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Subjects with parallel 45+ year histories

Finite Element Method

M. Zlamal, On the finite element method. Numer. Math., 12,
1968, pp. 394-409.

Clifford analysis

D. Hestenes, Multivector calculus. J. Math. Anal. and Appl., 24:2,
1968, pp. 313-325.
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Finite Element Method

The Finite Element Method solves boundary value problems based
on partial differential equations.

The original problem in a Hilbert space of functions is put into
variational form, and is mapped into a problem defined on a finite
dimensional function space, whose basis consists of functions
supported in small regions, such as simplices.

(Iserles 1996; Braess 2001).
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Finite element exterior calculus (FEEC)

FEEC is based on the Finite Element Method over Hilbert
complexes. These are cochain complexes where the relevant vector
spaces are Hilbert spaces.

For the de Rham complex, FEEC uses Hodge decomposition, the
exterior derivative and differential forms.

The numerical stability of the FEEC discretization depends on the
existence of a bounded cochain projection from a Hilbert complex
to a subcomplex. FEEC uses smoothed projections to obtain this
numerical stability.

(Arnold, Falk and Winther 2006, 2010; Christiansen and Winther 2008)
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An abstract Hodge—Dirac problem: setting

Let d be a closed, densely defined nilpotent operator on the
Hilbert space W, with domain V, and closed range 95.

In V, we use the inner product
(u, v)v = (u,v) + (du, dv).
We have the orthogonal Hodge decomposition

u=1upg Duy ®ug+x, YVuecW.

where 3 =8 @ $ is the null space of d.
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Example: Hilbert complexes

If (M,g) is an oriented, compact Riemannian manifold, then each
space of smooth k-forms has an L2-inner product,

(u,v)LGk(M) :/ (u,v)gvolg:/ U A *gv.
M M

This gives an adjoint operator d}, : Q*(M) — Q*=1(M) for each
k, eg.

d d d
I— 00— 0" M) =——= %) ———= 0 (U)—=01
d* d* d*

rad cur iv
0 C>(U) = X(U) m—= X(U) /= O (M) =2 0

div curl grad

The Hodge decomposition says that each f € LZ2QF(M) can be
orthogonally decomposed as f = da + d*3 + ~, where dy = 0,
d*~y = 0.
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An abstract Hodge—Dirac problem

We want to solve the problem Du = f — fg,
where D := d + d* is the abstract Hodge—Dirac operator.

Consider the following mixed variational problem:
Find (u,p) € V x $ satisfying

(du, U> + <ua d’U) + (P, ’U> = <f7v>7 Yv eV, (1)
(u’ q> =0, Vq € 9.

To show that this problem is well-posed, it suffices to prove the
inf-sup condition for the symmetric bilinear form

B(u,p;v,q) := (du,v) + (u,dv) + (p,v) + (u,q)

onV X $.



Hodge—Dirac discretization
LDiscretization of the Hodge—Dirac operator

The problem is well-posed

Theorem 2.4 (LS 2014)

There exists a constant v > 0, depending only on the Poincaré
constant cp, such that for all non-zero (u,p) € V X $, there
exists a non-zero (v,q) € V X $ satisfying

B(u,p;v,q) 2 y(llully + eI (lvlly + llal)-

Proof.
(hint). Consider the test functions

vi=p+pt+du, q:=ug,

where p € 31 is the unique element such that dp = uss. O
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A corresponding discrete problem

Suppose Vi, C V is a Hilbert subspace, with a bounded projection
7yt V. — Vi, such that ,d = dmy,.

Consider the discrete problem:

Find (un,pr) € Vi X 9, satisfying

(dup, vp) + (un,dvp) + (Pryvn) = (frvn), Yon € Vi, (2)
<uha Qh> =0, Van € Hn.-

This problem is well-posed, with a discrete inf-sup condition, where
the constant ~;, depends only on ¢p and the norm ||my||.
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An error estimate

Theorem 3.4 (LS 2014)

Let (u,p) be the solution to (1) and (un,pr) be the solution to
(2). If the projections =}, are V-bounded uniformly, independently
of h, then the error can be estimated by

R I
< C| inf — inf — inf ||Pyu —
<C (jnf llu=vlly + inf o~ ally + s jnf [Pau—vll ).

where p := ||(1 — 7)) Py]|
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The Hodge—Laplace problem

The abstract Hodge—Laplace operator is L = D? = dd* + d*d,
defined on the domain D(L) = D~ 3(V NV*) C VN V* with
kernel M (L) = N (D) = 9.

The Hodge—Laplace problem is:

Given f € W, find (u,p) € (D(L) NN (L)1) @ N(L)
such that
Lu+p=f.

To solve this, we can solve Dw + p = f, and then solve Du = w.
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The mixed variational form

The mixed variational form of the Hodge—Laplace problem is:
Find (o, u,p) € V X V X $ such that

(oy7) — {u,dT) =0, V1T €YV,
(do,v) + (du,dv) + (p,v) = (f,v), Vv €V, (3)
<ua q) =0, Vq € 9.



Hodge—Dirac discretization
LDiscretization of the Hodge Laplacian

The discrete Hodge—Laplace problem

The corresponding discrete Hodge—Laplace mixed variational
problem is:

Find (O’h, uh,ph) € Vi, X Vi, X $p such that

(Ohys Th) — (Un,d7h) = 0, VTh € Vi,
(don, ve) + (dun, dvr) + (Phsvr) = (frvn), Yon € Vi, (4)
(4h,qn) =0, Van € Hn.-

We can solve the discrete Hodge—Laplace problem by first finding

the solution (wp, pr) € Vi X $Hp of the Hodge—Dirac problem for

f. then finding the solution (up,0) € Vj x $,, of the Hodge—Dirac
problem for wy. Then (wp, — dup, un, pn) solves (4).
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Relationship to the discrete Hodge Laplacian

Theorem 4.4 (LS 2014)

Under the hypotheses of Theorem 3.4, if (o,u,p) EV X V X $
solves (3) and (oh, un,Pr) € Vi X Vi, X $j, solves (4),
then we have the error estimate

llo — onllv + |lu — unllv + ||p — prl|
<C| inf |l — T inf ||lu—v inf —
< ¢ jng llo = 7llv + ing llw = ollv + inf 1o = alv

inf |Pyu — v .
+ 1 inf [Pav = vllv )
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The periodic table of finite elements

The elements commonly used in finite element exterior calculus
also yield a stable discretization of the Hodge—Dirac problem.

These elements, including the P, and P~ families of
piecewise-polynomial differential forms on simplicial meshes
(Arnold Falk and Winther, 2006, 2010) and the more recent S,
family on cubical meshes (Arnold, 2013; Arnold and Awanou,
2014) give subcomplexes of the L? de Rham complex with
bounded commuting projections.

The P, and P, families have been implemented in FEniCS and
can be used to solve the discrete Hodge—Dirac problem.

(Arnold, Falk and Winther 2006, 2010; Arnold 2013; Arnold and Awanou, 2014; Logg et al. 2012)



Hodge—Dirac discretization

L Numerical examples

Periodic Table of the Finite Elements
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The Hodge—Dirac problem allows us to find a vector field with
prescribed divergence and curl:
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Divergence-free vector fields on the unit disk with curl z;z5.
Left: natural boundary conditions (zero normal component).
Right: essential boundary conditions (zero tangential component).
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Further considerations

On an embedded Riemannian manifold, subdivision into Euclidean
simplices introduces geometric errors. Holst and Stern (2012) have
addressed this with their work on geometric variational crimes.

This idea has been extended to adaptive mixed methods by Holst,
Mihalik and Szypowski (2014) but the case of Dirac operators on
Riemannian manifolds is yet to be tried.

Future research could include: numerical examples with more
dimensions, more realistic geometries and boundary conditions,
perturbed operators, eigenvalue problems, functional calculus,
different metric signatures, rougher domains . ..

(Holst and Stern 2012, Holst, Mihalik and Szypowski 2014)
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