Constructions for Hadamard matrices, Clifford algebras, and their relation to amicability - anti-amicability graphs

Paul Leopardi

Mathematical Sciences Institute, Australian National University. Presented at 35ACCMCC, Monash University, 2011.

5 December 2011, revised 6 December 2011

Acknowledgements

Robert Craigen, Kathy Horadam,

Judy-anne Osborn, Jennifer Seberry.
Australian Research Council.

Australian Mathematical Sciences Institute.

Australian National University.

Topics

- Kronecker product constructions for Hadamard matrices
- Signed groups, 2-cocycles and Clifford algebras
- Graphs of amicability and anti-amicability

Kronecker product constructions (1)

We aim to find

$$
A_{k} \in\{-1,0,1\}^{n \times n}, \quad B_{k} \in\{-1,1\}^{p \times p}, \quad k \in\{1, \ldots, n\},
$$

such that

$$
\begin{array}{ll}
G=\sum_{k=1}^{n} B_{k} \otimes A_{k}, & G G^{T}=n p I_{(n p)}, \\
H & =\sum_{k=1}^{n} A_{k} \otimes B_{k}, \quad H H^{T}=n p I_{(n p)} . \tag{H1}
\end{array}
$$

(Gastineau-Hills 1980, 1982)

Kronecker product constructions (2)

Since

$$
H H^{T}=\sum_{j=1}^{n} A_{j} \otimes B_{j} \sum_{k=1}^{n} A_{k}^{T} \otimes B_{k}^{T}
$$

we impose the stronger conditions

$$
\begin{gather*}
\sum_{j=1}^{n} A_{j} A_{j}^{T} \otimes B_{j} B_{j}^{T}=n p I_{(n p)}, \\
\sum_{j=1}^{n} \sum_{k=j+1}^{n}\left(A_{j} A_{k}^{T} \otimes B_{j} B_{k}^{T}+A_{k} A_{j}^{T} \otimes B_{k} B_{j}^{T}\right)=0 \tag{H2}
\end{gather*}
$$

Similarly, (G2) with Kronecker product reversed.
(Gastineau-Hills 1980, 1982)

Kronecker product constructions (3)

Stronger conditions:

$$
\begin{align*}
& \sum_{k=1}^{n} A_{k} A_{k}^{T} \otimes B_{k} B_{k}^{T}=n p I_{(n p)}, \\
& \quad A_{j} A_{k}^{T} \otimes B_{j} B_{k}^{T}+A_{k} A_{j}^{T} \otimes B_{k} B_{j}^{T}=0 \quad(j \neq k) .
\end{align*}
$$

Similarly, (G3) with Kronecker product reversed.
(Gastineau-Hills 1980, 1982)

Kronecker product constructions (4)

Still stronger conditions (\bullet is Hadamard product):

$$
\begin{align*}
A_{j} \bullet A_{k}=0 \quad(j \neq k), & \sum_{k=1}^{n} A_{k} \in\{-1,1\}^{n \times n}, \\
A_{k} A_{k}^{T}= & I_{(n)}, \\
\sum_{k=1}^{n} B_{k} B_{k}^{T}= & n p I_{(p)}, \\
A_{j} A_{k}^{T}+\lambda_{j k} A_{k} A_{j}^{T} & =0 \quad(j \neq k), \\
B_{j} B_{k}^{T}-\lambda_{j k} B_{k} B_{j}^{T} & =0 \quad(j \neq k), \\
\lambda_{j k} & \in\{-1,1\} . \tag{4}
\end{align*}
$$

Example: Sylvester-type construction

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \Rightarrow \lambda_{12}=1 \\
& \quad \Rightarrow \text { We need } \quad B_{1} B_{1}^{T}+B_{2} B_{2}^{T}=2 p I_{(p)}, \quad B_{1} B_{2}^{T}-B_{2} B_{1}^{T}=0
\end{aligned} \text { e.g. }
$$

$$
\begin{aligned}
B_{1} & =\left[\begin{array}{cc}
1 & 1 \\
1 & -
\end{array}\right], \quad B_{2}=\left[\begin{array}{cc}
1 & - \\
1 & 1
\end{array}\right], \\
G & =\left[\begin{array}{cccc}
1 & 1 & 1 & - \\
1 & - & - & - \\
1 & 1 & - & 1 \\
1 & - & 1 & 1
\end{array}\right], \quad H=\left[\begin{array}{cccc}
1 & 1 & 1 & - \\
1 & - & 1 & 1 \\
1 & - & - & - \\
1 & 1 & - & 1
\end{array}\right] .
\end{aligned}
$$

Example: Anti-amicable construction

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \Rightarrow \lambda_{12}=-1 \\
& \Rightarrow \text { We need } \quad B_{1} B_{1}^{T}+B_{2} B_{2}^{T}=2 p I_{(p)}, \quad B_{1} B_{2}^{T}+B_{2} B_{1}^{T}=0
\end{aligned}
$$

e.g.

$$
\begin{aligned}
B_{1} & =\left[\begin{array}{cc}
- & 1 \\
1 & 1
\end{array}\right], \quad B_{2}=\left[\begin{array}{cc}
- & - \\
- & 1
\end{array}\right], \\
G & =\left[\begin{array}{cccc}
- & - & 1 & - \\
- & - & - & 1 \\
1 & - & 1 & 1 \\
- & 1 & 1 & 1
\end{array}\right], \quad H=\left[\begin{array}{cccc}
- & 1 & - & - \\
1 & 1 & - & 1 \\
- & - & - & 1 \\
- & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

(Gastineau-Hills 1980, 1982)

More examples

Williamson-like construction (uses 4 amicable B matrices):

$$
A_{1}=I_{(4)}, \quad A_{k}^{T}=-A_{k} \quad(k>1), \quad \lambda_{j k}=1 \quad(j \neq k)
$$

Octonion-like construction (uses 8 amicable B matrices):

$$
A_{1}=I_{(8)}, \quad A_{k}^{T}=-A_{k} \quad(k>1), \quad \lambda_{j k}=1 \quad(j \neq k)
$$

(Gastineau-Hills 1980, 1982)

Hurwitz-Radon limit

A theorem of Hurwitz and Radon puts an upper limit of 8 on the order n such that

$$
\begin{gathered}
A_{j} \bullet A_{k}=0 \quad(j \neq k), \quad \sum_{k=1}^{n} A_{k} \in\{-1,1\}^{n \times n} \\
A_{k} A_{k}^{T}=I_{(n)} \\
A_{j} A_{k}^{T}+A_{k} A_{j}^{T}=0 \quad(j \neq k)
\end{gathered}
$$

(Geramita and Pullman 1974)

Recap: ingredients

We need n-tuples $\left(A_{1}, \ldots, A_{n}\right),\left(B_{1}, \ldots, B_{n}\right)$, with

$$
\begin{aligned}
& A_{k} \in\{-1,0,1\}^{n \times n}, \\
& B_{k} \in\{-1,1\}^{p \times p}
\end{aligned}
$$

satisfying the conditions (4).
For the A matrices, we look at signed groups, 2-cocycles and Clifford algebras.

For the B matrices, we look at graphs of amicability and anti-amicability.

Signed groups and 2-cocycles

Signed group is an extension E of $\mathbb{Z}_{2} \equiv\{-1,1\}$ by G,

$$
\begin{aligned}
& \psi: G \times G \rightarrow \mathbb{Z}_{2}, E=(s, \mathbf{g}), s \in \mathbb{Z}_{2}, \mathbf{g} \in G \\
& (s, \mathbf{g})(t, \mathbf{h})=(\text { st } \psi(\mathbf{g}, \mathbf{h}), \mathbf{g h}), \\
& (r, \mathbf{f})((s, \mathbf{g})(t, \mathbf{h}))=(r s t \psi(\mathbf{f}, \mathbf{g h}) \psi(\mathbf{g}, \mathbf{h}), \mathbf{f g h}) \\
= & ((r, \mathbf{f})(s, \mathbf{g}))(t, \mathbf{h})=(r s t \psi(\mathbf{f}, \mathbf{g}) \psi(\mathbf{f}, \mathbf{h}), \mathbf{f g h}) .
\end{aligned}
$$

So ψ is a 2-cocycle.
(Craigen 1995; Horadam and de Launey 1993)

Clifford algebras via signed groups (1)

$\mathbb{G}_{p, q}$ is extension of \mathbb{Z}_{2} by \mathbb{Z}_{2}^{p+q}, defined by the signed group presentation

$$
\begin{aligned}
& \mathbb{G}_{p, q}:=\langle-1, \mathbf{e}_{\{k\}}\left(k \in S_{p, q}\right) \mid \\
& \mathbf{e}_{\{k\}}^{2}=-1(k<0), \quad \mathbf{e}_{\{k\}}^{2}=1(k>0), \\
&\left.\mathbf{e}_{\{j\}} \mathbf{e}_{\{k\}}=-\mathbf{e}_{\{k\}} \mathbf{e}_{\{j\}}(j \neq k)\right\rangle,
\end{aligned}
$$

where $S_{p, q}:=\{-q, \ldots,-1,1, \ldots, p\} . \quad\left|\mathbb{G}_{p, q}\right|=2^{1+p+q}$.
(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)

Clifford algebras via signed groups (2)

Multiplication in \mathbb{Z}_{2}^{p+q} is isomorphic to XOR of bit vectors, or symmetric set difference of subsets of $S_{p, q}$, so elements of $\mathbb{G}_{p, q}$ can be written as $\pm \mathbf{e}_{T}, T \subset S_{p, q}$.
$\mathbb{G}_{p, q}$ extends to the real Clifford algebra $\mathbb{R}_{p, q}$, of dimension 2^{p+q}. For $\mathbf{x} \in \mathbb{R}_{p, q}$,

$$
\mathbf{x}=\sum_{T \subset S_{p, q}} x_{T} \mathbf{e}_{T}
$$

2^{p+q} basis elements $\mathbf{e}_{T} ;-1 \mathbf{e}_{\emptyset}$ in $\mathbb{G}_{p, q}$ is identified with -1 in \mathbb{R}.

[^0]
Remreps for $\mathbb{G}_{m, m}$ and $\mathbb{R}_{m, m}$ (1)

Real monomial representations for $\mathbb{G}_{m, m}$ and $\mathbb{R}_{m, m}$ are generated by Kronecker products of the 2×2 matrices

$$
I_{(2)}, \quad J:=\left[\begin{array}{cc}
0 & - \\
1 & 0
\end{array}\right], \quad K:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

These representations are faithful: $\mathbb{R}_{m, m}$ is isomorphic to $\mathbb{R}^{2^{m} \times 2^{m}}$. Thus $\mathbb{R}^{2^{m} \times 2^{m}}$ has a basis consisting of 4^{m} real monomial matrices.
(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)

Remreps for $\mathbb{G}_{m, m}$ and $\mathbb{R}_{m, m}$ (2)

Pairs of basis elements of $\mathbb{R}_{m, m}$ either commute or anticommute. Remreps of basis elements of $\mathbb{R}_{m, m}$ are either symmetric or skew, and so remreps A_{j}, A_{k} satisfy

$$
A_{k} A_{k}^{T}=I_{\left(2^{m}\right)}, \quad A_{j} A_{k}^{T}+\lambda_{j k} A_{k} A_{j}^{T}=0 \quad(j \neq k), \quad \lambda_{j k} \in\{-1,1\} .
$$

We can choose $n:=2^{m}$ of these such that

$$
A_{j} \bullet A_{k}=0 \quad(j \neq k), \quad \sum_{k=1}^{n} A_{k} \in\{-1,1\}^{n \times n}
$$

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)

Anti-amicable pairs of $\{-1,1\}$ matrices

Given the A_{k}, this fixes $\lambda_{j k}$.
We now must find an n-tuple of $\{-1,1\}$ matrices with a complementary graph of amicability and anti-amicability.

For anti-amicable pairs of matrices in $\{-1,1\}^{p \times p}$,

$$
B_{1} B_{2}^{T}+B_{2} B_{1}^{T}=0
$$

therefore $B_{1} B_{2}^{T}$ is skew, so p must be even.
(Gastineau-Hills 1980, 1982)

$\{-1,1\}^{2 \times 2}$, Amicable, Anti-amicable

Hadamard matrices, Clifford algebras, and amicability - anti-amicability graphs

- Graphs of amicability and anti-amicability

$\{-1,1\}^{2 \times 2}, B_{1} B_{1}^{T}+B_{2} B_{2}^{T}=4 I_{(2)}$

- Graphs of amicability and anti-amicability

$$
\{-1,1\}^{2 \times 2}, B_{1} B_{1}^{T}=B_{2} B_{2}^{T}=2 I_{(2)}
$$

L Graphs of amicability and anti-amicability

$\{-1,1\}^{2 \times 2}, B_{1} B_{1}^{T}+B_{2} B_{2}^{T}+B_{3} B_{3}^{T}+B_{4} B_{4}^{T}=8 I_{(2)}$

$\{-1,1\}^{2 \times 2}, B_{1} B_{1}^{T}+B_{2} B_{2}^{T}+B_{3} B_{3}^{T}+B_{4} B_{4}^{T}=8 I_{(2)}$

[^0]: (Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)

