Alignment-free comparison of biological sequences

Conrad Burden, Sylvain Forêt, *Paul Leopardi

Mathematical Sciences Institute, Australian National University.
For presentation at ANZIAM, Newcastle, 2013.
Based on a presentation given by Conrad Burden at COMPSTAT Cyprus.

4 February 2013

Acknowledgements

Sue Wilson (Australian National University, University of New South Wales).

Australian Research Council grant DP120101422.

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

D_{2} is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

D_{2} is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Example: consider these two sequences and $k=7 \ldots$
A: ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCAT

B: ATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCT

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

\boldsymbol{D}_{2} is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Example: consider these two sequences and $k=7 \ldots$
A: ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCAT

B: ATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCT

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

$\boldsymbol{D}_{\mathbf{2}}$ is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Example: consider these two sequences and $k=7 \ldots$

In this example, for $k=7, D_{2}=3$.

Markovian sequences

Real DNA sequences are modelled as Markovian.

For first order:

$$
\begin{aligned}
\operatorname{Prob}\left(A_{i+1}\right. & \left.=u \mid A_{i}=v\right)=M_{u, v} \\
u, v & \in\{A, C, G, T\}
\end{aligned}
$$

where

$$
0 \leqslant M_{u, v} \leqslant 1 ; \quad \sum_{v} M_{u, v}=1
$$

Periodic boundary conditions

To simplify the calculations of theoretical mean and variance (avoiding 'edge effects'), we impose periodic boundary conditions:

ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCAT

ATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCT

Periodic boundary conditions

To simplify the calculations of theoretical mean and variance (avoiding 'edge effects'), we impose periodic boundary conditions:

CTCATATGCTTTGCTAGCGCTATGCTTTCGCAAACTCATATGCTTT

CGTCATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCTATGCTT

Periodic boundary conditions

To simplify the calculations of theoretical mean and variance (avoiding 'edge effects'), we impose periodic boundary conditions:

Now, for $k=7$ we have $D_{2}=4$.

Markov chain with periodic boundary conditions

Define a Markov chain

$$
\ldots X_{n-1}, X_{n}, X_{1}, X_{2}, \ldots, X_{n}, X_{1}, X_{2}, \ldots
$$

with periodic boundary conditions (PBCs) via the following algorithm:

1. Choose X_{1} from any distribution $\pi(u), u \in\{1, \ldots, d\}$, where $0 \leqslant \pi(u) \leqslant 1 ; \sum_{u} \pi(u)=1$. Thus $\operatorname{Pr}(X 1=u)=\pi(u)$.
2. Choose $\boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n+1}$ via the Markov matrix \boldsymbol{M}, $\operatorname{Pr}\left(X_{i+1}=v \mid X_{1}=u\right)=M_{u, v}, i=1, \ldots, n$.
3. If $\boldsymbol{X}_{n+1}=\boldsymbol{X}_{1}$, accept $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$, otherwise return to Step 1 and repeat the procedure.

No privileged starting point

We further wish to restrict the definition to repeating Markov chains with no privileged starting point, by which we mean

$$
\begin{aligned}
\operatorname{Pr}(X=x) & =\operatorname{Pr}\left(X=\left(x_{i+1} \ldots x_{n}, x_{1} \ldots x_{i}\right)\right) \\
\text { for all } i & =1, \ldots, n-1 \\
\text { where } X & =\left(X_{1} X_{2} \ldots X_{n}\right)
\end{aligned}
$$

No privileged starting point

We further wish to restrict the definition to repeating Markov chains with no privileged starting point, by which we mean

$$
\begin{aligned}
\operatorname{Pr}(X=x) & =\operatorname{Pr}\left(X=\left(x_{i+1} \ldots x_{n}, x_{1} \ldots x_{i}\right)\right) \\
\text { for all } i & =1, \ldots, n-1 \\
\text { where } X & =\left(X_{1} X_{2} \ldots X_{n}\right)
\end{aligned}
$$

Theorem 1

\boldsymbol{X} has no privileged starting point if and only if $\boldsymbol{\pi}(\boldsymbol{u})$ is a uniform distribution: $\pi(u)=1 / d, u=1, \ldots, d$.

Probability of a specific sequence

Corollary 2

If \boldsymbol{X} is a Markov chain with no privileged starting point, the probability of any given sequence $x=\left(x_{1} x_{2} \ldots x_{n}\right)$ is

$$
\operatorname{Pr}(X=x)=\frac{M_{x_{1}, x_{2}} M_{x_{2}, x_{3}} \ldots M_{x_{n}, x_{1}}}{\operatorname{tr}\left(M^{n}\right)}
$$

Mean of D_{2}

For two sequences \boldsymbol{A} and \boldsymbol{B} of length \boldsymbol{m} and \boldsymbol{n}, both generated using the matrix M, and word length k,

$$
\mathrm{E}\left(D_{2}\right)=\frac{m n \operatorname{tr}\left[\left(M^{m-k+1} \circ M^{n-k+1}\right)(M \circ M)^{k-1}\right]}{\operatorname{tr}\left(M^{m}\right) \operatorname{tr}\left(M^{n}\right)},
$$

where \circ indicates the Hadamard product of matrices

$$
(P \circ Q)_{r, s}=P_{r, s} Q_{r, s}
$$

Mean of D_{2}

Given two sequences

$$
A=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$ define the word-match indicator

$$
I_{i, j}= \begin{cases}1 & \text { if } \boldsymbol{k} \text {-word at position } i \text { in } \boldsymbol{A} \text { matches } \\ \quad k \text {-word at position } j \text { in } B \\ \mathbf{0} \quad \text { otherwise. }\end{cases}
$$

Then

$$
D_{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{I}_{i, j}
$$

and

$$
\mathbf{E}\left(D_{2}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{E}\left(I_{i, j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Pr}\left(I_{i, j}=1\right) .
$$

Variance of D_{2}

The variance of D_{2} is much harder but can be done, at least for Markov order 1:

$$
\begin{aligned}
\operatorname{Var}\left(D_{2}\right) & =\operatorname{Var}\left(\sum_{i, j} I_{i, j}\right)=\mathbf{E}\left(\left(\sum_{i, j} I_{i, j}\right)^{2}\right)-\left(\mathbf{E}\left(\sum_{i, j} I_{i, j}\right)\right)^{2} \\
& =\left(\sum_{i, j, i^{\prime}, j^{\prime}} \mathbf{E}\left(I_{i, j}, I_{i^{\prime}, j^{\prime}}\right)\right)-\mathbf{E}\left(D_{2}\right)^{2}
\end{aligned}
$$

The difficult part is $\mathbf{E}\left(\boldsymbol{I}_{i, j}, \boldsymbol{I}_{\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}}\right)$, the probability of word matches like this:

Variance of D_{2}

The formula for $\operatorname{Var}\left(\boldsymbol{D}_{\mathbf{2}}\right)$ with periodic boundary conditions and Markov order 1 is complicated

theen werds in cenh of the two sequenecx, and in it
botrated in Fig 2. We tasume m, $n \geq 2 k$, which will
almast cetainly be the cask in ary hiological applica ton.
We will wnte a Hatamand protuct of q ficturs.
Mo

$\sum_{i=1}^{1+1} \sum_{i=1}^{1} \operatorname{tr}(M \circ N)^{\prime} Q(M=M)^{2} \times$

 and $v=\left|\frac{k-x}{t-s}\right|, \quad \rho=(k-s) \bmod (t-s) \quad$ (30)
Fimully.

$$
V_{4}=\frac{2 \mathrm{mn}}{1 \pi\left(M^{\prime \prime}\right) \mathrm{t}\left(M^{n}\right)} \sum_{H=1}^{k-1} \mathrm{t} U
$$

where
$u=$

$\left\{\left(M^{(2+1)}\right)^{-5+1} \circ M^{-1}-1+1\right\} \times$
$\left(M^{0(V+2)}\right)^{-1} \times$

$\left\{\left(M^{(22+3)}\right)^{\zeta-r-1}<\left(M^{m-k-r+1}\right)^{7}\right\} \times$
$\left(M^{0(2 N+2)} Y\left\{\left(M^{(2 N+1)}\right)^{r-\zeta+1} 0 M^{2-\lambda-r+1}\right\}\right.$
$\times\left(M^{(2 x+2)}\right)$
is above with n and n intectlanged
and r ard $/$ inerchanged $\}$
$\left\{\left(M^{(22+3}\right) 5-r-10\left(M^{m-k-t+1}\right)^{\text {if }} \boldsymbol{7}\right\} \lll<$
$\left(M^{-(\mathrm{ev}+1)}\right)^{+2-5+1} \times$

and
(32)
but is easily evaluated.

Verification by simulation

1. For a given order 1 Markov matrix, generate 10,000 random pairs of Markovian sequences with periodic boundary conditions (R scripts).
2. Obtain the value of \boldsymbol{D}_{2} for each pair (SAFT program, written in C).
3. Compare empirical cumulative distribution function of $\boldsymbol{D}_{\mathbf{2}}$ with that of Normal and Pólya-Aeppli (compound Poisson) distributions using theoretical $\mathrm{E}\left(\boldsymbol{D}_{2}\right)$ and $\operatorname{Var}\left(\boldsymbol{D}_{2}\right)$ (R scripts).

Results for a random Markov matrix

Randomly chosen Markov matrix M

Results for a random Markov matrix

DNA is messy

Real DNA is messy

messy with repeateats of different length and complexity, and contains unknown r-gi-ns.

- The Ensembl database marks unknown regions and masks repetitive regions including tandem repeats.
- The tantan program masks simple repeats.

To compare D_{2} from DNA with Markov models:

1. Obtain and mask a DNA sequence, yielding a series of unmasked regions;
2. For a fixed length \boldsymbol{n}, produce a random sample of 10,000 pairs of sequences from the regions, using word length k to yield sequences with periodic boundary conditions;
3. Use SAFT program to calculate the \boldsymbol{D}_{2} value of each pair;
4. Given Markov order $\boldsymbol{\omega}$, compute the Markov matrix \boldsymbol{M} from the DNA regions;
5. Given Markov matrix M, word length k and sequence length n, compute the theoretical mean and variance;
6. Compare the empirical distribution of \boldsymbol{D}_{2} values with a Gamma distribution using the theoretical mean and variance.

Human Chromosome 1: sample pairs

Note the gap around the centromere.

Human Chromosome 1: D_{2} vs Markov models

What's next?

1. Compare chromosomes with their stationary \boldsymbol{k}-mer spectrum to look for regions of interest.
Have determined the theoretical mean and variance for this case. The formula for the variance is much simpler than the variance for D_{2} between two sequences.
Need to modify the SAFT program to compare a stationary \boldsymbol{k}-mer spectrum to a database of sequences.
2. Scale up the SAFT program to work quickly with large databases.
This includes testing parallel code on NCl clusters during 2013.
3. Release the SAFT program as open source software. Anticipated some time in 2013.
