{j}e{k} = −e{k}e{j} (j 6= k)

〉
,

where Sp,q := {−q, . . . ,−1, 1, . . . , p}.
The groups Gp,q for all non-negative integer values p, q, have been studied

extensively by Braden [5], Lam and Smith [33], and others, but there is no
generally accepted collective name for them. In [34], these groups are called
frame groups.

The papers on asymptotic existence of cocyclic Hadamard matrices, by
de Launey and Smith [15], and de Launey and Kharaghani [14], as well
as Chapters 22 and 23 of de Launey and Flannery [13], treat these groups
in some detail as central extensions of the group Z2 by Zp+q2 with some
differences in notation from that of Braden or Lam and Smith.

Multiplication in Zp+q2 is isomorphic to the exclusive or (XOR) of bit
vectors, or the symmetric set difference of subsets of Sp,q, so elements of Gp,q

can be written as ±eT , T ⊂ Sp,q, with e∅ = 1. The 2p+q subsets {±eT} are
the cosets of {±1} ≡ Z2 in Gp,q. These cosets can be enumerated by using a
canonical indexing, using the indices −q up to p (excluding 0) of the bits of
each bit vector in Zp+q. The interpretation of each bit vector as the binary
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representation of a number in Z2p+q then gives a canonical ordering of the
cosets. For example, in G2,1

0↔ 000↔ ∅↔ {±1},
1↔ 001↔ {−1} ↔ {±e{−1}},

. . .

3↔ 011↔ {−1, 1} ↔ {±e{−1,1}},
. . .

7↔ 111↔ {−1, 1, 2} ↔ {±e{−1,1,2}}.

If we take a transversal of Z2 in Gp,q, in particular, if we use the element eT
from each coset, we obtain a canonical basis in Gp,q.

The group Gp,q extends to the universal real Clifford algebra Rp,q, of
dimension 2p+q, by expressing each element x ∈ Rp,q as a linear combination
of the 2p+q basis elements eT ,

x =
∑
T⊂Sp,q

xTeT .

The real Clifford algebra Rp,q is the quotient of the real group algebra RGp,q

by the ideal 〈e∅+ (−e∅)〉. That is, −e∅ in Gp,q is identified with −1 in R [33,
pp. 778-779] [36, Section 14.3] [34]. If, instead of the field R, we use the ring
of integers Z, we obtain the signed group ring Z[Gp,q] [10, p. 244].

Real monomial representations of real Clifford algebras. In this
paper, we construct canonical real monomial representations P (Gp,q) and
P (Rp,q) via sets of generating matrices [10, p. 243]. The key theorem in this
construction is (paraphrasing Porteous [42, Prop. 13.17, p. 247])

Theorem 2. If the set of matrices S ⊂ {−1, 0, 1}n×n generates P (Gp,q) ≡
Gp,q, then the set of matrices{[

1 .
. −

]
⊗ E

∣∣∣∣E ∈ S} ∪{[ . −
1 .

]
⊗ I(n),

[
. 1
1 .

]
⊗ I(n)

}
⊂ {−1, 0, 1}2n×2n

generates P (Gp+1,q+1) ≡ Gp+1,q+1.

The group P (G0,0) ≡ G0,0 ≡ Z2 is generated by the of 1× 1 matrix [−1],
so that Theorem 2 yields the generating set{[

− .
. 1

]
,

[
. −
1 .

]
,

[
. 1
1 .

]}
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for P (G1,1). Note that this set is redundant and that, in particular, the last
two elements listed also generate P (G1,1).

Real monomial representations for Gm,m and Rm,m can be generated by
extending this process. These representations are faithful : P (Rm,m) is iso-
morphic to R2m×2m [42, Prop 13.27] [36, Section 16.4]. Note well that the
order of the matrices here is 2m, in contrast to the order of 4m needed for
the regular representation of the group Z2m

2 .

An alternative construction giving the representation P (Gm,m) and
the group Z2m

2 . There is a second, equivalent construction of the real
monomial representation P (Gm,m) of the group Gm,m, which gives a different
ordering of the cosets of {±I} from the one given above. This construction
is more useful for the purposes of this paper.

The 2× 2 orthogonal matrices

E1 :=

[
. −
1 .

]
, E2 :=

[
. 1
1 .

]
generate P (G1,1), the real monomial representation of group G1,1. The cosets
of {±I} ≡ Z2 in P (G1,1) are ordered using a pair of bits, as follows.

0↔ 00↔ {±I},
1↔ 00↔ {±E1},
2↔ 10↔ {±E2},
3↔ 11↔ {±E1E2}.

For m > 1, the real monomial representation P (Gm,m) of the group Gm,m

consists of matrices of the form G1 ⊗ Gm−1 with G1 in P (G1,1) and Gm−1
in P (Gm−1,m−1). The cosets of {±I} ≡ Z2 in P (Gm,m) are ordered by con-
catenation of pairs of bits, where each pair of bits uses the ordering as per
P (G1,1), and the pairs are ordered as follows.

0↔ 00 . . . 00↔ {±I},
1↔ 00 . . . 01↔ {±I⊗(m−1)(2) ⊗ E1},

2↔ 00 . . . 10↔ {±I⊗(m−1)(2) ⊗ E2},
. . .

22m − 1↔ 11 . . . 11↔ {±(E1E2)
⊗m}.

(Here I(2) is used to distinguish this 2 × 2 unit matrix from the 2m × 2m

unit matrix I.) In this paper, this ordering is called the Kronecker product
ordering of the cosets of {±I} in P (Gm,m).
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The Kronecker product ordering of the canonical basis matrices of P (Rm,m)
the real monomial representation of the Clifford algebra Rm,m is given by an
ordered transversal of {±I} ≡ Z2 in P (Gm,m), using the Kronecker product
ordering. For example, (I,E1,E2,E1E2) is the Kronecker product ordering
of the canonical basis matrices of P (R1,1).

Definition 1. For some transversal of Z2 in P (Gm,m), in the Kronecker
product ordering, we define a function γm : Z22m → P (Gm,m) to choose the
corresponding canonical basis matrix for P (Rm,m). The Kronecker product
ordering then defines a corresponding function on Z2m

2 , which we also call
γm. For example, γ1(1) = γ1(01) := E1.

Properties of the representation P (Gm,m). We collect here a number
of well-known and easily proved properties of the representation P (Gm,m).

Lemma 3. The group Gm,m and its real monomial representation P (Gm,m)
satisfy the following properties.

1. Pairs of elements of Gm,m (and therefore P (Gm,m)) either commute or
anticommute: for g, h ∈ Gm,m, either hg = gh or hg = −gh.

2. The matrices E ∈ P (Gm,m) are orthogonal: EET = ETE = I.

3. The matrices E ∈ P (Gm,m) are either symmetric and square to give I
or skew and square to give −I: either ET = E and E2 = I or ET = −E
and E2 = −I.

The following properties of the diagonal elements of P (Gm,m) are not
so well-known, but are also easily proven by induction using the alternative
construction given above.

Lemma 4. The set of diagonal matrices Dm ⊂ P (Gm,m) forms a subgroup
of order 2m+1 of P (Gm,m), consisting of the union of the following cosets of
{±I}, listed in Kronecker product order.

00 . . . 00↔ {±I},
00 . . . 11↔ {±I⊗(m−1)(2) ⊗ E1E2},

. . .

11 . . . 1100↔ {±(E1E2)
⊗(m−1) ⊗ I(2)},

11 . . . 11↔ {±(E1E2)
⊗m}.

Each coset of Dm in P (Gm,m) consists of a set of 2m+1 monomial matrices,
all of which have the same support – i.e. the same set of non-zero indices.
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Application to the construction of Section 2. We see that the Clifford
algebra R2m×2m has a canonical basis consisting of 4m real monomial matrices,
corresponding to the basis of the algebra Rm,m. From Lemma 3 it is seen that
these 4m monomial canonical basis matrices have the following properties:

Pairs of basis matrices either commute or anticommute. Basis matrices
are either symmetric or skew, and so the basis matrices Aj, Ak satisfy

AkA
T
k = I(2m), AjA

T
k + λj,kAkA

T
j = 0 (j 6= k), λj,k ∈ {−1, 1}.

From Lemma 4 we see that we can choose a transversal of the cosets of
Dm, consisting of n = 2m canonical basis matrices such that

Aj ∗ Ak = 0 (j 6= k),
n∑
k=1

Ak ∈ {−1, 1}n×n.

This satisfies conditions (4) for A matrices. Thus, if n is a power of 2,
an n-tuple of A matrices satisfying conditions (4) can always be found. In
Section 4, the following theorem is proven, completing the construction.

Theorem 5. If n is a power of 2, the constructions (G0) and (H0) with
conditions (4) can always be completed, in the following sense. If an n-tuple
of A matrices which produce a particular λ is obtained by taking a transversal
of canonical basis matrices of the Clifford algebra Rm,m, an of n-tuple of B
matrices with a matching λ can always be found.

Example: R2,2. The real Clifford algebra R2,2 is isomorphic to the real
matrix algebra R4×4. The corresponding frame group G2,2 is generated as a
signed group by the four matrices[

1 .
. −

]
⊗
[
. −
1 .

]
,

[
. −
1 .

]
⊗
[

1 .
. 1

]
,[

1 .
. −

]
⊗
[
. 1
1 .

]
,

[
. 1
1 .

]
⊗
[

1 .
. 1

]
.

The group has 32 elements and the canonical basis of R2,2 has 16 elements.
As matrices, these canonical basis matrices form 4 equivalence classes of 4
elements each, where a pair of basis matrices is equivalent if they have the
same support, i.e. the same sparsity pattern. To form a 4-tuple of canonical
basis matrices satisfying (4), we simply take a transversal, that is, we choose
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one basis matrix from each class. For example,

A1 :=


− . . .
. 1 . .
. . − .
. . . 1

 , A2 :=


. 1 . .
1 . . .
. . . −
. . − .

 ,

A3 :=


. . 1 .
. . . −
− . . .
. 1 . .

 , A4 :=


. . . 1
. . 1 .
. 1 . .
1 . . .

 .
In this case, λ1,2 = λ1,3 = λ1,4 = λ2,3 = λ2,4 = λ3,4 = 1.

An exhaustive enumeration of the 44 = 256 different transversals, each
consisting of a 4-tuple of 4 × 4 canonical basis matrices, yields 256 graphs,
here called transversal graphs.

Each transversal graph is a graph giving the amicability / anti-amicability
relationship of the 4 matrices defining the vertices. Each such graph is a
complete graph on 4 vertices, with two edge colours. Each edge of the graph
has one of two colours, −1 (“red”) and 1 (“blue”). Matrices Aj and Ak are
connected by a red edge if they have disjoint support and are anti-amicable,
i.e. λjk = 1. Matrices Aj and Ak are connected by a blue edge if they have
disjoint support and are amicable, i.e. λjk = −1.

When collected into equivalence classes by graph isomorphism, the set of
256 transversal graphs yields the six classes shown in Figure 1 (plotted using
the Graphviz dot program [18]).

In each box of Figure 1, a red edge, corresponding to anti-amicability,
is given a solid line, and a blue edge, corresponding to amicability is given
a dashed line. The name ‘Aabcd’ in each box corresponds to the degree
sequence with respect to red edges.

Colour-complementary graphs of A matrices. Graphs A0000 , A3333
are complementary with respect to the exchange of red and blue edges, as
are graphs A1111 , A2222, and graphs A2110 , A3221.

This phenomenon is also observed in the cases of order 2 and order 8.
In each of these three cases it is caused by the existence of a permutation π
of the basis matrices of the real representation of the corresponding Clifford
algebra, with the following property:

Property 1. For canonical basis matrices Aj, Ak ∈ {−1, 0, 1}n×n,

if Aj ∗ Ak = 0 and AjA
T
k + λj,kAkA

T
j = 0,

then π(Aj) ∗ π(Ak) = 0 and π(Aj) π(Ak)
T − λj,kπ(Ak) π(Aj)

T = 0.
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A0000:
8 cases

A1111:
24 cases

A2110:
96 cases

A2222:
24 cases

A3221:
96 cases

A3333:
8 cases

Figure 1: 4-tuples of A matrices of order 4, dashed: λj,k = −1, solid: λj,k = 1.

In other words, for pairs of basis matrices Aj, Ak, the permutation π sends an
amicable pair with disjoint support to an anti-amicable pair, and vice-versa.

Let ∆m be the graph whose vertices are the n2 = 4m canonical basis
matrices of the real representation of the Clifford algebra Rm,m, with each
edge having one of two colours, −1 (red) and 1 (blue):

• Matrices Aj and Ak are connected by a red edge if they have disjoint
support and are anti-amicable.

• Matrices Aj and Ak are connected by a blue edge if they have disjoint
support and are amicable.

• Otherwise there is no edge between Aj and Ak.

We call this graph the restricted amicability / anti-amicability graph of the
Clifford algebra Rm,m, the restriction being the requirement that an edge
only exists for pairs of matrices with disjoint support.

We now introduce some notation that is used in the remainder of this
paper.

Definition 2. For a graph Γ with edges coloured by -1 (red) and 1 (blue),
Γ[−1] denotes the red subgraph of Γ, the graph containing all of the vertices
of Γ, and all of the red (-1) coloured edges. Similarly, Γ[1] denotes the blue
subgraph of Γ.

14



The existence of a permutation π with Property 1 is equivalent to the
graph ∆m having the following property.

Property 1a. The graph ∆m is self-edge-colour-complementary. That is,
there exists a permutation of the vertices which takes every red edge to a blue
edge and vice-versa. (This permutation is π itself.)

Property 1a (and therefore Property 1) was verified for m = 0, 1, 2, 3 via
the Python interface to the igraph network research package [12]. For each
m, the graph ∆m was formed from the relevant coloured adjacency matrix,
and the routine get isomorphism vf2 was called to find all isomorphisms
between the graph ∆m and the same graph with the complementary colour-
ing. The Python code used, and the pickled Python output are available via
the author’s web page [35]. The results are listed in Table 1.

m n = 2m |∆m| = 4m degrees isomorphisms

0 1 1 (0, 0) 1
1 2 4 (1, 1) 4
2 4 16 (6, 6) 192
3 8 64 (28, 28) 86016
4 16 256 (120, 120) ?

Table 1: Isomorphisms of ∆m with its edge-colour-complement.

One key result is that each graph ∆m is a regular two-edge-coloured graph
on 4m vertices. The fourth column of Table 1 gives the number of red and
blue edges from each vertex. For example, the graph ∆2 with 16 vertices
has 6 red edges and 6 blue edges meeting each vertex. The total number of
edges meeting each vertex is 4m − 2m, since an edge only exists for a pair of
matrices with disjoint support.

The fifth column gives the number of isomorphisms found by the igraph
library function get isomorphism vf2. No attempt was made to further
identify the groups. Also, since the algorithm used by get isomorphism vf2

is exponential in the number of vertices, and since the case of ∆3 took about
8 hours on a 2 GHz CPU, no attempt has yet been made to obtain the
isomorphisms for ∆4.

If we take every subset S of the vertices of ∆m, of size n = 2m such that
each pair of matrices has disjoint support, then, as in our example for n = 4
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above, each such subset yields a subgraph that gives a two-edge-colouring
to the edges of the complete graph on n vertices. The permutation π then
induces a map S 7→ πS such that the corresponding subgraph maps to a edge-
colour-complementary subgraph. Thus the existence of the permutation π
implies the weaker property:

Property 2. For the Clifford algebra Rm,m, the subset of transversal graphs
that are not self-edge-colour-complementary can be arranged into a set of
pairs of graphs with each member of the pair being edge-colour-complementary
to the other member.

This, in turn implies the even weaker property:

Property 3. For the Clifford algebra Rm,m, if a graph T exists amongst
the transversal graphs, then so does at least one graph with edge colours
complementary to those of T .

Since Property 1 is true for the three cases m = 1, n = 2, m = 2, n = 4,
and m = 3, n = 8, then so are Properties 1a, 2 and 3.

These properties may continue for larger values of m, and so it is worth
making the relevant conjectures:

Conjecture 1. Property 1 holds for all m > 0. In other words, for all m > 0
there is a permutation π of the set of 4m canonical basis matrices, that sends
an amicable pair of basis matrices with disjoint support to an anti-amicable
pair, and vice-versa.

Conjecture 2. Property 2 holds for all m > 0. In other words, for all
m > 0, for the Clifford algebra Rm,m, the subset of transversal graphs that
are not self-edge-colour-complementary can be arranged into a set of pairs of
graphs with each member of the pair being edge-colour-complementary to the
other member.

Conjecture 3. Property 2 holds for all m > 0. In other words, for all m > 0,
for the Clifford algebra Rm,m, if a graph T exists amongst the transversal
graphs, then so does at least one graph with edge colours complementary to
those of T .

As is shown in Section 4, these conjectures are also relevant to the {−1, 1}
matrices.
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The full amicability / anti-amicability graphs of Rm,m and Gp,q.
The full amicability / anti-amicability graph Λm,m of the canonical basis

matrices for the real representation of the Clifford algebra Rm,m can be ob-
tained from the restricted graph ∆m by recalling that, as a result of Lemma
4, two canonical basis matrices A1 and A2 have common support if and only
if A2 = SA1, where S ∈ Dm is a diagonal signed permutation matrix. We
then have

A1A
T
2 = A1A

T
1 S

T = ST = S, A2A
T
1 = SA1A

T
1 = S.

So A1 and A2 are amicable. Thus the graph Λm,m is a complete graph on
4m vertices, with a self-loop on each vertex, and two-edge-coloured so that
each vertex has (4m − 2m)/2 red edges and the remaining edges, including
the self-loops, are coloured blue.

The full amicability / anti-amicability graph Γm,m of the group Gm,m is
obtained from Λm,m by including the negatives of all of the 4m canonical
basis matrices that are the vertices of Λm,m. Thus Γm,m has |Gm,m| = 2× 4m

vertices. Every canonical basis matrix Aj is amicable with −Aj, and if Aj
is amicable with Ak, then −Aj,−Ak, Aj, and Ak are all pairwise amicable.
If Aj is anti-amicable with Ak, this yields the subgraph shown in Figure 2
(plotted using the Graphviz circo program [18]).

-A_j

-A_kA_k

A_j

Figure 2: Anti-amicable matrices Aj, Ak and their negatives, solid: anti-
amicable, dashed: amicable.

Thus the number of red edges on each vertex of Γm,m is twice that of
Λm,m. (We say that the red subgraph Γm,m[−1] is the double graph of the
red subgraph Λm,m[−1] [29].) So Γm,m is the complete graph on 2 × 4m

vertices, with self-loops on each vertex, with a two-edge-colouring such that
the vertices and the red edges form a regular graph of degree 4m − 2m.
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Examples: Γ1,1 has 8 vertices and 2 red edges on each vertex. Γ2,2 has
32 vertices and 12 red edges on each vertex. These examples occur again in
Section 4.

It is clear from the presentation of Gp,q that Gp,q is isomorphic to a
subgroup of GP,Q whenever p 6 P and q 6 Q. Thus the full amicability
/ anti-amicability graph Γp,q is a subgraph of Γm,m whenever p 6 m and
q 6 m.

The anti-amicability graph of Rm,m. Let Φm be the graph whose vertices
are the n2 = 4m canonical basis matrices of the real representation of the
Clifford algebra Rm,m, with matrices Aj and Ak connected by an edge if
and only if they have disjoint support and are anti-amicable. We call this
graph the anti-amicability graph of the Clifford algebra Rm,m. This graph is
isomorphic to the red subgraph ∆m[−1] of the restricted graph ∆m described
above, and is also isomorphic to the red subgraph Λm,m[−1] of the graph
Λm,m.

Recall the following.

Definition 3. [4, 7][8, Chapter 9]. A simple graph Γ of order v is strongly
regular with parameters (v, k, λ, µ) if

• each vertex has degree k,

• each adjacent pair of vertices has λ common neighbours, and

• each nonadjacent pair of vertices has µ common neighbours.

It was verified, using igraph and the Python networkx package [24], that
Φm is a strongly regular graph for m from 1 to 5. In particular, the networkx
package was used to verify that the graph Φ2 is isomorphic to the lattice graph
L(4), and not the Shrikhande graph [9, p. 92] [47]. The graph parameters
are listed in Table 2.

The last line of Table 2 gives a general formula for the parameters in
terms of m, suggesting the following.

Theorem 6. For all m > 1, the graph Φm is strongly regular, with parameters
v(m) = 4m, k(m) = 22m−1 − 2m−1, λ(m) = µ(m) = 22m−2 − 2m−1.

A proof of this theorem is given in the rest of this section.
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m v k λ = µ

1 4 1 0
2 16 6 2
3 64 28 12
4 256 120 56
5 1024 496 240
m 4m 22m−1 − 2m−1 22m−2 − 2m−1

Table 2: Strongly regular graph parameters of Φm.

Hadamard difference sets and bent functions. We first review some
well known properties of Hadamard difference sets and bent functions.

Definition 4. [16, pp. 10, 13].
The k-element set D is a (v, k, λ, n) difference set in an abelian group G

of order v if for every non-zero element g in G, the equation g = di− dj has
exactly λ solutions (di, dj) with di, dj in D. The parameter n := k − λ. A
(v, k, λ, n) difference set with v = 4n is called a Hadamard difference set.

Remark. [38] [16, Remark 2.2.7] [45].
A Hadamard difference set has parameters of the form

(v, k, λ, n) = (4N2, 2N2 −N,N2 −N,N2)

or (4N2, 2N2 +N,N2 +N,N2).

Definition 5. [16, p. 74].
A Boolean function f : Zm2 → Z2 is bent if its Hadamard transform has

constant magnitude.
Specifically:

1. The Sylvester Hadamard matrix Hm, of order 2m, is defined by

H1 :=

[
1 1
1 −

]
,

Hm := Hm−1 ⊗H1, for m > 1.

2. For a Boolean function f : Zm2 → Z2, define the vector f by

f := [(−1)f [0], (−1)f [1], . . . , (−1)f [2
m−1]]T ,
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where the value of f [i], i ∈ Z2m is given by the value of f on the binary
digits of i.

3. In terms of these two definitions, the Boolean function f : Zm2 → Z2 is
bent if ∣∣Hmf

∣∣ = C[1, . . . , 1]T .

for some constant C.

Remark. [16, Theorem 6.2.2]
The Boolean function f : Zm2 → Z2 is bent if and only if D := f−1(1) is

a Hadamard difference set.

Remark. [16, Remark 6.2.4]
Bent functions exist on Zm2 only when m is even.

The sign-of-square function σm on Z22m and Z2m
2 . We use the basis

element selection function γm of Definition 1 to define the sign-of-square
function σm : Z2m

2 → Z2 as

σm(i) :=

{
1↔ γm(i)2 = −I
0↔ γm(i)2 = I,

for all i in Z2m
2 . Using the vector notation from Definition 5, we see that

σ1 = [1,−1, 1, 1]T . If we define � : Z2 × Z2m−2
2 → Z2m

2 as concatenation of
bit vectors, e.g. 01� 1111 := 011111, it is easy to verify that

σm(i1 � im−1) = σ1(i1) + σm−1(im−1)

for all i1 in Z2 and im−1 in Z2m−2
2 , and therefore σm = σ1⊗ σm−1. Also, since

each γm(i) is orthogonal (from Lemma 3), σm(i) = 1 if and only if γm(i) is
skew.

We are now in a position to prove the following.

Lemma 7. The function σm is a bent function on Z2m
2 .

Proof. Recall that σ1 = [1,−1, 1, 1]T .
We show that σ1 is bent by forming

H2[σ1] =


1 1 1 1
1 − 1 −
1 1 − −
1 − − 1




1
−
1
1

 =


2
2
−2

2

 .
Recall that for m > 1, H2m = H2⊗H2m−2 and σm = σ1⊗σm−1. Therefore

H2mσm = H2σ1 ⊗H2m−2σm−1 = (H2σ1)
(⊗m),

which has constant absolute value.
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Bent functions and strongly regular graphs Now that we have estab-
lished that the sign-of-square function σm is bent, we complete the proof of
Theorem 6 by using a result of Bernasconi and Codenotti [2] on the relation-
ship between bent functions and strongly regular graphs.

First we recall a special case of the definition of a Cayley graph.

Definition 6. The Cayley graph of a binary function f : Zm2 → Z2 is the
undirected graph with adjacency matrix F given by Fi,j = f(gi+gj), for some
ordering (g1, g2, . . .) of Zm2 .

The relevant result is the following.

Lemma 8. [2, Lemma 12]. The Cayley graph of a bent function on Zm
2 is a

strongly regular graph with λ = µ.

Remark. [3, Theorem 3]. Bent functions are the only binary functions on
Zm

2 whose Cayley graph is a strongly regular graph with λ = µ.

Proof of Theorem 6. Lemma 7 says that the function σm on the canonical
basis matrices of Rm,m such that σm(A) = 0 when the matrix A is symmetric
and σm(A) = 1 when the matrix A is skew, is a bent function. Lemma 8
then implies that the Cayley graph Θm corresponding to this bent function
fm is strongly regular. But this Cayley graph Θm is isomorphic to Φm, since

(γ(i)γ(j)−1)2 = (γ(i)γ(j)T )2 = γ(i+ j)2

for all i, j ∈ Z2m
2 .

4 Amicability / anti-amicability of {−1, 1}ma-

trices

Given an n-tuple of A matrices, this fixes λj,k. We now must find an n-
tuple of {−1, 1} B matrices with a complementary graph of amicability and
anti-amicability.

We start with a theoretical result which may help our search a little.

Theorem 9. For anti-amicable pairs of matrices in {−1, 1}b×b,

B1B
T
2 +B2B

T
1 = 0,

therefore B1B
T
2 is skew, so b must be even.

As a result of this theorem, our interest in odd b is restricted to the cases
where n = 2, 4, 8, as remarked in Section 2.
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Example: 2× 2 matrices. An exhaustive search over the 16 × 15 = 240
distinct multisets of 2 matrices chosen from the 16 matrices of the form
{−1, 1}2×2, with no constraints on the sum of the Gram matrices, reveals
the amicability / anti-amicability relationships seen in the graph of Figure 3
(plotted using the Graphviz neato program [18]).

0 5

6

9

10

15

12

1

2

4

7

8

11
13

14

3

Figure 3: {−1, 1}matrices of order 2, solid: anti-amicable, dashed: amicable.

Here, each of the 16 matrices is given a numbered vertex, from 0 to 15.
The map from a number a to a matrix A is obtained via numbering the
element positions of the matrix as[

0 1
2 3

]
.

The number a is then written in binary, with each position in the matrix A
being given the value (−1)b where b is the corresponding bit. For example,
the number 4 yields the matrix [

1 1
− 1

]
.

In Figure 3, a dashed edge between vertices corresponds to an amicable
pair. A solid edge corresponds to an anti-amicable pair. Each matrix is

22



amicable with itself, so each vertex has a dashed loop attached. The graph
has two connected components. One component is the complete graph K8

with self-loops, with two edge-colours. This represents a set of 8 matrices
that are pairwise either amicable or anti-amicable. The other component
includes a number of double edges, representing pairs of matrices that are
both amicable and anti-amicable. An example of such a pair is

M :=

[
− 1
1 −

]
, N :=

[
1 1
1 1

]
,

where MNT = 0.
In Figure 4 (plotted using the Graphviz neato program [18]) the edges

are restricted to those pairs of matrices where BjB
T
j +BkB

T
k = 4I(2).

0

6

9

15
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8

11
13

14

3

5

10

12

Figure 4: {−1, 1} matrices of order 2, BjB
T
j +BkB

T
k = 4I(2).

The two-edge-coloured K8 still appears, but the other component is now
split into two. These two new components each consist of 4 matrices, where
each matrix is both amicable and anti-amicable with two other matrices. Our
previous example is also an example here, since

MMT =

[
2 −2
−2 2

]
, NNT =

[
2 2
2 2

]
,
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so

MMT +NNT = 4I(2).

The vertices of the K8 still have self-loops, indicating that the correspond-
ing 8 matrices are Hadamard. This K8 of Hadamard matrices is remarkable,
but it occurs for a simple reason, given by Theorem 10 below. The vertices
of the other two components do not have self-loops.

Multisets of 4 matrices. An exhaustive search over the
(
19
4

)
= 3876

distinct multisets of 4 matrices of type {−1, 1}2×2 for multisets where each
pair is either amicable or anti-amicable, and where the sum of the 4 Gram
matrices is 8I(2), results in 618 qualifying multisets, yielding seven isomor-
phism classes of graphs, as shown in Figure 5 (plotted using the Graphviz
dot program [18]).

B1111:
36 cases

B2211:
72 cases

B2220:
32 cases

B2222:
52 cases

B3221:
168 cases

B3322:
120 cases

B3333:
138 cases

Figure 5: 4-multisets of B matrices of order 2, solid: λj,k = −1, dashed:
λj,k = 1.

A naive algorithm was used to obtain the graphs in Figure 5. First, a
canonical ordering was given for both the 4 vertices and the 6 edges of the
graph K4, implying an ordering of the 64 possible two-edge-colourings of this
graph. Then, a canonical ordering was given for the 16 matrices of type
{−1, 1}2×2, implying an ordering for the 3876 possible multisets. For each of
the 64 possible two-edge-colourings, each of the 3876 possible multisets was
checked: firstly that the amicability and anti-amicability relations of the four
matrices matched the two-edge-colouring, and secondly, that the Gram sum
was 8I(2). The number of matches was counted for each of the 64 possible
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two-edge-colourings. The two-edge-colourings were then combined into the
isomorphism classes shown in Figure 5, by examining the corresponding de-
gree sequences. The code to implement the algorithm was written in Octave,
and is available from the author’s web page [35]. It takes less than a second
to run on an Intel R© CoreTM i7 870 CPU at 2.93 GHz.

In each box of Figure 5, the complete graph K4 is given two colours. The
vertices correspond to 4 B matrices. If λj,k = −1, then the edge between the
vertices corresponding to matrices Bj and Bk is coloured red and is given
a solid line. If λj,k = 1, then the edge between the vertices corresponding
to matrices Bj and Bk is coloured blue and is given a dashed line. The
name ‘Babcd’ in each box corresponds to the degree sequence with respect
to dashed edges.

Graphs B1111 and B2222 are dual with respect to the exchange of solid
and dashed edges, and graph B2211 is self-dual.

Note that only graphs B1111, B2222, B3221 and B3333 are colour comple-
mentary to graphs ofAmatrices in Figure 1. The pairs of graphs (A1111,B1111),
(A2222,B2222), (A3221,B3221), and (A3333,B3333) result in Hadamard ma-
trices of order 8.

The existence of complete two-edge-coloured subgraphs. As was
noted above, the amicability / anti-amicability graph of the matrices in
{−1, 1}2×2 contains a complete two-edge-coloured subgraph containing 8
Hadamard matrices. This is a general phenomenon, as shown by the fol-
lowing theorem.

Theorem 10. If b is a power of 2, b = 2m, m > 0, the amicability / anti-
amicability graph Pb of the matrices {−1, 1}b×b has the following properties.

1. The graph Pb contains a complete two-edge-coloured graph on 2b2 ver-
tices with each vertex being a Hadamard matrix. This graph is iso-
morphic to Γm,m, the amicability / anti-amicability graph of the group
Gm,m.

2. Call two Hadamard matrices, H and H ′ of order b, Hadamard-row-
equivalent if there exists a signed permutation matrix S of order b such
that H ′ = SH. If r(b) is the number of Hadamard-row-equivalence
classes of Hadamard matrices of order b, and s(b) is the order of the
group of signed permutation matrices of order b, then the graph Pb
contains at least r(b)s(b)/(2b2) isomorphic copies of the graph Γm,m.

Proof. First, some notation. Let Sb be the group of signed permutation
matrices of order b. The real representation of the Clifford algebra Rm,m has
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a canonical basis consisting of b2 matrices in Sb. These matrices and their
negatives form the group Gm,m, as a subgroup of Sb.

We first prove statement 1. Since b = 2m, it is well-known that b is a
Hadamard order. Choose a Hadamard matrix H of order b and any signed
permutation matrix S ∈ Sb. Since S is orthogonal, we have

SH(SH)T = SHHTST = SpI(b)S
T = pI(b),

so SH is a Hadamard matrix. This is well known.
Now take A1, A2 to be members of the canonical matrix basis of the real

representation of the Clifford algebra Rm,m. Thus A1 and A2 are elements of
Sb. If

A1A
T
2 + λ1,2A2A

T
1 = 0,

then

(A1H)(A2H)T = pA1A
T
2 = −λ1,2pA2A

T
1 = −λ1,2(A2H)(A2H)T ,

that is, the Hadamard matrices A1H and A2H have the same amicability
relationship as the matrices A1 and A2. The same argument applies to any
combination of ±A1 and ±A2. Thus the set of 2b2 Hadamard matrices

Gm,mH := {AH | A ∈ Gm,m}

has an amicability / anti-amicability graph isomorphic to Γm,m.
Now for statement 2. The group Gm,m has s(b)/(2b2) disjoint cosets

within Sb. For S, T ∈ Sb with disjoint cosets Gm,mS, Gm,mT, and for some
Hadamard matrix H of order b, consider the two sets

Gm,mSH := {ASH | A ∈ Gm,m},
Gm,mTH := {ATH | A ∈ Gm,m}.

These two sets are disjoint, since the corresponding cosets are disjoint and
H is invertible. Using the argument from the proof of statement 1, we see
that each set yields an amicability / anti-amicability graph isomorphic to the
graph Γm,m.

The union of all of these s(b)/(2b2) disjoint cosets is the group Sb itself,
and the set SbH is the Hadamard-row-equivalence class containing H. Now
repeat the argument for representatives of each of the r(b) equivalence classes.
Each class yields s(b)/(2b2) disjoint cosets, giving a total of r(b)s(b)/(2b2)
disjoint sets of Hadamard matrices, each of which yields a graph isomorphic
to Γm,m.
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Corollary 11. For b = 2m, the red subgraph Pb[−1] contains at least r(b)s(b)/(2b2)
isomorphic copies of the graph Γm,m[−1], the double graph of the graph Φm.

In the light of Theorem 10, we now re-examine the case b = 2. A matrix
in {−1, 1}2×2 has only two rows and is singular if the second row is ± the
first row. There are 4 possible assignments of −1 and 1 to the first row,
and thus 8 of the 16 matrices of {−1, 1}2×2 are singular. The remaining 8
matrices are Hadamard, of the form SH, where S is one of the 22 × 2! = 8
signed permutation matrices of S2, and H is the representative matrix

H :=

[
1 1
1 −

]
.

These 8 matrices form a Hadamard row equivalence class. All of this is
well-known.

Theorem 10 says that the graph P2 contains at least r(2)s(2)/(2 × 22)
isomorphic copies of the amicability / anti-amicability graph Γ1,1. Here,
r(2) = 1 is the number of Hadamard row equivalence classes, and s(2) = 8 is
the order of S2. Thus the theorem says that the graph P2 contains at least
one isomorphic copy of Γ1,1. Our exhaustive search has found the only such
copy.

Example: 4× 4 matrices. In the case b = 4, we can form representatives
of two distinct Hadamard row equivalence classes as follows.

H :=


1 1 1 1
1 1 − −
1 − − 1
1 − 1 −

 , H ′ :=


− 1 1 1
− 1 − −
− − − 1
− − 1 −

 .
It is clear that there is no signed permutation matrix S ∈ S4 such that

SH = H ′, because the number of −1 entries in each row of H is even, the
number in each row of H ′ is odd, and the total number of {−1, 1} entries
in each row of each matrix is even. Therefore, with respect to Theorem 10,
r(4) is at least 2, and s(4), the order of S4 is 24 × 4! = 16 × 24 = 384.
Theorem 10 therefore says that the amicability / anti-amicability graph P4

contains at least 2 × 384/32 = 24 isomorphic copies of the graph Γ2,2, a
complete two-edge-coloured graph on 32 vertices. Corollary 11 says that the
anti-amicability graph P4[−1] contains at least 24 copies of the double graph
of Φ2.

An exhaustive search over the 65 536 × 65 535 = 4 294 901 760 distinct
2-multisets of matrices of the form {−1, 1}4×4 was undertaken to find anti-
amicable pairs of Hadamard matrices of order 4. The algorithm used to
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Figure 6: Hadamard matrices of order 4, edges denote anti-amicability.

obtain these 2-multisets was essentially the same as that used in the 2×2 case
above. The search program was a modified version of the Octave program
used in the 2× 2 case, run as 16 parallel jobs on a cluster of AMD Opteron
2356 CPUs, each running at 2.3 GHz, taking a total of about 260 CPU hours.
Figure 6 (plotted using the Graphviz circo program [18]) shows the pairwise
anti-amicability relationships between these Hadamard matrices. The graph,
a subgraph of the graph P2[−1], contains 24 connected components, each
of which is 12-regular on 32 vertices, in agreement with Corollary 11 and
the properties of the graph Γ2,2 described in Section 3. Specifically, as a
consequence of Corollary 11, each component is the double graph of the
graph Φ2, which was identified using networkx as the lattice graph L(4).

The search criterion was then relaxed to look for anti-amicable 2-multisets
of matrices Bj, Bk of the form {−1, 1}4×4 where BjB

T
j +BkB

T
k = 4I(2).

The resulting graph was then examined using the open source Gephi pack-
age [1]. This package reported that the graph contains 20 352 vertices and
36 864 edges, with 3552 connected components, comprising 2304 components
with 4 vertices each (isomorphic to K2,2), 1152 with 8 vertices (isomorphic
to K4,4), 72 with 16 vertices (isomorphic to K8,8), and 24 components with
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32 vertices. These last 24 components are the 24 copies of the double graph
of Φ2 ≡ L(4) seen in Figure 6.

Proof of Theorem 5. As a result of Theorem 10, we know that if n = 2m,
for every n-tuple (A1, . . . , An) of matrices given by a transversal of the
canonical matrix basis of the Clifford algebra Rm,m, there is an n-tuple
(B1, . . . , Bn) of distinct Hadamard matrices of order n, with an amicability /
anti-amicability graph isomorphic to that of (A1, . . . , An). The conditions (4)
require instead that an n-tuple of B matrices be found with an amicability
/ anti-amicability graph edge-colour-complementary to that of (A1, . . . , An).
One way to do this stems from the following result.

Lemma 12. (See also Gastineau-Hills [20, Theorem 3.4].)
Given an n-tuple of {−1, 1}b×b matrices (B1, . . . , Bn) satisfying

BjB
T
k = λj,kBkB

T
j (j 6= k),

n∑
k=1

BkB
T
k = nbI(b),

and an n-tuple of Hadamard matrices (C1, . . . , Cn) of order c, satisfying

CjC
T
k = µj,kCkC

T
j (j 6= k),

the n-tuple of matrices (B1 ⊗ C1, . . . , Bn ⊗ Cn) satisfies

(Bj ⊗ Cj)(Bk ⊗ Ck)T = λj,kµj,k(Bk ⊗ Ck)(Bj ⊗ Cj)T (j 6= k),
n∑
k=1

(Bk ⊗ Ck)(Bk ⊗ Ck)T = nbcI(bc).

Proof. For (j 6= k) we have

(Bj ⊗ Cj)(Bk ⊗ Ck)T = (BjB
T
k )⊗ (CjC

T
k )

= (λj,kBkB
T
j )⊗ (µj,kCkC

T
j )

= λj,kµj,k(Bk ⊗ Ck)(Bj ⊗ Cj)T .

Also,
n∑
k=1

(Bk ⊗ Ck)(Bk ⊗ Ck)T =
n∑
k=1

(BkB
T
k )⊗ (Ck ⊗ Ck)T

=
n∑
k=1

(BkB
T
k )⊗ cI(c)

= nbI(b) ⊗ cI(c) = nbcI(bc).
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In particular, if the n-tuple of Hadamard matrices (C1, . . . , Cn) are mu-
tually anti-amicable then µj,k = −1 and the matrices (B1⊗C1, . . . , Bn⊗Cn)
have an amicability / anti-amicability graph that is edge-colour-complementary
to that of (B1, . . . , Bn). All that is left is to find n mutually anti-amicable
Hadamard matrices. To do this, we use the argument given in the proof
of Theorem 10: given a Hadamard matrix H of order c, and n mutually
anti-amicable signed permutation matrices (S1, . . . , Sn) of the same order,
(S1H, . . . , SnH) is an n-tuple of mutually anti-amicable Hadamard matrices.

We now use the following observation:

Lemma 13. In the frame group G0,n−1, the identity and the n−1 generators
e{1−n}, . . . , e{−1} are mutually anti-amicable.

Proof. Recall that a real monomial representation of a signed group con-
sists of signed permutation matrices, which are orthogonal. Thus the anti-
amicability relationship is expressed in the context of the group G0,n−1 as

aja
−1
k = −aka−1j , equivalently, (aja

−1
k )2 = −1.

If we set an = 1, and ak = e{−k} for k from 1 to n− 1, then

(ana
−1
k )2 = (e−1{−k})

2 = e2
{−k} = −1.

(aja
−1
k )2 = e{−j}e

−1
{−k}e{−j}e

−1
{−k}

= e{−j}e{−k}e{−j}e{−k} = −e{−j}e{−j}e{−k}e{−k} = −1.

We now recall the following result from [34]. See that paper for the proof.

Lemma 14. [34, Theorem 4.3] Define

M(p, q) :=

{
dp+q

2
e+ 1, if q − p ≡ 2, 3, 4 (mod 8),

dp+q
2
e otherwise.

There is a faithful real monomial representation of the Clifford algebra Rp,q

where the matrices have order 2M(p,q).

This gives us the result we need.

Corollary 15. The set of −1, 1 matrices of order 2M(0,n−1) contains an n-
tuple of mutually anti-amicable Hadamard matrices.

30



Thus, if n is a power of 2, n = 2m, and an n-tuple (A1, . . . , An) of
{−1, 0, 1}n×n matrices is obtained by taking a transversal of the canonical
basis matrices for Rm.m, there is an algorithm to construct an n-tuple of
matrices (B1, . . . , Bn) in {−1, 1}b×b with matching λ:

1. Find a Hadamard matrix H of order n. Since n is a power of 2, the
Sylvester Hadamard matrix will do.

2. Form the n-tuple (A1H, . . . , AnH). This has the same amicability /
anti-amicability graph as (A1, . . . , An).

3. Form the n-tuple (C1, . . . , Cn) of matrices in {−1, 0, 1}c×c, where c =
2M(0,n−1), the matrices C1, . . . , Cn−1 are the canonical signed permu-
tation matrices corresponding to the Clifford algebra generators e{−1},
. . . , e{1−n}, and the matrix Cn = I(c). By Lemma 13, these n matrices
are mutually anti-amicable.

4. By Lemma 12 the n-tuple of Hadamard matrices (B1, . . . , Bn) = ((A1H)⊗
C1, . . . , (AnH)⊗Cn) of order nc matches the λ values of (A1, . . . , An),
satisfying conditions (4), and completes the constructions (G0) and
(H0).

This completes the proof.

5 Discussion

Historical context. Much of the credit for the following historical discus-
sion goes to an anonymous reviewer of an early draft of this paper.

The current paper describes and investigates one of a long line of plug-
in constructions for Hadamard matrices, extending at least as far back as
Williamson [50]. The review paper by Seberry and Yamada [46] describes
many more of these constructions, especially Williamson-type constructions
[46, p. 445 and Sections 8 and 9]. While it is a long and comprehensive
review, with a special focus on orthogonal designs and amicability, the paper
of Seberry and Yamada does not discuss anti-amicability, or mention the
work of Gastineau-Hills [19, 20].

The constructions (G0) and (H0) with conditions (4) can be viewed as
a generalization of a plug-in construction using an orthogonal design of the
form OD(n; 1, . . . , 1) with n suitable mutually amicable {−1, 1} matrices.
The difference between that construction and the one in the current paper
is that the matrices used to define the orthogonal design are mutually anti-
amicable, but conditions (4) use the parameters λj,k to allow each pair of
matrices to be either amicable or anti-amicable.
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In his paper of 1982 Gastineau-Hills describes Kronecker products of sys-
tems of orthogonal designs [20, Theorem 3.4]. This is essentially the pub-
lished version of the concepts and results of his Ph.D. thesis [19, see especially
Theorem 6.3, p. 47]. The constructions (G0) and (H0) with conditions (4)
can be viewed as being similar to a special case of the Kronecker product
construction of Gastineau-Hills. Specifically, in Section 3 it is mentioned that
conditions (4) make the n-tuple of A matrices into a special case of a regular
n-system of orthogonal designs, of order n, genus (δj,k), type (1; . . . ; 1), with
p1 = . . . = pn = 1, with λj,k = (−1)(1+δj,k), in the notation of Gastineau-Hills
[19]. The 1982 paper [20] uses this same notation, and Theorem 3.4 in that
paper gives a Kronecker product construction for systems of orthogonal de-
signs that can be made into a special case of the constructions (G0) and (H0)
with conditions (4). In particular, if we also use an n-system of orthogonal
designs of order b, genus (1 − δj,k), type (b; . . . ; b), with p1 = . . . = pn = 1,
and set all of the variables xi,1 to 1, then we obtain an n-tuple of Hadamard
matrices (B1, . . . , Bn) with λ matching that of our n-tuple of A matrices.
We then use [20, Theorem 3.4] with r = 2 to complete the construction and
obtain a Hadamard matrix.

The differences between the construction of [20, Theorem 3.4] and con-
structions (G0) and (H0) with conditions (4) are:

1. Conditions (4) ensure that the A matrices have disjoint support. This
is stronger than just being a regular n-system.

2. Conditions (4) impose a constraint on the Gram sum of the B matrices
rather than constraining them to be Hadamard matrices. This is weaker
than the n-system constraint of Gastineau-Hills [20].

Gastineau-Hills’ paper [20] cites a construction by Robinson of product de-
signs [44] as an example of the more general construction of Theorem 3.4.

Part II of Gastineau-Hills’ thesis [19] consists of a thorough classification
of quasi-Clifford algebras, each of which is essentially a direct sum of 2k

copies of a Clifford algebra for some k > 0. In Section 3 we remark that
the papers by de Launey and Smith [15], and de Launey and Kharaghani
[14], as well as Chapters 22 and 23 of de Launey and Flannery [13], examine
the finite groups underlying the Clifford algebras in some detail. In these
papers there is described the set of finite groups R(Q). The structure, and
in particular, the power-commutator presentations of these groups suggest
that these are the groups underlying Gastineau-Hills’ quasi-Clifford algebras.
A deeper examination of the relationship between the R(Q) groups and the
quasi-Clifford algebras has not yet been undertaken.
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A 1981 paper by Hammer and Seberry [25] mentions anti-amicability and
produces the following isolated example.

If X and Y are anti-amicable and

XXT + 5Y Y T = 6nI(n)

then

Z :=


X Y Y Y Y Y
Y X Y −Y −Y Y
Y Y X Y −Y −Y
Y −Y Y X Y −Y
Y −Y −Y Y X Y
Y Y −Y −Y Y X


satisfies

ZZT = 6nI(6n).

– Hammer and Seberry [25, p. 183].
This particular construction can be seen as a generalization of construc-

tions (G0) and (H0) with conditions (4). Here the A matrices are A1 := I(6)
and

A2 :=


. 1 1 1 1 1
1 . 1 − − 1
1 1 . 1 − −
1 − 1 . 1 −
1 − − 1 . 1
1 1 − − 1 .


so that A2 is not monomial. The relevant generalization of this construction
is

G :=
r∑

k=1

Bk ⊗ Ak, (G0’)
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with conditions

Aj ∗ Ak = 0 (j 6= k),
r∑

k=1

Ak ∈ {−1, 1}n×n,

AkA
T
k = akI(n),

r∑
k=1

ak = n,

AjA
T
k + λj,kAkA

T
j = 0 (j 6= k),

BjB
T
k − λj,kBkB

T
j = 0 (j 6= k),

λj,k ∈ {−1, 1},
n∑
k=1

BkB
T
k = nbI(b), (4’)

which is a generalization of the construction (G0) with conditions (4). The
paper [25] does not mention the work of Gastineau-Hills, and does not ex-
amine n-tuples of anti-amicable matrices for n larger than 2. This provides
some incentive to re-do the analysis of the current paper in the context of
this, more general construction.

Questions. We have shown that for the constructions (G0) and (H0) with
conditions (4), to construct the A matrices, it is sufficient that n is a power
of 2, and that the real monomial representations of Clifford algebras can be
used in this case. The following related questions arise.

Question 1. By Theorem 5, if n is a power of 2 and an n-tuple of A matrices
is obtained by taking a transversal of the canonical basis matrices for Rm.m

an n-tuple of B matrices can always be found to complete the constructions
(G0) and (H0), but the order of the B matrices constructed in the proof of
the theorem is quite large. Can this order be improved?

Recall that, for n = 2m, by Theorem 10, the set {−1, 1}n×n contains at
least one isomorphic copy of the whole graph Γm,m, where each vertex is a
Hadamard matrix. For the constructions (G0) and (H0) to work for some
particular n-tuple (A1, . . . , An), all that is needed is that the full amicability
/ anti-amicability graph Γm,m of the group Gm,m contains a subgraph on
n vertices that is edge-colour-complementary to that of (A1, . . . , An). This
would then imply that there was at least one isomorphic copy of this sub-
graph, whose vertices are Hadamard matrices of order n. These vertices
would be the n-tuple of B matrices needed to complete the constructions
(G0) and (H0).
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Now recall that in the cases where m = 1, 2, 3 we found a permutation
of the canonical matrix basis of the Clifford algebra Rm,m that mapped each
such transversal graph onto its edge-colour-complement (Property 1 in Sec-
tion 3 above). This implies the weaker Property 3: “For the Clifford algebra
Rm,m, if a graph T exists amongst the transversal graphs, then so does at
least one graph with edge colours complementary to those of T .” If Prop-
erty 3 is true for all m ≥ 1, this is sufficient to complete the constructions
(G0) and (H0) with an n-tuple of B matrices of order n. This provides some
motivation for the following.

Conjecture. If n is a power of 2, the constructions (G0) and (H0) with
conditions (4) can always be completed, in the following sense. If an n-tuple
of A matrices which produce a particular λ is obtained by taking a transversal
of canonical basis matrices of the Clifford algebra Rm,m, an of n-tuple of B
matrices of order n with a matching λ can always be found.

Question 2. For the constructions (G0) and (H0) with conditions (4), is it
necessary that n is a power of 2 [19, Chapters 16, 17]?

We recap conditions (4), splitting these into sub-conditions for closer
examination.

Aj ∗ Ak = 0 (j 6= k),
n∑
k=1

Ak ∈ {−1, 1}n×n, (4a)

AkA
T
k = I(n), (4b)

AjA
T
k + λjkAkA

T
j = 0 (j 6= k), (4c)

So, each Ak is a signed permutation matrix. If we multiply each Ak
on the left by some fixed signed permutation matrix S, we permute and
change the signs of the all the corresponding rows of each Ak, so (4a) is still
satisfied. Since SST = I(n), (4b) and (4c) are also satisfied, and in particular,
multiplication by S does not affect the values of λj,k in (4c). Similarly, if we
multiply each Ak on the right by S. We therefore have an equivalence class
of n-tuples under these two types of transformation, and without loss of
generality, can set A1 = I(n). In this representative case, each of the other
Ak, k > 1 must be symmetric or skew, with zero diagonal.

If we now take a linear combination of the corresponding permutation
matrices Pk = |Ak|, we have a symmetric Latin square with constant diago-
nal. This type of Latin square must have even order. Sequence A003191 in
Sloane’s Online Encyclopedia of Integer Sequences [48] lists the number of
such Latin squares for each even order. The entire listed sequence is

1, 1, 6, 5972, 1 225 533 120,
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corresponding to orders 2, 4, 6, 8 and 10, respectively. The sole examples
of orders 2 and 4 can be obtained via the Clifford algebra representation, as
per Figure 7.

[
a b
b a

] 
a b c d
b a d c
c d a b
d c b a


Figure 7: Symmetric Latin squares with constant diagonal: orders 2 and 4.

The 6 cases of order 6 are as per Figure 8.


a b c d e f
b a f e c d
c f a b d e
d e b a f c
e c d f a b
f d e c b a




a b c d e f
b a f c d e
c f a e b d
d c e a f b
e d b f a c
f e d b c a




a b c d e f
b a e c f d
c e a f d b
d c f a b e
e f d b a c
f d b e c a




a b c d e f
b a e f d c
c e a b f d
d f b a c e
e d f c a b
f c d e b a




a b c d e f
b a d e f c
c d a f b e
d e f a c b
e f b c a d
f c e b d a




a b c d e f
b a d f c e
c d a e f b
d f e a b c
e c f b a d
f e b c d a



Figure 8: Symmetric Latin squares with constant diagonal: order 6.

Recalling condition (4c),

AjA
T
k + λjkAkA

T
j = 0 (j 6= k),

we see that AjA
T
k must either be symmetric or skew, and so each correspond-

ing product of permutation matrices PjP
T
k for our representative case must

be symmetric, for each pair j, k > 1. If we enumerate all six cases of sym-
metric Latin squares of order 6 with constant diagonal, we find that none of
these cases yields permutation matrices P2, P3 with P2P

T
3 symmetric.

For general even order n, we see that there must be a set of n − 1 per-
mutation matrices which each represent a fixed-point-free involution on the
set of n symbols, and that all n− 1 of these involutions must commute. Fur-
ther, each product PjPk = PjP

T
k must again be a fixed-point-free involution,

because the supports of Pj and Pk are disjoint.
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A deeper analysis of the general case is yet to be performed, although
it is quite obvious that the more general construction (G0’) with conditions
(4’) does allow n = 6 as per the example of Hammer and Seberry [25].

Question 3. Based on the tables listed in the Masters and PhD theses of Ó
Catháin [39, 40], the frame groups Gm,m we use to construct our A matrices
are not Hadamard groups in the sense of Ito [31, 17], yet these frame groups
arise naturally in the work of de Launey and Smith [15, Section 2], de Launey
and Kharaghani [14, Section 2.2], and de Launey and Flannery [13]. What
is the reason for this seeming discrepancy, and are there cases where the
construction described in the current paper does not give a matrix equivalent
to a cocyclic Hadamard matrix?

This question is yet to be addressed.

Prospects. The matrices of {−1, 1}2×2 were investigated via an exhaustive
search using naive methods. A search for pairs of {−1, 1}4×4 matrices was
also conducted, but no attempt was made to obtain larger n-tuples. To
investigate higher orders b and larger n-tuples, a more sophisticated strategy
is needed. Perhaps the way to proceed is to first find multisets of size n of B
matrices obeying the Gram constraint of (4), and then examine the multiset
for pairwise amicability and anti-amicability. The methods of Osborn [41]
and some of the software techniques of Brent [6] could be used as the basis for
such a search. Surely, more work is needed before the graphs of amicability
and anti-amicability can be truly said to be well understood.
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