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Kronecker product constructions (1)

We aim to find

Ape{-1,0,1}""  Bpe{-1,1}"", ke{l,...,n},

such that
G=> Bpr®A, GGT =nplyy,, (G1)
k=1

n
H= ZAk ® By, HH" =npl
k=1

np)- (Hl)

(Gastineau-Hills 1980, 1982)
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Kronecker product constructions (2)

Since

n n

=> A;®B;Y Al @B,
j=1 k=1
we impose the stronger conditions
n
T T
> AjAT @ B;B] = npl,,,

J'=1

n
Z Z I'eB;BL + 4,AT @ B,.BT) = 0. (H2)
J=1k=j+1

Similarly, (G2) with Kronecker product reversed.

(Gastineau-Hills 1980, 1982)
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Kronecker product constructions (3)

Stronger conditions:

n
ZAICA% by BkBIZ = np[(np)a
k=1
AjAL ® BiBl + AkA] @ ByB] =0 (j#k).  (H3)

Similarly, (G3) with Kronecker product reversed.

(Gastineau-Hills 1980, 1982)
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Kronecker product constructions (4)

Still stronger conditions (e is Hadamard product):

AjeAL,=0 (j#Ek), ZAke{ll}"X”
AkAk =I(n),

n
ZB’“B’Z’ = nplp),
k=1

AAL + N ARAT =0 (j # k),
BBl — \jxBiB] =0 (j #k),
jk S {_171}' (4)

(Gastineau-Hills 1980, 1982)
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Example: Sylvester-type construction

1 0 01
A1=|:0 :|, A2=|:1 0:| #)\12:1

= Weneed BB + ByBj =2pl,), BiBj — BBl =0,

e.g.
(11 1 -
11 1 — 11 1 -
1 - - - 1 — 1 1
G = 11 - 1}’ H= 1 - - -
1 - 11 11 — 1
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Example: Anti-amicable construction

1 0 01
A1—|:0 1:|, A2—|:1 0:| :>)\12——1

= We need BB + B,BI = 2ply, B1Bj + ByB] =0,

e.g.
~ 1 - _
R —- 1 - -
- — — 1 1 1 — 1
G= 1 - 1 11|’ H=\_ - 1
-1 1 1 — 11 1

(Gastineau-Hills 1980, 1982)
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More examples

Williamson-like construction (uses 4 amicable B matrices):

Al = I(4), A% =—A (k > 1); )\]k =1 (.7 # k)

Octonion-like construction (uses 8 amicable B matrices):

A= I(S)a A{ = —Ag (k' > 1), )\jk =1 (] 7é k)

(Gastineau-Hills 1980, 1982)
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Hurwitz-Radon limit

A theorem of Hurwitz and Radon puts an upper limit of 8 on the
order n such that

AjeAL,=0 (j#k), ZAke{ll}"X”
k=1

ALAL =11,
AJAL + ARAT =0 (j #k).

(Geramita and Pullman 1974)
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Recap: ingredients

We need n-tuples (A1,...,A,), (Bi,...,By), with
Ak € {_1707 1}n><n7
Bk € {_17 1}p><pa

satisfying the conditions (4).

For the A matrices, we look at signed groups, 2-cocycles and
Clifford algebras.

For the B matrices, we look at graphs of amicability and
anti-amicability.
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Signed groups and 2-cocycles

Signed group is an extension E of Zy = {—1,1} by G,

Vv :GXG— 2y E=(s8), s€Zs geaq,

(s,8)(t,h) = (st ¥(g, h),gh),

(r,£)((s,g)(t,h)) = (rst ¥(f, gh)y(g, h), fgh)
=((r,£)(s,8))(t,h) = (rst (£, g)i(fg, h), fgh).

So 1) is a 2-cocycle.

(Craigen 1995; Horadam and de Launey 1993)
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Clifford algebras via signed groups (1)

Gp,q is extension of Zy by Z5™, defined by the signed group
presentation

Gp,q = < — 1, e{k} (k S Sp,q) ‘
ek = —eqrreqy) (J # ’f)>7

where S, ;== {—¢q,...,—1,1,...,p}. Gy q| = 21HPFa.

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Clifford algebras via signed groups (2)

Multiplication in Z5 is isomorphic to XOR of bit vectors, or
symmetric set difference of subsets of S,
so elements of Gy, , can be written as ey, T'C S} 4.

Gyp,q extends to the real Clifford algebra R, 4, of dimension 2774,
Forx e Ry,

X = E rrer.

T'CSp,q

2PT4 basis elements ep; —1ley in G, 4 is identified with —1 in R.

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Remreps for G,,,, and R,,,, (1)

Real monomial representations for G, ,, and R, ,,, are generated
by Kronecker products of the 2 x 2 matrices

0 — 01
. S N U]

These representations are faithful: R, is isomorphic to R2"*2™.
Thus R2"*2™ has a basis consisting of 4™ real monomial matrices.

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Remreps for G,,,, and R,,,, (2)

Pairs of basis elements of R,,, ,,, either commute or anticommute.
Remreps of basis elements of R,;, ,,, are either symmetric or skew,
and so remreps A;, A}, satisfy

AkA{ = I(Qm), A]AZ + )\jkAkAf =0 (j #* k), >\jk S {—1, 1}.

We can choose n := 2™ of these such that
AjeAL,=0 (j#k), ZAke{ 1,1},

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Anti-amicable pairs of {—1,1} matrices

Given the Ay, this fixes Ajp.

We now must find an n-tuple of {—1,1} matrices with a
complementary graph of amicability and anti-amicability.

For anti-amicable pairs of matrices in {—1,1}P*P,
B1Bj + ByB{ =0,

therefore BlBg is skew, so p must be even.

(Gastineau-Hills 1980, 1982)
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