Visualization as its own reward The mathematics of conformal chaos

Paul Leopardi

Mathematical Sciences Institute, Australian National University.
For presentation at EViMS 2, ANU, 2014.

22 November 2014

Australian
National
University

Acknowledgements

Louisa Barnsley, Michael Barnsley, organizers of EViMS 2.

Leo Dorst.

Program on "Minimal Energy Point Sets, Lattices, and Designs" at the Erwin Schrödinger International Institute for Mathematical Physics, 2014.

Australian Mathematical Sciences Institute.

Australian National University.

Pozible supporters

$\$ 32+$ SvA, AD, CF, OF, KM, JP, AHR, RR, ES, MT.
$\$ 50+$ Yvonne Barrett, Angela M. Fearon, Sally Greenaway, Dennis Pritchard, Susan Shaw, Bronny Wright.
$\$ 64+$ Naomi Cole.
\$100+ Russell family, Jonno Zilber.
\$128+ Jennifer Lanspeary, Vikram.
... and others, who did not want acknowledgement.

Topics

- Conformal geometric algebra
- Generation of conformal tori by exponentiation of bivectors
- Conformal chaos

Embedding of $\mathbb{R}^{\mathbf{3}}$ in conformal geometry

The conformal geometry of conformal geometric algebra embeds $\mathbb{R}^{\mathbf{3}}$ into the space $\mathbb{R}^{\mathbf{4 , 1}}$.

If the basis elements of $\mathbb{R}^{\mathbf{4 , 1}}$ are denoted as $\mathbf{e}_{-1}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{3}, \mathbf{e}_{4}$, we first form the null vectors $\boldsymbol{n}_{\infty}:=\mathbf{e}_{-1}+\mathbf{e}_{\mathbf{4}}, \boldsymbol{n}_{\mathbf{0}}:=\mathbf{e}_{-1}-\mathbf{e}_{\mathbf{4}}$, and embed the point $x \in \mathbb{R}^{\mathbf{3}}$ into $\mathbb{R}^{\mathbf{4 , 1}}$ as the null vector

$$
\begin{aligned}
\operatorname{cga} 3(x) & :=\left(\mathrm{e}_{4}-x\right) n_{\infty}\left(x-\mathrm{e}_{4}\right) \\
& =x^{2} n_{\infty}+2 x+n_{0}
\end{aligned}
$$

(Doran and Lasenby 2003)

Embedding of $\mathbb{R}^{\mathbf{3}}$ in conformal geometry

The point $\boldsymbol{x} \in \mathbb{R}^{\mathbf{3}}$ is represented as any point on the null line $\lambda \operatorname{cga3}(x)$, with $\boldsymbol{\lambda} \neq 0$. This is converted to standard form as

$$
\operatorname{cga} 3 \operatorname{std}(X):=\frac{-2}{X \cdot n_{\infty}} X
$$

For $\boldsymbol{X}=\operatorname{cga} 3(\boldsymbol{x})$, the point $\boldsymbol{x} \in \mathbb{R}^{\mathbf{3}}$ is recovered as

$$
\operatorname{agc} 3(X):=\operatorname{Proj}_{\mathbb{R}^{3}}(\operatorname{cga} 3 \operatorname{std}(X) / 2)
$$

(Doran and Lasenby 2003)

Exponentiation of a bivector in $\mathbb{R}_{4,1}$

If \boldsymbol{B} is a bivector in the Clifford algebra $\mathbb{R}_{\mathbf{4}, \mathbf{1}}$, then e^{B} is in $\operatorname{Spin}(4,1)$ and

$$
X \mapsto e^{B} X e^{-B}
$$

is a special orthogonal transformation of $\boldsymbol{R}^{4,1}$.
(Doran and Lasenby 2003, Dorst and Valkenburg 2011)

Orbits of the exponential of a bivector in $\mathbb{R}_{4,1}$

Fig. 5.3 Conformal coordinate grids induced by some rotors, with orbits for a point x indicated. See text for explanation

Orbits of the exponential of a bivector in $\mathbb{R}_{4,0}$

If \boldsymbol{B} is a bivector in the Clifford algebra $\mathbb{R}_{\mathbf{4}, \mathbf{0}} \subset \mathbb{R}_{\mathbf{4}, \mathbf{1}}$, but not a 2-blade, then the orbit

$$
\left\{\operatorname{agc} 3\left(e^{t B} \operatorname{cga} 3(x) e^{-t B}\right) \mid t \in \mathbb{R}\right\}
$$

is either closed, or it rules a conformal torus in $\mathbb{R}^{\mathbf{3}}$.
(Dorst and Valkenburg 2011)

The reciprocal bivector $\mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{2}} \mathbf{e}_{\mathbf{3}} \mathbf{e}_{\mathbf{4}} \boldsymbol{B}^{\mathbf{- 1}}$ gives the same torus.

Conformal chaos

For $R:=\exp (B), S:=\exp \left(\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{\mathbf{3}} \mathbf{e}_{\mathbf{4}} B^{-1}\right)$, the mappings

$$
\begin{aligned}
\phi_{R} & : x \mapsto \operatorname{agc} 3\left(R \operatorname{cga} 3(x) R^{-1}\right), \text { and } \\
\phi_{S} & : x \mapsto \operatorname{agc} 3\left(S \operatorname{cga} 3(x) S^{-1}\right)
\end{aligned}
$$

can be used in an algorithm inspired by Barnsley's chaos game: Starting with a point $\boldsymbol{x}_{(0)}:=x \in \mathbb{R}^{3}$, at step n choose $\phi_{(n)}=\phi_{R}$ or $\phi_{(n)}=\phi_{S}$ uniformly at random to obtain

$$
x_{(n+1)}:=\phi_{(n)}\left(x_{(n)}\right)
$$

The resulting set is a subset of the torus ruled by \boldsymbol{B}.
(Barnsley 1988)

References

[1] Barnsley, Michael F. "Fractal modeling of real world images." The science of fractal images. Springer New York, 1988. 219-242.
[2] Chris Doran and Anthony N. Lasenby. Geometric algebra for physicists. Cambridge University Press, 2003.
[3] Leo Dorst and Robert Valkenburg. "Square root and logarithm of rotors in 3D conformal geometric algebra using polar decomposition." Guide to Geometric Algebra in Practice. Springer London, 2011. 81-104.

