Determining the distribution of word matches between Markovian sequences

Conrad Burden, Sylvain Forêt, *Paul Leopardi

Mathematical Sciences Institute, Australian National University.

$$
\text { For presentation at CTAC, QUT, } 2012 .
$$

Based on a presentation given by Conrad Burden at COMPSTAT Cyprus.

$$
25 \text { September } 2012
$$

Acknowledgements

Sue Wilson (Australian National University, University of New South Wales).

Australian Research Council grant DP120101422.

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{m}\right) \text { and } B:=\left(\boldsymbol{B}_{1}, B_{2}, \ldots, B_{n}\right)
$$

\boldsymbol{D}_{2} is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

D_{2} is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Example: consider these two sequences and $k=7 \ldots$
A: ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCAT

B: ATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCT

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

\boldsymbol{D}_{2} is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Example: consider these two sequences and $k=7 \ldots$
A: ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCAT

B: ATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCT

Definition of D_{2}

Given two sequences from a finite alphabet

$$
A:=\left(A_{1}, A_{2}, \ldots, A_{m}\right) \text { and } B:=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$

$\boldsymbol{D}_{\mathbf{2}}$ is the number of matches of words (including overlaps) of prespecified length \boldsymbol{k} between two given sequences.

Example: consider these two sequences and $k=7 \ldots$

In this example, for $k=7, D_{2}=3$.

Our previous results

(with Sue Wilson, Ruth Kantorovitz, and Junmei Jing)

We have exact formulas for $\mathbf{E}\left(\boldsymbol{D}_{\mathbf{2}}\right)$ (simple) and $\operatorname{Var}\left(\boldsymbol{D}_{\mathbf{2}}\right)$ (complicated), and accurate approximations for the distribution of $\boldsymbol{D}_{\mathbf{2}}$ for the case of sequences composed of i.i.d. letters;
i.e. each letter drawn independently from the same distribution.

Periodic boundary conditions

To simplify the calculations (avoiding 'edge effects'), we imposed periodic boundary conditions:

ATGCTTTGCTAGCGCTATGCTTTCGCAAACTCAT

ATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCT

Periodic boundary conditions

To simplify the calculations (avoiding 'edge effects'), we imposed periodic boundary conditions:

CTCATATGCTTTGCTAGCGCTATGCTTTCGCAAACTCATATGCTTT

CGTCATGCTTTTAAAACCGAGCTGGTCAGCGCTAAGCGCTATGCTT

Periodic boundary conditions

To simplify the calculations (avoiding 'edge effects'), we imposed periodic boundary conditions:

Now, for $k=7$ we have $D_{2}=4$.

Markovian sequences

The i.i.d. is not realistic. Real DNA sequences are more realistically modelled as Markovian (up to fifth order).

For first order:

$$
\begin{gathered}
\operatorname{Prob}\left(A_{i+1}=u \mid A_{i}=v\right)=M_{u, v} \\
u, v \in\{A, C, G, T\}
\end{gathered}
$$

where

$$
0 \leqslant M_{u, v} \leqslant 1 ; \quad \sum_{v} M_{u, v}=1
$$

Markovian sequences

The i.i.d. is not realistic. Real DNA sequences are more realistically modelled as Markovian (up to fifth order).

For first order:

$$
\begin{gathered}
\operatorname{Prob}\left(A_{i+1}=u \mid A_{i}=v\right)=M_{u, v} \\
u, v \in\{A, C, G, T\}
\end{gathered}
$$

where

$$
0 \leqslant M_{u, v} \leqslant 1 ; \quad \sum_{v} M_{u, v}=1
$$

First problem:
How do we define periodic boundary conditions for a Markovian sequence?

Markov chain with periodic boundary conditions

Define a Markov chain

$$
\ldots X_{n-1}, X_{n}, X_{1}, X_{2}, \ldots, X_{n}, X_{1}, X_{2}, \ldots
$$

with periodic boundary conditions (PBCs) via the following algorithm:

1. Choose X_{1} from any distribution $\pi(u), u \in\{1, \ldots, d\}$, where $0 \leqslant \pi(u) \leqslant 1 ; \sum_{u} \pi(u)=1$. Thus $\operatorname{Pr}(X 1=u)=\pi(u)$.
2. Choose $\boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n+1}$ via the Markov matrix \boldsymbol{M}, $\operatorname{Pr}\left(X_{i+1}=v \mid X_{1}=u\right)=M_{u, v}, i=1, \ldots, n$.
3. If $\boldsymbol{X}_{n+1}=\boldsymbol{X}_{1}$, accept $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n}$, otherwise return to Step 1 and repeat the procedure.

No privileged starting point

We further wish to restrict the definition to repeating Markov chains with no privileged starting point, by which we mean

$$
\begin{aligned}
\operatorname{Pr}(X=x) & =\operatorname{Pr}\left(X=\left(x_{i+1} \ldots x_{n}, x_{1} \ldots x_{i}\right)\right) \\
\text { for all } i & =1, \ldots, n-1 \\
\text { where } X & =\left(X_{1} X_{2} \ldots X_{n}\right)
\end{aligned}
$$

No privileged starting point

We further wish to restrict the definition to repeating Markov chains with no privileged starting point, by which we mean

$$
\begin{aligned}
\operatorname{Pr}(X=x) & =\operatorname{Pr}\left(X=\left(x_{i+1} \ldots x_{n}, x_{1} \ldots x_{i}\right)\right) \\
\text { for all } i & =1, \ldots, n-1 \\
\text { where } X & =\left(X_{1} X_{2} \ldots X_{n}\right)
\end{aligned}
$$

Theorem 1

\boldsymbol{X} has no privileged starting point if and only if $\boldsymbol{\pi}(\boldsymbol{u})$ is a uniform distribution: $\pi(u)=1 / d, u=1, \ldots, d$.

Probability of a specific sequence

Corollary 2

If \boldsymbol{X} is a Markov chain with no privileged starting point, the probability of any given sequence $x=\left(x_{1} x_{2} \ldots x_{n}\right)$ is

$$
\operatorname{Pr}(X=x)=\frac{M_{x_{1}, x_{2}} M_{x_{2}, x_{3}} \ldots M_{x_{n}, x_{1}}}{\operatorname{tr}\left(M^{n}\right)}
$$

Mean of D_{2}

For two sequences \boldsymbol{A} and \boldsymbol{B} of length \boldsymbol{m} and \boldsymbol{n}, both generated using the matrix M, and word length \boldsymbol{k},

$$
\mathrm{E}\left(D_{2}\right)=\frac{m n \operatorname{tr}\left[\left(M^{m-k+1} \circ M^{n-k+1}\right)(M \circ M)^{k-1}\right]}{\operatorname{tr}\left(M^{m}\right) \operatorname{tr}\left(M^{n}\right)}
$$

where \circ indicates the Hadamard product of matrices

$$
(P \circ Q)_{r, s}=P_{r, s} Q_{r, s}
$$

Mean of D_{2}

Given two sequences

$$
A=\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{m}\right) \text { and } B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)
$$ define the word-match indicator

$$
\boldsymbol{I}_{i, j}= \begin{cases}\mathbf{1} & \text { if } \boldsymbol{k} \text {-word at position } \boldsymbol{i} \text { in } \boldsymbol{A} \text { matches } \\ \quad \boldsymbol{k} \text {-word at position } \boldsymbol{j} \text { in } \boldsymbol{B} \\ \mathbf{0} \quad \text { otherwise. }\end{cases}
$$

Then

$$
D_{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} I_{i, j}
$$

and

$$
\mathrm{E}\left(D_{2}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{E}\left(I_{i, j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Pr}\left(I_{i, j}=1\right)
$$

Variance of D_{2}

The variance of D_{2} is much harder but can be done, at least for Markov order 1:

$$
\begin{aligned}
\operatorname{Var}\left(D_{2}\right) & =\operatorname{Var}\left(\sum_{i, j} I_{i, j}\right)=\mathbf{E}\left(\left(\sum_{i, j} I_{i, j}\right)^{2}\right)-\left(\mathbf{E}\left(\sum_{i, j} I_{i, j}\right)\right)^{2} \\
& =\left(\sum_{i, j, i^{\prime}, j^{\prime}} \mathbf{E}\left(I_{i, j}, I_{i^{\prime}, j^{\prime}}\right)\right)-\mathbf{E}\left(D_{2}\right)^{2}
\end{aligned}
$$

The difficult part is $\mathbf{E}\left(\boldsymbol{I}_{\boldsymbol{i}, \boldsymbol{j}}, \boldsymbol{I}_{\boldsymbol{i}^{\prime}, \boldsymbol{j}^{\prime}}\right)$, the probability of word matches like this:

Variance of \boldsymbol{D}_{2}

The formula for $\operatorname{Var}\left(\boldsymbol{D}_{2}\right)$ with periodic boundary conditions and Markov order 1 is complicated

but is easily evaluated.

Verification by simulation

1. For a given order 1 Markov matrix, generate 10,000 random pairs of Markovian sequences with periodic boundary conditions (R scripts).
2. Obtain the value of D_{2} for each pair (SAFT program, written in C).
3. Compare empirical cumulative distribution function of $\boldsymbol{D}_{\mathbf{2}}$ with that of Normal and Pólya-Aeppli (compound Poisson) distributions using theoretical $\mathrm{E}\left(\boldsymbol{D}_{2}\right)$ and $\operatorname{Var}\left(\boldsymbol{D}_{2}\right)$ (R scripts).

Generation of sequences

Sequences are generated by using the algorithm shown previously.

Seemingly more efficient algorithms, such as continuing with $\boldsymbol{X}_{n+2}, \boldsymbol{X}_{n+3}, \ldots$ until $\boldsymbol{X}_{\boldsymbol{k}}$ matches \boldsymbol{X}_{n+k} can yield different distributions.

Calculating D_{2}

The SAFT program was written to compare a given sequence against a database of sequences, by calculating D_{2} for each pair.

The program was adapted to take two lists of sequences \mathcal{A}, \mathcal{B}, and determine \boldsymbol{D}_{2} for each corresponding pair $\mathcal{A}_{\boldsymbol{k}}, \mathcal{B}_{k}$.

Comparing against known distributions

The R statistical system was used to

- Use the t.test function in R to compare the empirical and theoretical mean values.
- Use the qchisq function in R to produce a confidence interval for the variance, and test the variance using this interval.
- Use the ks.test function in R to compare the empirical distribution of $\boldsymbol{D}_{\mathbf{2}}$ against the Normal and the Pólya-Aeppli distributions, using the theoretical mean and variance. The R function pPolyaAeppli was written for this purpose.
- Plot cumulative distributions.

Results for one random Markov matrix

Randomly chosen Markov matrix M

Results for one random Markov matrix

