# Alignment-free comparison of biological sequences

#### Conrad Burden, Sylvain Forêt, \*Paul Leopardi

Mathematical Sciences Institute, Australian National University.

For presentation at ANZIAM, Newcastle, 2013.

Based on a presentation given by Conrad Burden at COMPSTAT Cyprus.

4 February 2013



OSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematik and Statistics of Complex Systems





▲ロト ▲園ト ▲ヨト ▲ヨト - ヨー つくで

#### Acknowledgements

Sue Wilson (Australian National University, University of New South Wales).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Australian Research Council grant DP120101422.

Given two sequences from a finite alphabet

$$A:=(A_1,A_2,\ldots,A_m)$$
 and  $B:=(B_1,B_2,\ldots,B_n),$ 

イロト 不得 ト イヨ ト イヨ ト うらぐ

 $D_2$  is the number of matches of words (including overlaps) of prespecified length k between two given sequences.

Given two sequences from a finite alphabet

$$A:=(A_1,A_2,\ldots,A_m)$$
 and  $B:=(B_1,B_2,\ldots,B_n),$ 

 $D_2$  is the number of matches of words (including overlaps) of prespecified length k between two given sequences.

Example: consider these two sequences and  $k = 7 \dots$ 



◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへ⊙

Given two sequences from a finite alphabet

$$A:=(A_1,A_2,\ldots,A_m)$$
 and  $B:=(B_1,B_2,\ldots,B_n),$ 

 $D_2$  is the number of matches of words (including overlaps) of prespecified length k between two given sequences.

Example: consider these two sequences and  $k = 7 \dots$ 



うして ふゆう ふほう ふほう しょうく

Given two sequences from a finite alphabet

$$A:=(A_1,A_2,\ldots,A_m)$$
 and  $B:=(B_1,B_2,\ldots,B_n),$ 

 $D_2$  is the number of matches of words (including overlaps) of prespecified length k between two given sequences.

Example: consider these two sequences and  $k = 7 \dots$ 



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

In this example, for  $k=7, D_2=3$ .

#### Markovian sequences

Real DNA sequences are modelled as Markovian.

For first order:

$$ext{Prob}(A_{i+1}=u\mid A_i=v)=M_{u,v},\ u,v\in\{A,C,G,T\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where

$$0 \leqslant M_{u,v} \leqslant 1; \quad \sum_v M_{u,v} = 1.$$

# Periodic boundary conditions

To simplify the calculations of theoretical mean and variance (avoiding 'edge effects'), we impose periodic boundary conditions:



うして ふゆう ふほう ふほう しょうく

# Periodic boundary conditions

To simplify the calculations of theoretical mean and variance (avoiding 'edge effects'), we impose periodic boundary conditions:

CTCAT ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCATA<mark>TGCTTT(</mark>

CGT CATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCTA

うして ふゆう ふほう ふほう しょうく

# Periodic boundary conditions

To simplify the calculations of theoretical mean and variance (avoiding 'edge effects'), we impose periodic boundary conditions:



イロト イピト イモト イモト 三日

Now, for k = 7 we have  $D_2 = 4$ .

## Markov chain with periodic boundary conditions

Define a Markov chain

$$\ldots X_{n-1}, X_n, X_1, X_2, \ldots, X_n, X_1, X_2, \ldots$$

with periodic boundary conditions (PBCs) via the following algorithm:

- 1. Choose  $X_1$  from any distribution  $\pi(u), u \in \{1, \ldots, d\}$ , where  $0 \leq \pi(u) \leq 1; \sum_u \pi(u) = 1$ . Thus  $\Pr(X1 = u) = \pi(u)$ .
- 2. Choose  $X_2,\ldots,X_{n+1}$  via the Markov matrix M ,  $\Pr(X_{i+1}=v\mid X_1=u)=M_{u,v},i=1,\ldots,n.$
- 3. If  $X_{n+1} = X_1$ , accept  $X_1, X_2, \ldots, X_n$ , otherwise return to Step 1 and repeat the procedure.

## No privileged starting point

We further wish to restrict the definition to repeating Markov chains with no privileged starting point, by which we mean

$$\Pr(X=x) = \Pr\left(X = (x_{i+1} \dots x_n, x_1 \dots x_i)
ight),$$
  
for all  $i = 1, \dots, n-1,$   
where  $X = (X_1 X_2 \dots X_n).$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# No privileged starting point

We further wish to restrict the definition to repeating Markov chains with no privileged starting point, by which we mean

$$\Pr(X=x) = \Pr\left(X = (x_{i+1} \dots x_n, x_1 \dots x_i)
ight),$$
  
for all  $i = 1, \dots, n-1,$   
where  $X = (X_1 X_2 \dots X_n).$ 

#### Theorem 1

X has no privileged starting point if and only if  $\pi(u)$  is a uniform distribution:  $\pi(u) = 1/d, u = 1, \ldots, d$ .

うして ふゆう ふほう ふほう しょうく

## Probability of a specific sequence

#### Corollary 2

If X is a Markov chain with no privileged starting point, the probability of any given sequence  $x = (x_1x_2...x_n)$  is

$$\Pr(X = x) = rac{M_{x_1, x_2} M_{x_2, x_3} \dots M_{x_n, x_1}}{\operatorname{tr}(M^n)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mean of  $D_2$ 

For two sequences A and B of length m and  $n\,,$  both generated using the matrix  $M\,,$  and word length  $k\,,$ 

$$\mathrm{E}(D_2) = rac{mn \operatorname{tr} \left[ (M^{m-k+1} \circ M^{n-k+1}) (M \circ M)^{k-1} 
ight]}{\operatorname{tr}(M^m) \operatorname{tr}(M^n)},$$

where o indicates the Hadamard product of matrices

$$(P \circ Q)_{r,s} = P_{r,s}Q_{r,s}.$$

# Mean of $D_2$

Given two sequences

 $A = (A_1, A_2, \dots, A_m)$  and  $B = (B_1, B_2, \dots, B_n),$  define the word-match indicator

$$I_{i,j} = egin{cases} 1 & ext{if $k$-word at position $i$ in $A$ matches} \ & k$-word at position $j$ in $B$, \ 0 & ext{otherwise.} \end{cases}$$

Then

$$D_2 = \sum_{i=1}^m \sum_{j=1}^n I_{i,j}$$

and

$$\mathbf{E}(D_2) = \sum_{i=1}^m \sum_{j=1}^n \mathbf{E}(I_{i,j}) = \sum_{i=1}^m \sum_{j=1}^n \Pr(I_{i,j} = 1).$$

## Variance of $D_2$

The variance of  $D_2$  is much harder but can be done, at least for Markov order 1:

$$egin{aligned} ext{Var}(D_2) &= ext{Var}\left(\sum_{i,j} I_{i,j}
ight) = ext{E}\left(\left(\sum_{i,j} I_{i,j}
ight)^2
ight) - \left( ext{E}\left(\sum_{i,j} I_{i,j}
ight)
ight)^2 \ &= \left(\sum_{i,j,i',j'} ext{E}(I_{i,j}, I_{i',j'})
ight) - ext{E}(D_2)^2. \end{aligned}$$

The difficult part is  $E(I_{i,j}, I_{i',j'})$ , the probability of word matches like this:



## Variance of $D_2$

The formula for  $Var(D_2)$  with periodic boundary conditions and Markov order 1 is complicated ...





◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへ⊙

#### ... but is easily evaluated.

# Verification by simulation

- 1. For a given order 1 Markov matrix, generate 10,000 random pairs of Markovian sequences with periodic boundary conditions (R scripts).
- Obtain the value of D<sub>2</sub> for each pair (SAFT program, written in C).
- 3. Compare empirical cumulative distribution function of  $D_2$  with that of Normal and Pólya-Aeppli (compound Poisson) distributions using theoretical  $E(D_2)$  and  $Var(D_2)$  (R scripts).

## Results for a random Markov matrix



200

## Results for a random Markov matrix



590

Alignment-free comparison of biological sequences Comparison to biological data

DNA is messy

#### Real DNA is messy

messy with repeateats of different length and complexity,

and contains unknown r-gi-ns.

- The Ensembl database marks unknown regions and masks repetitive regions including *tandem repeats*.
- The tantan program masks simple repeats.

(Ensembl: Wellcome Trust Sanger Institute and European Bioinformatics Institute, 2012; tantan: Firth, 2011)

▲ロト ▲理 ト ▲ヨ ト ▲ヨ ト ● ● ● ●

# To compare $D_2$ from DNA with Markov models:

- 1. Obtain and mask a DNA sequence, yielding a series of unmasked regions;
- For a fixed length n, produce a random sample of 10,000 pairs of sequences from the regions, using word length k to yield sequences with periodic boundary conditions;
- 3. Use SAFT program to calculate the  $D_2$  value of each pair;
- 4. Given Markov order  $\omega$ , compute the Markov matrix M from the DNA regions;
- 5. Given Markov matrix M, word length k and sequence length n, compute the theoretical mean and variance;
- 6. Compare the empirical distribution of  $D_2$  values with a Gamma distribution using the theoretical mean and variance.

Alignment-free comparison of biological sequences Comparison to biological data

## Human Chromosome 1: sample pairs

Note the gap around the centromere.



E nac

Alignment-free comparison of biological sequences  $\square$  Comparison to biological data

#### Human Chromosome 1: $D_2$ vs Markov models

n=1000, k=8



D2

▲ロト ▲歴 ト ▲ 臣 ト ▲ 臣 ト ○ 包 ○ の Q ()

# What's next?

1. Compare chromosomes with their stationary k-mer spectrum to look for regions of interest.

Have determined the theoretical mean and variance for this case. The formula for the variance is much simpler than the variance for  $D_2$  between two sequences. Need to modify the SAFT program to compare a stationary k-mer spectrum to a database of sequences.

2. Scale up the SAFT program to work quickly with large databases.

This includes testing parallel code on NCI clusters during 2013.

**3.** Release the SAFT program as open source software. Anticipated some time in 2013.