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Abstract. This paper examines a pair of bent functions on Z2m
2 and

their relationship to a necessary condition for the existence of an auto-
morphism of an edge-coloured graph whose colours are defined by the
properties of a canonical basis for the real representation of the Clifford
algebra Rm,m. Some other necessary conditions are also briefly examined.

1 Introduction

A recent paper [7] constructs a sequence of edge-coloured graphs ∆m (m > 1)
with two edge colours, and makes the conjecture that for m > 1, there is an
automorphism of ∆m that swaps the two edge colours. This conjecture can be
refined into the following question.

Question 1. Consider the sequence of edge coloured graphs ∆m (m > 1) as
defined in [7], each with red subgraph ∆m[−1], and blue subgraph ∆m[1]. For
which m > 1 is there an automorphism of ∆m that swaps the subgraphs ∆m[−1]
and ∆m[1]?

Considering that it is known that ∆m[−1] is a strongly regular graph, a more
general question is:

Question 2. For which parameters (n, k, λ, µ) is there a an edge coloured graph
Γ on n vertices, with two edge colours, red (with subgraph Γ [−1]) and blue (with
subgraph Γ [1]), such that the red subgraph Γ [−1] is a strongly regular graph
with parameters (n, k, λ, µ), and such that there exists an automorphism of Γ
that swaps Γ [−1] with Γ [1]?

These questions were asked (in a slightly different form) at the workshop
on “Algebraic design theory with Hadamard matrices” in Banff in July 2014.
This paper examines some of the necessary conditions for the graph ∆m to
have an automorphism as per Question 1. Question 2 remains open for future
investigation.

Considering that ∆m[−1] is a strongly regular graph, the first necessary con-
dition is that ∆m[1] is also a strongly regular graph, with the same parameters.
This is proven as Theorem 22 in Section 5. Some other necessary conditions are
addressed in Section 6.
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2 A monomial representation and a related bent function

The following definitions and results appear in the paper on Hadamard matrices
and Clifford algebras [7], and are presented here for completeness, since they
are used below. Further details and proofs can be found in that paper, unless
otherwise noted.

The signed group Gp,q of order 21+p+q is extension of Z2 by Zp+q
2 , defined

by the signed group presentation

Gp,q :=

〈
e{k} (k ∈ Sp,q) |

e2
{k} = −1 (k < 0), e2

{k} = 1 (k > 0),

e{j}e{k} = −e{k}e{j} (j 6= k)

〉
,

where Sp,q := {−q, . . . ,−1, 1, . . . , p}.
The following construction of the real monomial representation P (Gm,m) of

the group Gm,m is used in [7].
The 2× 2 orthogonal matrices

E1 :=

[
. −
1 .

]
, E2 :=

[
. 1
1 .

]
generate P (G1,1), the real monomial representation of group G1,1. The cosets of
{±I} ≡ Z2 in P (G1,1) are ordered using a pair of bits, as follows.

0↔ 00↔ {±I},
1↔ 00↔ {±E1},
2↔ 10↔ {±E2},
3↔ 11↔ {±E1E2}.

For m > 1, the real monomial representation P (Gm,m) of the group Gm,m

consists of matrices of the form G1 ⊗ Gm−1 with G1 in P (G1,1) and Gm−1 in
P (Gm−1,m−1). The cosets of {±I} ≡ Z2 in P (Gm,m) are ordered by concatena-
tion of pairs of bits, where each pair of bits uses the ordering as per P (G1,1),
and the pairs are ordered as follows.

0↔ 00 . . . 00↔ {±I},

1↔ 00 . . . 01↔ {±I⊗(m−1)(2) ⊗ E1},

2↔ 00 . . . 10↔ {±I⊗(m−1)(2) ⊗ E2},

. . .

22m − 1↔ 11 . . . 11↔ {±(E1E2)⊗m}.

(Here I(2) is used to distinguish this 2 × 2 unit matrix from the 2m × 2m unit
matrix I.) In this paper, this ordering is called the Kronecker product ordering
of the cosets of {±I} in P (Gm,m).
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The Kronecker product ordering of the canonical basis matrices of P (Rm,m)
the real monomial representation of the Clifford algebra Rm,m is given by an
ordered transversal of {±I} ≡ Z2 in P (Gm,m), using the Kronecker product
ordering. For example, (I,E1,E2,E1E2) is the Kronecker product ordering of
the canonical basis matrices of P (R1,1).

Definition 3. For some transversal of Z2 in P (Gm,m), in the Kronecker product
ordering, we define a function γm : Z22m → P (Gm,m) to choose the correspond-
ing canonical basis matrix for P (Rm,m). The Kronecker product ordering then
defines a corresponding function on Z2m

2 , which we also call γm. For example,
γ1(1) = γ1(01) := E1.

We recall here a number of well-known properties of the representation
P (Gm,m).

Lemma 4. The group Gm,m and its real monomial representation P (Gm,m)
satisfy the following properties.

1. Pairs of elements of Gm,m (and therefore P (Gm,m)) either commute or anti-
commute: for g, h ∈ Gm,m, either hg = gh or hg = −gh.

2. The matrices E ∈ P (Gm,m) are orthogonal: EET = ETE = I.
3. The matrices E ∈ P (Gm,m) are either symmetric and square to give I or

skew and square to give −I: either ET = E and E2 = I or ET = −E and
E2 = −I.

The following properties of the diagonal elements of P (Gm,m) are less well-
known.

Lemma 5. The set of diagonal matrices Dm ⊂ P (Gm,m) forms a subgroup of
order 2m+1 of P (Gm,m), consisting of the union of the following cosets of {±I},
listed in Kronecker product order.

00 . . . 00↔ {±I},

00 . . . 11↔ {±I⊗(m−1)(2) ⊗ E1E2},

. . .

11 . . . 1100↔ {±(E1E2)⊗(m−1) ⊗ I(2)},
11 . . . 11↔ {±(E1E2)⊗m}.

Each coset of Dm in P (Gm,m) consists of a set of 2m+1 monomial matrices, all
of which have the same support.

Definition 6. We use the basis element selection function γm of Definition 3
to define the sign-of-square function σm : Z2m

2 → Z2 as

σm(i) :=

{
1↔ γm(i)2 = −I
0↔ γm(i)2 = I,

for all i in Z2m
2 .



4

Since each γm(i) is orthogonal (from Lemma 4), σm(i) = 1 if and only if
γm(i) is skew.

Definition 7. [6, p. 74].
A Boolean function f : Zm

2 → Z2 is bent if its Hadamard transform has
constant magnitude. Specifically:

1. The Sylvester Hadamard matrix Hm, of order 2m, is defined by

H1 :=

[
1 1
1 −

]
,

Hm := Hm−1 ⊗H1, for m > 1.

2. For a Boolean function f : Zm
2 → Z2, define the vector f by

f := [(−1)f [0], (−1)f [1], . . . , (−1)f [2
m−1]]T ,

where the value of f [i], i ∈ Z2m is given by the value of f on the binary digits
of i.

3. In terms of these two definitions, the Boolean function f : Zm
2 → Z2 is bent

if ∣∣Hmf
∣∣ = C[1, . . . , 1]T .

for some constant C.

The following lemma is proven in [7].

Lemma 8. The function σm is a bent function on Z2m
2 .

3 A second bent function

The basis element selection function γm also gives rise to a second function, τm
on Z22m as follows.

Definition 9. We define the non-diagonal-symmetry function τm on Z22m and
Z2m
2 as follows.

For i in Z2
2:

τ1(i) :=

{
1 if i = 10, so that γ1(i) = ±E2,

0 otherwise.

For i in Z2m−2
2 :

τm(00� i) := τm−1(i),

τm(01� i) := σm−1(i),

τm(10� i) := σm−1(i) + 1,

τm(11� i) := τm−1(i).

where � denotes concatenation of bit vectors, and σ is the sign-of-square func-
tion, as above.



5

It is easy to verify that τm(i) = 1 if and only if γm(i) is symmetric but not
diagonal. This can be checked directly for τ1. For m > 1 it results from properties
of the Kronecker product of square matrices, specifically that (A⊗B)T = AT ⊗
BT , and that A⊗B is diagonal if and only if both A and B are diagonal.

The first main result of this paper is the following.

Theorem 10. The function τm is a bent function on Z2m
2 .

The proof of Theorem 10 uses the following result, due to Tokareva [11], and
stemming from the work of Canteaut, Charpin and others [4, Theorem V.4][5,
Theorem 2].

Lemma 11. [11, Theorem 1] If a binary function f on Z2m
2 can be decomposed

into four functions f0, f1, f2, f3 on Z2m−2
2 as

f(00� i) =: f0(i), f(01� i) =: f1(i),

f(10� i) =: f2(i), f(11� i) =: f3(i),

where all four functions are bent, with dual functions such that f̃0+ f̃1+ f̃2+ f̃3 =
1, then f is bent.

Proof of Theorem 10. In Lemma 11, set f0 = f3 := τm−1, f1 = σm−1, f2 =
σm−1 + 1. Clearly, f̃0 = f̃3. Also, f̃2 = f̃1 + 1, since Hm−1[f2] = −Hm−1[f1].
Therefore f̃0 + f̃1 + f̃2 + f̃3 = 1. Thus, these four functions satisfy the premise
of Lemma 11, as long as both σm−1 and τm−1 are bent.

It is known that σm is bent for all m. It is easy to show that τ1 is bent,
directly from its definition. Therefore τm is bent. ut

4 Bent functions and Hadamard difference sets

The following well known properties of Hadamard difference sets and bent func-
tions are noted in [7].

Definition 12. [6, pp. 10 and 13].
The k-element set D is a (v, k, λ, n) difference set in an abelian group G of

order v if for every non-zero element g in G, the equation g = di−dj has exactly
λ solutions (di, dj) with di, dj in D. The parameter n := k − λ. A (v, k, λ, n)
difference set with v = 4n is called a Hadamard difference set.

Lemma 13. [6, Remark 2.2.7] [8, 9]. A Hadamard difference set has parameters
of the form

(v, k, λ, n) = (4N2, 2N2 −N,N2 −N,N2)

or (4N2, 2N2 +N,N2 +N,N2).

Lemma 14. [6, Theorem 6.2.2] The Boolean function f : Zm
2 → Z2 is bent if

and only if D := f−1(1) is a Hadamard difference set.
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Together, these properties, along with Lemma 8 and Theorem 10, are used
here to prove the following result.

Theorem 15. The sets σ−1m (1) and τ−1m (1) are both Hadamard difference sets,
with the same parameters

(vm, km, λm, nm) = (4m, 22m−1 − 2m−1, 22m−2 − 2m−1, 22m−2).

Proof. Both σm and τm are bent functions, as per Lemma 8 and Theorem 10
respectively. Therefore, by Lemma 14, both σ−1m (1) and τ−1m (1) are Hadamard
difference sets. In both cases, the relevant abelian group is Z2m

2 , with order 4m.
Thus in Lemma 13 we must set N = 2m−1 to obtain that either

(vm, km, λm, nm) = (4m, 22m−1 − 2m−1, 22m−2 − 2m−1, 22m−2) or

(vm, km, λm, nm) = (4m, 22m−1 + 2m−1, 22m−2 + 2m−1, 22m−2).

Since σm(i) = 1 if and only if γm(i) is skew, and τm(i) = 1 if and only if γm(i)
is symmetric but not diagonal, not only are these conditions mutually exclusive,
but also, for all m > 1, the number of i for which σm(i) = τm(i) = 0 is positive.
These are the i for which γm(i) is diagonal. Thus km = 22m−1 − 2m−1 rather
than 22m−1 + 2m−1. The result follows immediately. ut

As a check, the parameters km can also be calculated directly, using the recursive
definitions of each of σm and τm.

5 Bent functions and strongly regular graphs

This section examines the relationship between the bent functions σm and τm
and the subgraphs ∆m[−1] and ∆m[1] mentioned above. First we revise some
known properties of Cayley graphs and strongly regular graphs, as noted in the
previous paper on Hadamard matrices and Clifford algebras [7], including the
result of Bernasconi and Codenotti [1] on the relationship between bent functions
and strongly regular graphs.

First we recall a special case of the definition of a Cayley graph.

Definition 16. The Cayley graph of a binary function f : Zm
2 → Z2 is the

undirected graph with adjacency matrix F given by Fi,j = f(gi + gj), for some
ordering (g1, g2, . . .) of Zm

2 .

Now, the definition of a strongly regular graph.

Definition 17. [2, 3, 10]. A simple graph Γ of order v is strongly regular with
parameters (v, k, λ, µ) if

– each vertex has degree k,
– each adjacent pair of vertices has λ common neighbours, and
– each nonadjacent pair of vertices has µ common neighbours.
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The result of Bernasconi and Codenotti [1] on the relationship between bent
functions and strongly regular graphs is the following.

Lemma 18. [1, Lemma 12]. The Cayley graph of a bent function on Zm
2 is a

strongly regular graph with λ = µ.

We use this result to examine the graph ∆m as defined here.

Definition 19. Let ∆m be the graph whose vertices are the n2 = 4m canonical
basis matrices of the real representation of the Clifford algebra Rm,m, with each
edge having one of two colours, −1 (red) and 1 (blue):

– Matrices Aj and Ak are connected by a red edge if they have disjoint support
and are anti-amicable, i.e. AjA

−1
k is skew.

– Matrices Aj and Ak are connected by a blue edge if they have disjoint support
and are amicable, i.e. AjA

−1
k is symmetric.

– Otherwise there is no edge between Aj and Ak.

We call this graph the restricted amicability / anti-amicability graph of the
Clifford algebra Rm,m, the restriction being the requirement that an edge only
exists for pairs of matrices with disjoint support.

Definition 20. For a graph Γ with edges coloured by -1 (red) and 1 (blue),
Γ [−1] denotes the red subgraph of Γ, the graph containing all of the vertices
of Γ, and all of the red (-1) coloured edges. Similarly, Γ [1] denotes the blue
subgraph of Γ.

The following theorem is presented in [7].

Theorem 21. For all m > 1, the graph ∆m[−1] is strongly regular, with pa-
rameters vm = 4m, km = 22m−1 − 2m−1, λm = µm = 22m−2 − 2m−1.

Unfortunately, the proof given there is incomplete, proving only that ∆m[−1] is
strongly regular, without showing why km = 22m−1 − 2m−1 and λm = µm =
22m−2 − 2m−1. In this section, we rectify this by proving the following.

Theorem 22. For all m > 1, both graphs ∆m[−1] and ∆m[1] is strongly regular,
with parameters vm = 4m, km = 22m−1 − 2m−1, λm = µm = 22m−2 − 2m−1.

Proof. Since each vertex of ∆m is a canonical basis element of the Clifford al-
gebra Rm,m, we can impose the Kronecker product ordering on the vertices,
labelling each vertex A by γm−1(A) ∈ Z2m

2 . The colour κm(a, b) of each edge
(γm(a), γm(b)) of ∆m depends on a+ b in the following way:

κm(a, b) := τm(a+ b)− σm(a+ b), that is,

κm(a, b) =


−1, σm(a+ b) = 1 (⇔ γm(a+ b) is skew),

0, σm(a+ b) = τm(a+ b) = 0 (⇔ γm(a+ b) is diagonal),

1, τm(a+ b) = 1 (⇔ γm(a+ b) is symmetric but not diagonal).



8

Thus ∆m[−1] is isomorphic to the Cayley graph of σm on Z2m
2 , and ∆m[1] is

isomorphic to the Cayley graph of τm on Z2m
2 . Since, by Lemma 8 and Theo-

rem 10, both σm and τm are bent functions on Z2m
2 , Lemma 18 implies that both

∆m[−1] and ∆m[1] are strongly regular graphs.
It remains to determine the graph parameters. Firstly, vm is the number of

vertices, which is 4m.
Since ∆m[−1] is regular, we can determine km by examining one vertex,

γm(0). The edges (γm(0), γm(b)) of ∆m[−1] are those for which σm(b) = 1,
that is, the edges where b is in the Hadamard difference set σ−1m (1). Thus, by
Theorem 15, km = 2N2 −N = 22m−1 − 2m−1, where N = 2m−1.

Since ∆m[−1] is a strongly regular graph, it holds that

(vm − km − 1)µm = km(km − 1− λm)

[10, p. 158] and hence, since λm = µm, we must have (vm − 1)λm = km(km − 1)
and therefore

λm = km(km − 1)/(vm − 1).

We now note that

km(km − 1) = (2N2 −N)(2N2 −N − 1) = (N2 −N)(4N2 − 1)

= (22m−2 − 2m−1)(vm − 1),

so that λm = µm = 2N2 −N = 22m−2 − 2m−1.
Running through these arguments again, with ∆m[1] substituted for ∆m[−1]

and τm substituted for σm, yields the same parameters for ∆m[1]. ut

Remark. A more elementary derivation of the value of λm for ∆m[−1] follows.
There are km(km−1) ordered pairs (a, b) with a 6= b and σm(a) = σm(b) = 1.

Since km(km−1) = (N2−N)(4N2−1), this gives exactly N2−N = 22m−2−2m−1

ordered pairs for each of other 4m − 1 vertices of ∆m[−1].
Also, considering that σ−1m (1) is a Hadamard difference set, and for c ∈

Z2m
2 , c 6= 0, consider one of the pairs (a, b) such that σm(a) = σm(b) = 1 and

c = a + b. Thus b = a + c and σm(a) = σm(a + c) = 1. Therefore, the graph
∆m[−1] contains the edges (γm(0), γm(a)), (γm(0), γm(b)), (γm(c), γm(a)), and
(γm(c), γm(b)). Thus, in the graph ∆m[−1], the vertices γm(0) and γm(c) have
the two vertices γm(a) and γm(b) in common. This is true whether or not there
is an edge between γm(0) and γm(c). The pair (b, a) yields the same four edges.
Running through all such pairs (a, b) and using Theorem 15 again, we see that
λm = µm = 2N2 −N = 22m−2 − 2m−1.

6 Other necessary conditions

This section examines two other necessary conditions for the existence of an
automorphism of ∆m that swaps ∆m[−1] with ∆m[1]. The first condition follows.
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Theorem 23. If an automorphism θ : ∆m → ∆m exists that swaps ∆m[−1]
with ∆m[1], then there is an automorphism Θ : ∆m → ∆m that also swaps
∆m[−1] with ∆m[1], leaving γm(0) fixed.

Proof. For the purposes of this proof, assume the Kronecker product ordering
of the canonical basis elements of Rm,m and define the one-to-one mapping
φ : Z2m

2 → Z2m
2 such that θ(γm(a)) = γm(φ(a)) for all a ∈ Z2m

2 . The condition
that θ swaps ∆m[−1] with ∆m[1] is equivalent to the condition

κm(φ(a) + φ(b)) = −κm(a+ b),

where κm is as defined in the proof of Theorem 22 above.
Let Φ(a) := φ(a) + φ(0) for all a ∈ Z2m

2 . Then Φ(a) + Φ(b) = φ(a) + φ(b) for
all a, b ∈ Z2m

2 , and therefore

κm(Φ(a) + Φ(b)) = κm(φ(a) + φ(b)) = −κm(a+ b).

Now define Θ : ∆m → ∆m such that Θ(γm(a)) = γm(Φ(a)) for all a ∈ Z2m
2 . ut

The second condition is simply to note that if θ swaps ∆m[−1] with ∆m[1],
then for any induced subgraph Γ ⊂ ∆m and its image θ(Γ ), the corresponding
edges (A,B) and (θ(A), θ(B)) will also have swapped colours. This observation
and the properties of ∆m[−1] and ∆m[1] as strongly regular graphs could be
used as the basis for a backtracking search algorithm for m > 3 to either find θ
or rule out its existence.
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