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Hadamard matrices

When is the maximum determinant attained?

The Hadamard maximal determinant problem is:
“Given n, what is the largest possible determinant of an n× n
matrix H with elements ±1?”

Hadamard (1893) established an upper bound nn/2, which is only
attainable if the order n equals 1, 2, or a multiple of 4, and which
only occurs when the rows of the matrix H are orthogonal.
In this case

HTH = HHT = nI(n).

It is a famous open problem, conjectured by Paley (1933), whether
a Hadamard matrix exists for each order a multiple of 4.
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Hadamard matrices

Applications of Hadamard matrices

Applications include:

I Error-correcting codes.
Mariner 9 (1971) used a code based on Hadamard matrices.

I Signal processing.
The Walsh-Hadamard transform.

I Cryptography.
The Walsh-Hadamard transform is used in the definition of
bent functions.

I Quantum computing.
Hadamard gates are well-known.

I Spectroscopy.
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Hadamard matrices

What is known about the Hadamard conjecture?

The conjecture is known to be true for all orders n = 4k < 668
(Kharaghani and Tayfeh-Rezaie, 2004).

There are density results due to de Launey and Gordon (2009,
2010), related to work by Horadam (2010), Seberry (1976), and
Craigen and Kharaghani (1995, 2006).

If S(x) is the number of n 6 x for which a Hadamard matrix of
order n exists, the Hadamard conjecture implies that S(x) > x/4.
The result of de Launey and Gordon (2010) is

S(x) >
x

log x
exp

(
(C + o(1))(log log log x)2

)
.
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Hadamard matrices

Equivalence classes of Hadamard matrices

If a Hadamard matrix H is multiplied on the left or on the right by
a signed permutation matrix S, the result is again a Hadamard
matrix.

These two types of operation are used to define an equivalence
class where Hadamard matrices G and H are Hadamard equivalent
if and only if there exist signed permutation matrices S and T such
that

SG = HT.

The standard representative of each Hadamard equivalence class is
usually taken to have positive first row and first column.
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Kronecker product constructions (1)

We aim to find

Ak ∈ {−1, 0, 1}n×n, Bk ∈ {−1, 1}p×p, k ∈ {1, . . . , n},

such that

G =

n∑
k=1

Bk ⊗Ak, GGT = npI(np), (G1)

H =

n∑
k=1

Ak ⊗Bk, HHT = npI(np). (H1)

(Gastineau-Hills 1980, 1982)



New constructions for Hadamard matrices

Kronecker product constructions for Hadamard matrices

Kronecker product constructions (2)

Since

HHT =

n∑
j=1

Aj ⊗Bj

n∑
k=1

AT
k ⊗BT

k ,

we impose the stronger conditions

n∑
j=1

AjA
T
j ⊗BjB

T
j = npI(np),

n∑
j=1

n∑
k=j+1

(
AjA

T
k ⊗BjB

T
k +AkA

T
j ⊗BkB

T
j

)
= 0. (H2)

Similarly, (G2) with Kronecker product reversed.
(Gastineau-Hills 1980, 1982)
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Kronecker product constructions (3)

Stronger conditions:

n∑
k=1

AkA
T
k ⊗BkB

T
k = npI(np),

AjA
T
k ⊗BjB

T
k +AkA

T
j ⊗BkB

T
j = 0 (j 6= k). (H3)

Similarly, (G3) with Kronecker product reversed.
(Gastineau-Hills 1980, 1982)
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Kronecker product constructions (4)

Still stronger conditions (∗ is Hadamard product):

Aj ∗Ak = 0 (j 6= k),

n∑
k=1

Ak ∈ {−1, 1}n×n,

AkA
T
k = I(n),

n∑
k=1

BkB
T
k = npI(p),

AjA
T
k + λjkAkA

T
j = 0 (j 6= k),

BjB
T
k − λjkBkB

T
j = 0 (j 6= k),

λjk ∈ {−1, 1}. (4)

(Gastineau-Hills 1980, 1982)
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Example: Sylvester-like construction

A1 =

[
1 .
. −

]
, A2 =

[
. 1
1 .

]
⇒ λ12 = 1

⇒ We need B1B
T
1 +B2B

T
2 = 2pI(p), B1B

T
2 −B2B

T
1 = 0,

e.g.

B1 =

[
1 1
1 −

]
, B2 =

[
1 −
1 1

]
,

G =


1 1 1 −
1 − − −
1 1 − 1
1 − 1 1

 , H =


1 1 1 −
1 − 1 1
1 − − −
1 1 − 1

 .
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Example: Anti-amicable construction

A1 =

[
1 .
. 1

]
, A2 =

[
. 1
1 .

]
⇒ λ12 = −1

⇒ We need B1B
T
1 +B2B

T
2 = 2pI(p), B1B

T
2 +B2B

T
1 = 0,

e.g.

B1 =

[
− 1
1 1

]
, B2 =

[
− −
− 1

]
,

G =


− − 1 −
− − − 1
1 − 1 1
− 1 1 1

 , H =


− 1 − −
1 1 − 1
− − − 1
− 1 1 1

 .
(Gastineau-Hills 1980, 1982)
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More examples

Williamson-like construction (uses 3 amicable B matrices):

A1 = I(4), λ1k = λj1 = −1,
λjk = 1, (j 6= k), j, k ∈ {2, 3, 4}.

Octonion-like construction (uses 7 amicable B matrices):

A1 = I(8), λ1k = λk1 = −1,
λjk = 1, (j 6= k), j, k ∈ {2, . . . , 8}.

(Gastineau-Hills 1980, 1982)
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Kronecker product constructions for Hadamard matrices

Hurwitz-Radon limit

A theorem of Radon puts an upper limit of 8 on the order n such
that

Aj ∗Ak = 0 (j 6= k),

n∑
k=1

Ak ∈ {−1, 1}n×n,

AkA
T
k = I(n),

A1A
T
k −AkA

T
1 = 0, AjA

T
k +AkA

T
j = 0 (1 < j < k).

(Radon 1922, Geramita and Pullman 1974, Geramita and Seberry 1979)
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Kronecker product constructions for Hadamard matrices

Some Williamson and Octonion constructions

Osborn (2011) classified the Hadamard matrices that can be
constructed via the Williamson and the Octonion constructions for
p up to 5, by Hadamard equivalence class.

Williamson:
Exactly 1 equivalence class for order 12 (1 class in total).
Exactly 2 equivalence classes for order 20 (3 classes in total).

Octonion:
Exactly 4 equivalence classes for order 24 (60 classes in total).
Exactly 72 equivalence classes for order 40
(more than 3.66× 1011 classes in total).

(Osborn 2011)
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Kronecker product constructions for Hadamard matrices

Recap: ingredients

We need n-tuples (A1, . . . , An), (B1, . . . , Bn), with

Ak ∈ {−1, 0, 1}n×n,

Bk ∈ {−1, 1}p×p,

satisfying the conditions (4).

For the A matrices, we look at signed groups, Clifford algebras,
and at sets of signed permutation matrices in general.

For the B matrices, we look at graphs of amicability and
anti-amicability.
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Signed groups, Clifford algebras and representations

Clifford algebras via signed groups (1)

Gp,q is extension of Z2 by Zp+q
2 , defined by the signed group

presentation

Gp,q :=

〈
− 1, e{k} (k ∈ Sp,q) |

e2{k} = −1 (k < 0), e2{k} = 1 (k > 0),

e{j}e{k} = −e{k}e{j} (j 6= k)

〉
,

where Sp,q := {−q, . . . ,−1, 1, . . . , p}. |Gp,q| = 21+p+q.

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Signed groups, Clifford algebras and representations

Clifford algebras via signed groups (2)

Multiplication in Zp+q
2 is isomorphic to XOR of bit vectors, or

symmetric set difference of subsets of Sp,q,
so elements of Gp,q can be written as ±eT , T ⊂ Sp,q.

Gp,q extends to the real Clifford algebra Rp,q, of dimension 2p+q.
For x ∈ Rp,q,

x =
∑

T⊂Sp,q

xTeT .

There are 2p+q basis elements eT .

The element −1e∅ in Gp,q is identified with −1 in R.
(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Signed groups, Clifford algebras and representations

Representations for Gm,m and Rm,m (1)

Real monomial representations for Gm,m and Rm,m are generated
by Kronecker products of the 2× 2 matrices

I(2), J :=

[
. −
1 .

]
, K :=

[
. 1
1 .

]
.

These representations are faithful: Rm,m is isomorphic to R2m×2m .

Thus R2m×2m has a basis consisting of 4m real monomial matrices.

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Signed groups, Clifford algebras and representations

Representations for Gm,m and Rm,m (2)

Pairs of basis elements of Rm,m either commute or anticommute.

Representations of basis elements of Rm,m are either symmetric or
skew, and so the matrices Aj , Ak satisfy

AkA
T
k = I(2m), AjA

T
k + λjkAkA

T
j = 0 (j 6= k), λjk ∈ {−1, 1}.

We can choose n := 2m of these such that

Aj ∗Ak = 0 (j 6= k),

n∑
k=1

Ak ∈ {−1, 1}n×n.

(Porteous 1969, 1995; Lam 1973; Gastineau-Hills 1980, 1982; Lounesto 1997, L 2005)
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Signed groups, Clifford algebras and representations

Example: R2,2 (1)

The real Clifford algebra R2,2 is isomorphic to the real matrix
algebra R4×4.

The corresponding frame group G2,2 is generated as a signed
group by the four matrices[

1 .
. −

]
⊗
[
. −
1 .

]
,

[
. −
1 .

]
⊗
[
1 .
. 1

]
,[

1 .
. −

]
⊗
[
. 1
1 .

]
,

[
. 1
1 .

]
⊗
[
1 .
. 1

]
.
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Signed groups, Clifford algebras and representations

Example: R2,2 (2)

The group has 32 elements and the basis of R2,2 has 16 elements.
The basis matrices form 4 equivalence classes of 4 elements each,
where equivalence is given by the support. To form a 4-tuple of
basis matrices satisfying (4), we take a transversal, for example,

A1 :=


− . . .
. 1 . .
. . − .
. . . 1

 , A2 :=


. 1 . .
1 . . .
. . . −
. . − .

 ,

A3 :=


. . 1 .
. . . −
− . . .
. 1 . .

 , A4 :=


. . . 1
. . 1 .
. 1 . .
1 . . .

 .
In this case, λ1,2 = λ1,3 = λ1,4 = λ2,3 = λ2,4 = λ3,4 = 1.
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Signed groups, Clifford algebras and representations

Example: R2,2 (3)

An exhaustive enumeration of the 44 = 256 different 4-tuples of
4× 4 basis matrices reveals six inequivalent graphs of amicability:

A0000:
8 cases

A1111:
24 cases

A2110:
96 cases

A2222:
24 cases

A3221:
96 cases

A3333:
8 cases

Solid: λj,k = −1, dashed: λj,k = 1.
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Signed permutation matrices (1)

So, for n = 2m, we can always use a real representation of a
Clifford algebra to construct an n-tuple of {−1, 0, 1} ingredient
matrices of satisfying our condition (4).

But what can we say about the set of all n-tuples for such n, and
what happens when n is not a power of 2?

We recap these conditions.

Aj ∗Ak = 0 (j 6= k),
n∑

k=1

Ak ∈ {−1, 1}n×n, (4a)

AkA
T
k = I(n), (4b)

AjA
T
k + λjkAkA

T
j = 0 (j 6= k), (4c)



New constructions for Hadamard matrices

Signed groups, Clifford algebras and representations

Signed permutation matrices (2)

So, each Ak is a signed permutation matrix. If we multiply each
Ak on the left by some fixed signed permutation matrix S, we
permute and change the signs of the all the corresponding rows of
each Ak, so (4a) is still satisfied.

Since SST = I(n), (4b) and (4c) are also satisfied, and in
particular, multiplication by S does not affect the values of λj,k in
(4c).

Similarly, if we multiply each Ak on the right by S.

We therefore have an equivalence class of n-tuples under these two
types of transformation, and without loss of generality, can set
A1 = I(n). In this representative case, each of the other Ak, k > 1
must be symmetric or skew, with zero diagonal.
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Signed groups, Clifford algebras and representations

Symmetric Latin squares (1)

If we now take a linear combination of the corresponding
permutation matrices Pk = |Ak|, we have a symmetric Latin
square with constant diagonal. This type of Latin square must
have even order.

Sequence A003191 in Sloane’s Online Encyclopedia of Integer
Sequences lists the number of such Latin squares for each even
order. The entire listed sequence is

1, 1, 6, 5972, 1 225 533 120,

corresponding to orders 2, 4, 6, 8 and 10, respectively.

The sole examples of orders 2 and 4 can be obtained via the
Clifford algebra representation.
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Signed groups, Clifford algebras and representations

Symmetric Latin squares (2)

Order 2:

[
a b
b a

]

Order 4:


a b c d
b a d c
c d a b
d c b a


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Signed groups, Clifford algebras and representations

Symmetric Latin squares (3)

Order 6:


a b c d e f
b a f e c d
c f a b d e
d e b a f c
e c d f a b
f d e c b a




a b c d e f
b a f c d e
c f a e b d
d c e a f b
e d b f a c
f e d b c a




a b c d e f
b a e c f d
c e a f d b
d c f a b e
e f d b a c
f d b e c a




a b c d e f
b a e f d c
c e a b f d
d f b a c e
e d f c a b
f c d e b a




a b c d e f
b a d e f c
c d a f b e
d e f a c b
e f b c a d
f c e b d a




a b c d e f
b a d f c e
c d a e f b
d f e a b c
e c f b a d
f e b c d a


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Symmetric Latin squares (4)

Recalling condition (4c),

AjA
T
k + λjkAkA

T
j = 0 (j 6= k),

we see that AjA
T
k must either be symmetric or skew, and so each

corresponding product of permutation matrices PjP
T
k for our

representative case must be symmetric, for each pair j, k > 1.

If we enumerate all six cases of symmetric Latin squares of order 6
with constant diagonal, we find that none of these cases yields
permutation matrices P2, P3 with P2P

T
3 symmetric.
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Anti-amicable pairs of {−1, 1} matrices

Given the Ak, this fixes λjk.

We now must find an n-tuple of {−1, 1} matrices with a
complementary graph of amicability and anti-amicability.

For anti-amicable pairs of matrices in {−1, 1}p×p,

B1B
T
2 +B2B

T
1 = 0,

therefore B1B
T
2 is skew, so p must be even.

(Gastineau-Hills 1980, 1982)
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Graphs of amicability and anti-amicability

{−1, 1}2×2, Amicable, Anti-amicable
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Graphs of amicability and anti-amicability

{−1, 1}2×2, B1B
T
1 +B2B

T
2 = 4I(2)
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Graphs of amicability and anti-amicability

{−1, 1}2×2, B1B
T
1 +B2B

T
2 +B3B

T
3 +B4B

T
4 = 8I(2)

An exhaustive search of the
(
19
4

)
= 3876 distinct multisets of 4

matrices of type {−1, 1}2×2 reveals seven inequivalent graphs:

B1111:
36 cases

B2211:
72 cases

B2220:
32 cases

B2222:
52 cases

B3221:
168 cases

B3322:
120 cases

B3333:
138 cases

Solid: λj,k = −1, dashed: λj,k = 1.
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