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Finite Element Exterior Calculus

Finite Element Method

The Finite Element Method solves boundary value problems based
on partial differential equations.

The original problem in a Hilbert space of functions is put into
variational form, and is mapped into a problem defined on a finite
dimensional function space, whose basis consists of functions
supported in small regions, such as simplices.

(Iserles 1996; Braess 2001).
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Finite Element Exterior Calculus

Finite element exterior calculus (FEEC)

FEEC is based on the Finite Element Method over Hilbert
complexes. These are cochain complexes where the relevant vector
spaces are Hilbert spaces.

For the de Rham complex, FEEC uses Hodge decomposition, the
exterior derivative and differential forms.

The numerical stability of the FEEC discretization depends on the
existence of a bounded cochain projection from a Hilbert complex
to a subcomplex. FEEC uses smoothed projections to obtain this
numerical stability.

(Arnold, Falk and Winther 2006, 2010; Christiansen and Winther 2008)
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Discretization of the Hodge–Dirac operator

An abstract Hodge–Dirac problem: setting

Let d be a closed, densely defined nilpotent operator on the
Hilbert space W, with domain V, and closed range B.

In V, we use the inner product

〈u, v〉V := 〈u, v〉+ 〈du,dv〉.

We have the orthogonal Hodge decomposition

W = B⊕ H⊕B∗,

u = uB ⊕ uH ⊕ uB∗ , ∀u ∈W.

where Z = B⊕ H is the null space of d.
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Discretization of the Hodge–Dirac operator

Example: Hilbert complexes

If (M, g) is an oriented, compact Riemannian manifold, then each
space of smooth k-forms has an L2-inner product,

〈u, v〉L2Ωk(M) =

∫
M

〈u, v〉g volg =

∫
M

u ∧ ?gv.

This gives an adjoint operator d∗k : Ωk(M)→ Ωk−1(M) for each
k, e.g.

The Hodge decomposition says that each f ∈ L2Ωk(M) can be
orthogonally decomposed as f = dα+ d∗β + γ, where dγ = 0,

d∗γ = 0.
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Discretization of the Hodge–Dirac operator

An abstract Hodge–Dirac problem

We want to solve the problem Du = f − fH,
where D := d + d∗ is the abstract Hodge–Dirac operator.

Consider the following mixed variational problem:
Find (u, p) ∈ V × H satisfying

〈du, v〉+ 〈u, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V, (1)

〈u, q〉 = 0, ∀q ∈ H.

To show that this problem is well-posed, it suffices to prove the
inf-sup condition for the symmetric bilinear form

B(u, p; v, q) := 〈du, v〉+ 〈u, dv〉+ 〈p, v〉+ 〈u, q〉

on V × H.
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Discretization of the Hodge–Dirac operator

The problem is well-posed

Theorem 2.4 (LS 2014)

There exists a constant γ > 0, depending only on the Poincaré
constant cP , such that for all non-zero (u, p) ∈ V × H, there
exists a non-zero (v, q) ∈ V × H satisfying

B(u, p; v, q) ≥ γ(‖u‖V + ‖p‖)(‖v‖V + ‖q‖).

Proof.

(hint). Consider the test functions

v := ρ+ p+ du, q := uH,

where ρ ∈ Z⊥ is the unique element such that dρ = uB.
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Discretization of the Hodge–Dirac operator

A corresponding discrete problem

Suppose Vh ⊂ V is a Hilbert subspace, with a bounded projection
πh : V → Vh, such that πhd = dπh.

Consider the discrete problem:

Find (uh, ph) ∈ Vh × Hh satisfying

〈duh, vh〉+ 〈uh, dvh〉+ 〈ph, vh〉 = 〈f, vh〉, ∀vh ∈ Vh, (2)

〈uh, qh〉 = 0, ∀qh ∈ Hh.

This problem is well-posed, with a discrete inf-sup condition, where
the constant γh depends only on cP and the norm ‖πh‖.
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Discretization of the Hodge–Dirac operator

An error estimate

Theorem 3.4 (LS 2014)

Let (u, p) be the solution to (1) and (uh, ph) be the solution to
(2). If the projections πh are V -bounded uniformly, independently
of h, then the error can be estimated by

‖u− uh‖V + ‖p− ph‖

6 C

(
inf
v∈Vh

‖u− v‖V + inf
q∈Vh

‖p− q‖V + µ inf
v∈Vh

‖PBu− v‖V
)
,

where µ := ‖(1− πh)PH‖ .
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Discretization of the Hodge Laplacian

The Hodge–Laplace problem

The abstract Hodge–Laplace operator is L = D2 = dd∗ + d∗d,
defined on the domain D(L) = D−1(V ∩ V ∗) ⊂ V ∩ V ∗ with
kernel N (L) = N (D) = H.

The Hodge–Laplace problem is:

Given f ∈W , find (u, p) ∈
(
D(L) ∩N (L)⊥

)
⊕N (L)

such that
Lu+ p = f.

To solve this, we can solve Dw + p = f , and then solve Du = w.
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Discretization of the Hodge Laplacian

The mixed variational form

The mixed variational form of the Hodge–Laplace problem is:
Find (σ, u, p) ∈ V × V × H such that

〈σ, τ 〉 − 〈u,dτ 〉 = 0, ∀τ ∈ V,
〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V,

〈u, q〉 = 0, ∀q ∈ H.

(3)
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Discretization of the Hodge Laplacian

The discrete Hodge–Laplace problem

The corresponding discrete Hodge–Laplace mixed variational
problem is:

Find (σh, uh, ph) ∈ Vh × Vh × Hh such that

〈σh, τh〉 − 〈uh, dτh〉 = 0, ∀τh ∈ Vh,
〈dσh, vh〉+ 〈duh, dvh〉+ 〈ph, vh〉 = 〈f, vh〉, ∀vh ∈ Vh,

〈uh, qh〉 = 0, ∀qh ∈ Hh.

(4)

We can solve the discrete Hodge–Laplace problem by first finding
the solution (wh, ph) ∈ Vh × Hh of the Hodge–Dirac problem for
f , then finding the solution (uh, 0) ∈ Vh×Hh of the Hodge–Dirac
problem for wh. Then (wh − duh, uh, ph) solves (4).
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Discretization of the Hodge Laplacian

Relationship to the discrete Hodge Laplacian

Theorem 4.4 (LS 2014)

Under the hypotheses of Theorem 3.4, if (σ, u, p) ∈ V × V × H

solves (3) and (σh, uh, ph) ∈ Vh × Vh × Hh solves (4),
then we have the error estimate

‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖

≤ C
(

inf
τ∈Vh
‖σ − τ‖V + inf

v∈Vh
‖u− v‖V + inf

q∈Vh
‖p− q‖V

+ µ inf
v∈Vh
‖PBu− v‖V

)
.
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Numerical examples

The periodic table of finite elements

The elements commonly used in finite element exterior calculus
also yield a stable discretization of the Hodge–Dirac problem.

These elements, including the Pr and P−r families of
piecewise-polynomial differential forms on simplicial meshes
(Arnold Falk and Winther, 2006, 2010) and the more recent Sr
family on cubical meshes (Arnold, 2013; Arnold and Awanou,
2014) give subcomplexes of the L2 de Rham complex with
bounded commuting projections.

The Pr and P−r families have been implemented in FEniCS and
can be used to solve the discrete Hodge–Dirac problem.
(Arnold, Falk and Winther 2006, 2010; Arnold 2013; Arnold and Awanou, 2014; Logg et al. 2012)
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Numerical examples
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Periodic Table of the Finite Elements
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The table presents the primary spaces of finite elements for the 
discretization of the fundamental operators of vector calculus: the 
gradient, curl, and divergence. A finite element space is a space of 
piecewise polynomial functions on a domain determined by: (1) a 
mesh of the domain into polyhedral cells called elements, (2) a finite 
dimensional space of polynomial functions on each element called 
the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each element called degrees of freedom (DOFs), 
each DOF being associated to a (generalized) face of the element, 
and specifying a quantity which takes a single value for all elements 
sharing the face. The element diagrams depict the DOFs and their 
association to faces.

The spaces  and  depicted on the left half of the table 
are the two primary families of finite element spaces for meshes of 
simplices, and the spaces  and  on the right side are for 
meshes of cubes or boxes. Each is defined in any dimension n ≥1 
for each value of the polynomial degree r ≥1, and each value of 
0 ≤ k ≤ n. The parameter k refers to the operator: the spaces consist 
of dierential k-forms which belong to the domain of the k th exterior 

derivative. Thus for k = 0, the spaces discretize the Sobolev space H 1, 
the domain of the gradient operator; for k = 1, they discretize H (curl), 
the domain of the curl; for k = n – 1 they discretize H (div), the domain 
of the divergence; and for k = n, they discretize L 2.

The spaces  and , which coincide, are the earliest finite 
elements, going back in the case r = 1 of linear elements to Cou-
rant 1, and collectively referred to as the Lagrange elements. The 
spaces  and , which also coincide, are the disconti-
nuous Galerkin elements, consisting of piecewise polynomials with 
no interelement continuity imposed, first introduced by Reed and 
Hill 2. The space  in 2 dimensions was introduced by Raviart 
and Thomas 3 and generalized to the 3-dimensional spaces  
and  by Nédélec 4,while  is due to Brezzi, Douglas and 
Marini 5 in 2 dimensions, its generalization to 3 dimensions again 
due to Nédélec 6. The unified treatment and notation of the  
and  families is due to Arnold, Falk and Winther as part of finite 
element exterior calculus 7, extending earlier work of Hiptmair for the 

 family 8. The space  is the span of the elementary forms 
introduced by Whitney 9. 

R. Courant, Bulletin of the American Mathematical Society 49, 1943.
W. H. Reed and T. R. Hill, Los Alamos report LA-UR-73-479, 1973.
P. A. Raviart and J. M. Thomas, Lecture Notes in Mathematics 606, Springer, 1977.
J. C. Nédélec, Numerische Mathematik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. Marini, Numerische Mathematik 47, 1985.
J. C. Nédélec, Numerische Mathematik 50, 1986.
D. N. Arnold, R.S. Falk, and R. Winther, Acta Numerica 15, 2006.
R. Hiptmair, Mathematics of Computation 68, 1999.
H. Whitney, Geometric Integration Theory, 1957.
D. N. Arnold, D. Bo, and F. Bonizzoni, Numerische Mathematik, 2014.
D. N. Arnold and G. Awanou, Mathematics of Computation, 2013.
A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential Equations 
by the Finite Element Method, Springer, 2012.
R. C. Kirby, ACM Transactions on Mathematical Software 30, 2004.
A. Logg and G. N. Wells, ACM Transactions on Mathematical Software 37, 2010.
M. Alnæs, A. Logg, K. B. Øgaard, M. E. Rognes, and G. N. Wells, ACM Transactions on 
Mathematical Software 40, 2014.
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The family  of cubical elements can be derived from the 1-di-
mensional Lagrange and discontinuous Galerkin elements by a tensor 
product construction detailed by Arnold, Boffi and Bonizzoni 10, but for 
the most part were presented individually along with the correspon-
ding simplicial elements in the papers mentioned. The second cubical 
family  is due to Arnold and Awanou 11. 

The finite elements in this table have been implemented as part of 
the FEniCS Project 12, 13, 14. Each may be referenced in the Unified Form 
Language (UFL) 15 by giving its family, shape, and degree, with the 
family as shown on the table. For example, the space  
may be referred to in UFL as:

FiniteElement (”Ne2”, tetrahedron, 3). 
Alternatively, the simplicial elements may be accessed in a uniform 
fashion as:

FunctionSpace(mesh, ”P- Lambda”, r, k) and 
FunctionSpace(mesh, ”P Lambda”, r, k) 

for  and , respectively 13.

(”P”, interval, 1) (”P”, interval, 1)(”DG”, interval, 0) (”DG”, interval, 1)

(”P”, interval, 2) (”P”, interval, 2)(”DG”, interval, 1) (”DG”, interval, 2)

(”P”, interval, 3) (”P”, interval, 3)(”DG”, interval, 2) (”DG”, interval, 3)

2 21 2

3 32 3

4 43 4

P1 P1DG0 DG1

P2 P2DG1 DG2

P3 P3DG2 DG3

3 3 4 44 81 3

9 812 144 6

16 12 229 10

8 88 2412 181 4

27 2027 4854 398 10

64 3264 84144 7227 20

1 3

4

4

44 12

6 63 6

10 1015 30

10 106 10

20 2036 60

3 6

6 121 4

8 12

20 304 10

15 20

45 6010 20

(”P”, triangle, 1) (”P”, triangle, 1) (”Q”, quadrilateral, 1) (”S”, quadrilateral, 1)(”RTQ[e,f]”, quadrilateral, 1) (”BDMS[e,f]”, quadrilateral, 1)(”DGQ”, quadrilateral, 1) (”DGS”, quadrilateral, 1)

(”Q”, quadrilateral, 2) (”S”, quadrilateral, 2)(”RTQ[e,f]”, quadrilateral, 2) (”BDMS[e,f]”, quadrilateral, 2)(”DGQ”, quadrilateral, 1) (”DGS”, quadrilateral, 2)

(”Q”, quadrilateral, 3) (”S”, quadrilateral, 3)(”RTQ[e,f]”, quadrilateral, 3) (”BDMS[e,f]”, quadrilateral, 3)(”DGQ”, quadrilateral, 1) (”DGS”, quadrilateral, 3)

(”Q”, hexahedron, 1) (”S”, hexahedron, 1)(”NeQ”, hexahedron, 1) (”AAe”, hexahedron, 1)(”NfQ”, hexahedron, 1) (”AAf”, hexahedron, 1)(”DGQ”, hexahedron, 1) (”DGS”, hexahedron, 1)

(”Q”, hexahedron, 2) (”S”, hexahedron, 2)(”NeQ”, hexahedron, 2) (”AAe”, hexahedron, 2)(”NfQ”, hexahedron, 2) (”AAf”, hexahedron, 2)(”DGQ”, hexahedron, 2) (”DGS”, hexahedron, 2)

(”Q”, hexahedron, 3) (”S”, hexahedron, 3)(”NeQ”, hexahedron, 3) (”AAe”, hexahedron, 3)(”NfQ”, hexahedron, 3) (”AAf”, hexahedron, 3)(”DGQ”, hexahedron, 3) (”DGS”, hexahedron, 3)
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(”P”, tetrahedron, 1)
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(”P”, triangle, 3) (”P”, triangle, 3)(”DG”, triangle, 2) (”DG”, triangle, 3)

(”P”, tetrahedron, 3) (”P”, tetrahedron, 3)

(”RT[e,f]”, triangle, 1) (”BDM[e,f]”, triangle, 1)

(”Ne1”, tetrahedron, 1) (”Ne2”, tetrahedron, 1)(”Nf1”, tetrahedron, 1) (”Nf2”, tetrahedron, 1)(”DG”, tetrahedron, 0) (”DG”, tetrahedron, 1)

(”RT[e,f]”, triangle, 2) (”BDM[e,f]”, triangle, 2)

(”Ne1”, tetrahedron, 2) (”Ne2”, tetrahedron, 2)(”Nf1”, tetrahedron, 2) (”Nf2”, tetrahedron, 2)(”DG”, tetrahedron, 1) (”DG”, tetrahedron, 2)

(”RT[e,f]”, triangle, 3) (”BDM[e,f]”, triangle, 3)
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(  )
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(  )
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DG0 DG1

P1
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P1
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2 21 2

3 32 3

4 43 4

Q1 S1DGQ1 DGS1
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n = 1n = 1 n = 1 n = 1

n = 2n = 2 n = 2 n = 2

n = 3n = 3 n = 3 n = 3

n = 4n = 4 n = 4 n = 4
Weight functions 
for DOFs

Symbol of element

Element with degrees 
of freedom (DOFs)

Legend Finite elements References

Dimension of element 
function space

Finite element exterior 
calculus notation

Element specification 
in FEniCS
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Idea, production and design by Douglas N. Arnold, Anders Logg and 
Mattias Schläger (2014) in cooperation with Simula Research Laboratory. 

This work is licensed under the Creative Commons Attribution – ShareAlike License.
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Numerical examples

The Hodge–Dirac problem allows us to find a vector field with
prescribed divergence and curl:

Divergence-free vector fields on the unit disk with curl x1x2.
Left: natural boundary conditions (zero normal component).
Right: essential boundary conditions (zero tangential component).
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Further considerations

Further considerations

On an embedded Riemannian manifold, subdivision into Euclidean
simplices introduces geometric errors. Holst and Stern (2012) have
addressed this with their work on geometric variational crimes.

This idea has been extended to adaptive mixed methods by Holst,
Mihalik and Szypowski (2014) but the case of Dirac operators on
Riemannian manifolds is yet to be tried.

Future research could include: numerical examples with more
dimensions, more realistic geometries and boundary conditions,
perturbed operators, eigenvalue problems, functional calculus,
different metric signatures, rougher domains . . .

(Holst and Stern 2012, Holst, Mihalik and Szypowski 2014)
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