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Abstract

This thesis concentrates on a set of problems and approaches relating to the gener-

ation and analysis of spherical codes.

The work was conducted at the University of New South Wales between 2002

and 2006, during a short visit to Vanderbilt University in 2004, and at the University

of Sydney in 2006.

The key results include:

1. A description of an equal area partition of the unit sphere Sd called the EQ

partition.

2. A detailed description of the EQ algorithm which produces the EQ partition.

3. Proofs that EQ partitions are equal area partitions with small diameter.

4. A detailed description of the construction of a spherical code called the EQ

code, based on the EQ partition.

5. A proof that the sequence of EQ codes is well separated.

6. An examination of the suitability of the EQ codes for polynomial interpola-

tion.

7. An examination of the packing density of the EQ codes.

8. Modified constructions of the EQ codes to allow nesting or to maximize the

packing radius.

9. A scheme to use the EQ partitions and EQ codes for spherical coding and

decoding.

v



10. A proof that for 0 < s < d a sequence of Sd codes which is well separated and

weak star convergent has a Riesz s energy which converges to the correspond-

ing energy double integral.

11. A bound on the rate of convergence of Riesz s energy given the rate of con-

vergence to zero of the spherical cap discrepancy.

12. A comparison of Coulomb energy estimate for S2 spherical designs given in [73]

with estimates obtained using only the separation and the estimated spherical

cap discrepancy of the spherical designs.

13. A proof that the EQ codes are weak star convergent.

14. Estimates of the rate of convergence to zero of the spherical cap discrepancy

of EQ codes.

15. Estimates of the rate of convergence of Riesz s energy of EQ codes to the

energy double integral.
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Chapter 1

Introduction

“Il meglio è l’inimico del bene.”

(The best is the enemy of the good.)

– Voltaire, [158, “Art Dramatique”], translated in [157].

1.1 Good distributions of points on the sphere

This thesis explores the connections between a number of topics related to the

distribution of points on the unit sphere

Sd := {x ∈ Rd+1 | ‖x‖ = 1}, (1.1.1)

where ‖x‖ is the Euclidean norm of x, ie.

‖x‖2 =
d+1∑

k=1

x2
k. (1.1.2)

The unit sphere Sd defined by (1.1.1) is embedded in the vector space Rd+1 with

centre at the origin.

The topics which are explored in this thesis include partitions, approximation,

interpolation, quadrature and energy.

1



2 Chapter 1. Introduction

The distribution of points on the unit sphere is a subject area which has many

applications and which gives rise to a number of problems, many of which are un-

solved or are hard in the sense of computational complexity. Two major fields of

study which involve problems of point distributions on the unit sphere are approx-

imation theory and coding theory. These are discussed further in the following

sections. The study of the distribution of points on the unit sphere also arises

naturally in the fields of quantum information theory [125, 127, 126] and number

theory.

One key question addressed in this thesis is

“What is meant by a good distribution of points on the unit sphere?”

It has long been known that for d > 1 there is usually no single answer to this

question, in the sense that the most appropriate definition of goodness depends on

the requirements of the problem to be solved. For example, a set of 169 points

which approximately minimizes the Coulomb energy on S2 performs very poorly

when used to interpolate spherical polynomials of total degree at most 12. See

[162, pp. 212–217] for properties of the set computed by Fliege and Maier [56, p.

26] and [161] for the set of lower energy computed by Womersley.

Here, as usual in this thesis, we treat any two finite subsets X,Y ⊂ Sd as equiva-

lent if X can be mapped onto Y by an orthogonal transformation in Rd+1.

In many cases it is easier to reason about sequences of finite subsets of the unit

sphere, rather than a single finite subset in isolation. For example, we can use

various definitions of discrepancy [6, 64, 38] [30, Chapter 2] and convergence to

define the concept of asymptotic equidistribution of sequences of finite subsets of

the unit sphere [168, 39].

Also, it is often sufficient to find a sequence of finite subsets which is merely close

enough to optimal with respect to some criterion of goodness, rather than optimal.

This is because the associated optimization problem may be hard in the sense of

computational complexity [76, p. 333], and often exhibits many local minima or

maxima [134, p. 7]. Thus in many cases it is useful to find a construction for finite
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subsets of the unit sphere which is reasonably fast and which is reasonably good

with respect to one criterion or more.

1.2 Approximation on the sphere

The generation and evaluation of good finite subsets of the unit sphere is related in

a number of ways to the subject of approximation on the sphere.

The theory and practice of approximation on the unit sphere is a vast field with

many areas of application [70, 130]. These areas include computational chemistry

[163] , physics [106], astronomy [152, 111, 153], planetary science [97], geosciences

[51, Chapters 2, 4, 7 and 8] [58, 13, 59], medical imaging [124, Chapter 8], computer

vision [60], sensory physiology [80], bioinformatics [109] and biology [29].

The generic problems of approximation on the unit sphere include:

• Given a finite subset of the unit sphere, with corresponding function values,

find the closest member of a defined function set eg. [107];

• Given a function defined at all points on the unit sphere, or a defined subset

of the unit sphere, find the closest member of a defined function set;

• Given a differential or integral equation on the unit sphere, or a defined subset

of the unit sphere, find an approximate solution, eg. [110].

For some related surveys, see [52, 13].

1.3 Sphere packing, coding theory and communications theory

The connection between communications theory and the study of finite subsets of

higher dimensional unit spheres arguably began with Shannon’s seminal paper of

1959 [140]. This connection is so strong that a finite subset of the unit sphere is

often called a spherical code. This thesis adopts this terminology.

The study of spherical codes often emphasizes their packing and covering prop-

erties. Packing can be defined in terms of the minimum distance between the points

of a spherical code, and leads to the concept of a well separated sequence of codes.

Covering can be defined in terms of the maximum of the distance between any

point on the unit sphere and a point of the code, also known as the mesh norm.
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The study of packings and coverings on the unit sphere well predates Shannon and

could be said to have begun with the kissing problem of Newton and Gregory in

1694 [149, Chapter 5] [119, p. 875].

For a survey on coding theory which mentions its connections to spherical codes

and quantum information theory, see [26]. Other relevant papers on communica-

tions theory, coding theory and spherical codes include [164, 165, 66, 67, 82, 68, 156].

1.4 Energy as a criterion of goodness

Given a potential, usually a decreasing function of distance, we can define the energy

of a spherical code. For example, the Riesz s energy is defined using the Riesz r−s

potential [39, 24].

Even though a spherical code has minimal energy for a given potential, that does

not mean that such a code is universally “good”. For example, for any fixed d > 1

there are very few Sd codes which are known to minimize all completely monotonic

potentials. The number of such codes currently known is literally just a handful:

between 2 and 5 [33, Table 1, Theorem 1.2].

It is well known that for 0 < s < d an increasing sequence of minimal s energy

finite subsets of Sd is asymptotically equidistributed [39]. For d − 1 < s < d such

a sequence is also well separated [89]. In this thesis, we examine the concepts

of equidistribution, separation and energy from a different direction. We show

that for 0 < s < d, if a sequence of Sd codes is well separated and asymptotically

equidistributed, it has a well behaved s energy. A major part of this thesis is devoted

to the construction of just such a well-behaved sequence and the exploration of some

of its properties.

1.5 Organization and key results of this thesis

This thesis concentrates on a subset of problems and approaches relating to the

generation and analysis of spherical codes. The focus is on theory, construction

and computation rather than on particular applications. The organization and key

results of this thesis are listed below.



1.5. Organization and key results of this thesis 5

Chapter 2 of this thesis gives an overview and detailed definitions of the concepts

and structures which are addressed in this thesis.

Chapter 3 of this thesis describes an equal area partition of Sd. Building on a

partition algorithm for the unit sphere S2, as described by Rakh-manov, Saff and

Zhou [120] and Zhou [167], and an outline of a construction for S3, as discussed

by Saff [133] and Sloan [141] during 2003 to 2005, the EQ algorithm partitions a

unit sphere in any dimension into regions of equal area and small diameter. The

partition is called an EQ partition. The Matlab implementation of the EQ algorithm

is available via SourceForge [98]. Chapter 3 contains a detailed description of the

EQ algorithm and contains proofs that the EQ partitions are equal area partitions

with small diameter.

Chapter 4 of this thesis describes a spherical code, the EQ code, which uses the

EQ partition for its construction. Chapter 4 contains a detailed description of the

construction of the EQ code and a proof that the sequence of EQ codes is well

separated. Chapter 4 also

• examines the suitability of the EQ codes for polynomial interpolation,

• examines the packing density of the EQ codes,

• examines modified constructions to allow nesting or to maximize the packing

radius, and

• examines a scheme to use the EQ partitions and EQ codes for spherical coding

and decoding.

Chapter 5 of this thesis explores the relationships between weak star convergence,

spherical cap discrepancy, minimum separation and energy of spherical codes. A

sequence of spherical codes converges in the weak star sense if the corresponding

equal weighted quadrature rules converge to the integral for all continuous functions

on the sphere. The normalized spherical cap discrepancy of a spherical code is the

supremum over all spherical caps of the difference between the normalized area

of the cap and the proportion of points of the code which lie in the cap. Weak
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star convergence is equivalent to convergence to zero of normalized spherical cap

discrepancy. Chapter 5 contains

• a proof that for 0 < s < d a sequence of Sd codes which is well separated and

weak star convergent has a Riesz s energy which converges to the correspond-

ing energy double integral,

• a bound on the rate of convergence of energy given the rate of convergence to

zero of the normalized spherical cap discrepancy,

• a proof that the EQ codes are weak star convergent, estimates of the rate of

convergence to zero of the normalized spherical cap discrepancy, and estimates

of the rate of convergence of Riesz s energy to the energy double integral.

Recall that a spherical t-design is an equal weighted quadrature rule on the unit

sphere which is exact for all polynomials of degree up to t. In joint work with Hesse

[73] the author proved that for a well separated sequence of spherical designs on

S2 such that each t-design has (t + 1)2 points, the Coulomb energy has the same

first term and a second term of the same order as the minimum Coulomb energy

for S2 codes. Chapter 5 contains a comparison of this earlier energy estimate with

estimates obtained using only the separation and the estimated normalized spherical

cap discrepancy of these spherical designs.



Chapter 2

Preliminaries

“. . . plano vero sectum sphaericum circulum sectione repraesentat,

mentis creatae, quae corpori regendo sit praefecta, genuinam imaginem,

quae in ea proportione sit ad sphaericum, ut est mens humana ad di-

vanam, . . . ”

(. . . when intersected by a plane, the sphere displays in this section the

circle, the genuine image of the created mind, placed in command of the

body which it is appointed to rule; and this circle is to the sphere as the

human mind is to the Mind Divine, . . . )

– Kepler, [83, Book IV, pp. 119-120], quoted and translated in Pauli

[117, p. 161].

2.1 Some notation

This section describes some of the notation used in this thesis.

Sequences of spherical codes.

This thesis considers sequences of Sd codes of the form X = (X1, X2, . . .), with each

Sd code X` being a finite subset of Sd of the form X` := {x`,1, . . . ,x`,N`
} ⊂ Sd, with the

points of X` distinct, so that N` := |X`|.

7



8 Chapter 2. Preliminaries

The points of a spherical code are usually called codepoints as a reminder that

the code is a finite set and to distinguish between the codepoints and other points

or subsets of the unit sphere.

Intervals.

This thesis uses the standard notation for intervals on the real line, augmented

by a small amount of arithmetic for the purpose of abbreviation.

For example, the statement x ∈ [a, b) c (where c > 0) means a c 6 x < b c.

Monotonicity and limits.

The notation f(x) ↗ y as x→∞ means that f(x) is asymptotically monotonically

increasing with x, with limit y.

Similarly, f(x) ↘ y as x → ∞ means that f(x) is asymptotically monotonically

decreasing with x, with limit y.

2.2 Trigonometric functions and the Gamma function

Before plunging into the geometry of the sphere and related topics, we list some

properties, identities and estimates related to the well-known trigonometric func-

tions and the Gamma function [2, Chapter 6] [4, Chapter 1]. These prove to be

useful in estimates relating to various aspects of geometry on the sphere.

Trigonometric functions.

The following identities, the addition formulae for trigonometric functions are

well known and are used throughout this thesis.

For all real θ, φ, the identities

sin(θ + φ) = sin θ cosφ+ cos θ sinφ, cos(θ + φ) = cos θ cosφ− sin θ sinφ (2.2.1)

hold. These identities are easily proven using complex multiplication and Euler’s

formula which states that eiθ = cos θ + i sin θ for all real θ.
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Later we will need to compare sin θ with sin(θ + φ), for various θ and φ. The

following estimate is useful for this task.

Lemma 2.2.1. For all θ, φ ∈ R we have

sin(θ + φ)− sin θ = 2 sin
φ

2
cos

(
θ +

φ

2

)
. (2.2.2)

Therefore for φ ∈ (0, π], θ ∈ (0, π/2− φ/2] we have sin(θ + φ) > sin θ > 0.

We will also need the well known estimates

|cos θ| 6 1, (2.2.3)

and for ` > 0, θ 6= 0,

2`−1∑

k=0

(−1)k θ2k

(2k)!
< cos θ <

2∑̀

k=0

(−1)k θ2k

(2k)!
. (2.2.4)

The inequality (2.2.4) can be proven using Taylor’s theorem with the Lagrange

formula for the explicit remainder term [135, Theorem 11.6.1 and Corr. 11.6.2, pp.

730-731]. A simple proof of the non-strict version of this inequality appears in [14].

In the estimate below we assume that θ ∈ (0, ξ], ξ ∈ (0, π/2], and use the well-

known function

sinc θ :=
sin θ
θ

. (2.2.5)

We have the well-known estimate

sin θ ∈ [sinc ξ, 1] θ. (2.2.6)

The Gamma function.

Lemma 2.2.2. The Gamma function has the following well-known properties. For

proofs see the references given with each property.
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1. For x > 0,

Γ (x+ 1) = xΓ(x). (2.2.7)

For proof, see [4, (1.1.6)].

2. See [146, Chapter 13, Problem 1 (b), p. 287] or [4, (1.1.7), (1.1.8)] for proof

that

Γ(1) = Γ(2) = 1. (2.2.8)

3. See [146, Chapter 13, Problem 4, p. 288] or [4, (1.1.22)] for proof that

Γ
(

1
2

)
=
√
π. (2.2.9)

4. For x > 0, log Γ(x) is a strictly convex function of x. That is, for x, y > 0,

a ∈ (0, 1),

log Γ
(
ax+ (1− a)y

)
< a log Γ(x) + (1− a) log Γ(y). (2.2.10)

This is called the log-convexity of the Gamma function. For proof, see [132,

Chapter 6, Theorem 8.18, p. 192] or [4, Corollary 1.2.6, p. 13].

5. For x > 0 we have

Γ(2x) Γ
(

1
2

)
= 22x−1 Γ(x) Γ

(
x+

1
2

)
. (2.2.11)

This is called the Legendre duplication formula. For proof, see [4, Theorem

1.5.1, p. 22].

We now have the following estimates.

Lemma 2.2.3. For x > 3
2 we have

d

dx
log Γ(x) > 0. (2.2.12)
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Lemma 2.2.4. For x > 1 we have

Γ(2x) > 4x−1 Γ(x), (2.2.13)

with equality only when x = 1.

Lemma 2.2.5. For x > 0 we have

Γ
(
x+ 1

2

)

Γ(x)
<
√
x. (2.2.14)

Lemma 2.2.6. For x > 1 we have

Γ(x+ 1) 6 xx. (2.2.15)

with equality only when x = 1.

2.3 The geometry of the unit sphere

This section describes some well known but essential aspects of the geometry of Sd.

2.3.1 Small and great spheres and circles, generalized spheres

For the sphere Sd, for k ∈ {2, . . . , d}, a small sphere or small Sk is a non-empty

intersection of Sd with a k dimensional hyperplane, and a great k-sphere or great

Sk is the intersection of Sd with a k dimensional hyperplane through the origin of

Rd+1. If the hyperplane is 2 dimensional, we have a small circle or a great circle,

respectively. If the hyperplane is d dimensional, we have a small sphere or a great

sphere, respectively.

When this thesis uses the term “hyperplane” without qualification, this generally

means a d dimensional hyperplane in Rd+1.

A generalized sphere is either a sphere or a hyperplane.

2.3.2 Euclidean and spherical distances

The Euclidean distance between two points a,b ∈ Sd is defined via the Rd+1 norm to

be ‖a− b‖.
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The Euclidean inner product of two points a,b ∈ Sd is the usual inner product

in Rd+1, namely

a · b :=
d+1∑

k=1

akbk. (2.3.1)

We have ‖x‖2 = x · x = 1 for any x ∈ Sd.

Definition 2.3.1. The spherical distance s(a,b) of two points a,b ∈ Sd is defined as

s(a,b) := cos−1(a · b),

where the inner product is that of (2.3.1).

We extend this definition to distances between a point and a set, and distances

between sets. For example, s(x, Y ) is the infimum of the spherical distance between

point x and any point of the set Y ⊂ Sd.

We now recall a number of well known results relating to spherical distance.

First, for θ ∈ [0, π] we define the function

Υ(θ) := 2 sin
θ

2
. (2.3.2)

Lemma 2.3.2. For Sd,

1. The geodesics are great circles. More precisely, every geodesic is a constant

speed parameterization of an arc of a great circle.

2. The curve of shortest arc length between two points is an arc of a great circle,

with arc length up to π.

3. Spherical distance is the same as geodesic arc length, up to π.

4. The relationship between Euclidean distance and spherical distance is inde-

pendent of position in the following sense. For any two points a,b ∈ Sd,

‖a− b‖ = Υ
(
s(a,b)

)
, (2.3.3)
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where the function Υ is defined by (2.3.2).

5. The function Υ defined by (2.3.2) is continuous on [0, π] and monotonic in-

creasing on [0, π).

6. For α, β, α+ β ∈ [0, π] we have

Υ(α+ β) 6 Υ(α) + Υ(β) (2.3.4)

with equality only when α = 0 or β = 0.

7. As a result of Property 5, the function Υ has an inverse which is defined on

[0, 2]. For this inverse function Υ-1, for a, b, a+ b ∈ [0, 2] we have

Υ-1(a) + Υ-1(b) 6 Υ-1(a+ b), (2.3.5)

with equality only when a = 0 or b = 0.

8. For a,b ∈ Sd, ‖a− b‖ 6 s(a,b), with equality only when a = b.

9. For a,b ∈ Sd,

lim
a→b

‖a− b‖
s(a,b)

= 1. (2.3.6)

2.3.3 Spherical polar coordinates

Spherical polar coordinates describe a point a on Sd by using one longitude, α1 ∈ R,

and d−1 colatitudes, αi ∈ [0, π], for i ∈ {2, . . . , d}. The longitude α1 is taken modulo 2π

so that eg. the coordinates (0, α2, . . . , αd) and (2π, α2, . . . , αd) describe the same point.

The unit sphere Sd defined by (1.1.1) is embedded in the vector space Rd+1 with

centre at the origin.

A point a ∈ Sd can therefore be described by its spherical polar coordinates or

by its corresponding Cartesian coordinate vector.
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Definition 2.3.3. We define the spherical polar to Cartesian coordinate map ¯ by

¯ : R× [0, π]d−1 → Sd ⊂ Rd+1,

¯(α1, α2, . . . , αd) = (a1, a2, . . . , ad+1),

where

a1 := cosα1

d∏

j=2

sinαj , a2 :=
d∏

j=1

sinαj ,

ak := cosαk−1

d∏

j=k

sinαj , k ∈ {3, . . . , d+ 1}.

For example, if a point a ∈ S2 has spherical polar coordinates (φ, θ), its Cartesian

coordinates are ¯(φ, θ) = (sin θ cosφ, sin θ sinφ, cos θ).

For d > 1 the coordinate map ¯ defines the major colatitude to be the last one,

αd.

Besides taking the longitude modulo 2π, for d > 1 the coordinate map ¯ as given

by Definition 2.3.3 is not one-to-one. In particular, for any (β1, . . . , βd−1) ∈ R×[0, π]d−2,

for the North pole ed+1 we have

ed+1 := (0, . . . , 0, 1) = ¯(β1, . . . , βd−1, 0) (2.3.7)

and for the South pole, −ed+1, we have

−ed+1 := (0, . . . , 0,−1) = ¯(β1, . . . , βd−1, π). (2.3.8)

In this thesis, we identify each point of Sd with its Cartesian coordinate vector.

To reduce ambiguity, we use bold Roman lower case letters to stand for points, eg.

a, normal Roman lower case letters to stand for Cartesian coordinates, eg. a1, and

lower case Greek letters to stand for spherical polar coordinates, eg. α1.

The spherical polar coordinates for S2 can be described in terms of parallels of

latitude and meridians of longitude. Here we generalize these concepts to Sd.
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Definition 2.3.4. Let
◦
Sd denote the unit sphere Sd excluding the North and South

poles.

For a := ¯(α1, . . . , αd−1, αd) ∈
◦
Sd the parallel through a is

ª(a) := {¯(β1, . . . , βd−1, αd) | (β1, . . . , βd−1) ∈ [0, 2π)× [0, π]d−2} (2.3.9)

and the meridian through a is

:(a) := {¯(α1, . . . , αd−1, β) | β ∈ (0, π)}. (2.3.10)

2.3.4 Stereographic projection

The equator of Sd lies in the subspace orthogonal to the North pole, that is e⊥d+1,

where

a⊥ := {b ∈ Rd+1 | a · b = 0}. (2.3.11)

The hyperplane ed+1 + e⊥d+1 is parallel to the equator and passes through the North

pole.

The Stereographic projection

$ : Rd+1 \ (ed+1 + e⊥d+1) → Rd

based on the North pole ed+1 is defined by

$(x1, x2, . . . , xd, xd+1) :=
(x1, x2, . . . , xd)

1− xd+1
. (2.3.12)

Lemma 2.3.5. When restricted to Sd, the stereographic projection $ has the fol-

lowing well-known properties [79, Prop 3, p10].

1. The map $ is a one-to-one mapping from Sd \ ed+1 onto Rd.
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See also [45, Example 4.5, p. 19]. (Note: [123, Section 4.2, p. 112] defines

the stereographic projection in the inverse sense).

2. The map $ is conformal: it preserves angles. That is, at a point a ∈ Sd, the

angle between two smooth curves B and C passing through a is the angle α

between their respective tangent vectors. If a is not the North pole then when

we use $ to map Sd \ed+1 onto Rd, the curves B and C map to the curves $(B)

and $(C) respectively. The curves $(B) and $(C) pass though the point $(a)

with the angle between the tangent vectors corresponding to $(B) and $(C)

being α, the same angle as for B and C on Sd.

See also [71, P.1, pp. 14–16].

3. The map $ maps generalized spheres to generalized spheres. More specifically,

great and small spheres in Sd which do not pass through the North pole map

to spheres in Rd; and great and small spheres in Sd passing through the North

pole map to hyperplanes in Rd.

See also [71, P.7.3, p. 29].

Remarks.

1. The stereographic projection based on the South pole −ed+1 can be

defined as

$−ed+1(x1, x2, . . . , xd, xd+1) :=
(x1, x2, . . . , xd)

1 + xd+1
. (2.3.13)

2. The stereographic projection $a based on any other point a ∈ Sd

can be defined by first rotating the sphere Sd in the hyperplane

containing the meridian :(a), so that a rotates to the North pole,

then using the projection $.

3. Stereographic projection is much more widely known in the case of

S2. For S2, see for example [22] Section 5.2, Theorems 6, 8 and 7

respectively, where R2 is identified with C.
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2.3.5 Spherical caps, collars, zones and spherical rectilinear regions

For d > 1, for any point a ∈ Sd and any angle θ ∈ [0, π], the closed spherical cap Sd(a, θ)

is

Sd(a, θ) := {b ∈ Sd | s(a,b) 6 θ}, (2.3.14)

that is the set of points of Sd whose spherical distance to a is at most θ. The angle θ

is called the spherical radius of the cap. The notation drops the explicit dependence

on d where this is understood from the context.

Note that the centre of the cap Sd(a, θ) lies on the sphere Sd and is not the same

as the centre in Rd+1 of the small sphere ∂Sd(a, θ) which is the boundary of the cap.

In this thesis will also use a notation for spherical caps based on the Euclidean

distance between the centre of the cap and the boundary of the cap. If the spherical

radius is θ, this Euclidean distance is Υ(θ). We therefore define, for a ∈ Sd and

r ∈ [0, 2],

Sd
E(a, r) := Sd(a,Υ-1(r)). (2.3.15)

A closed spherical collar or annulus is the closure of the set difference between

two spherical caps with the same centre and different radii.

For d > 1, a zone is a closed subset of Sd which can be described by

Z(α, β) :=
{¯(γ1, . . . , γd) ∈ Sd | γd ∈ [α, β]

}
, (2.3.16)

where 0 6 α < β 6 π.

Z(0, α) is a North polar cap, that is a spherical cap with centre the North pole,

and Z(α, π) is a South polar cap. If 0 < α < β < π, Z(α, β) is a collar.

We note the following property of spherical distances and spherical caps on S2.

Lemma 2.3.6. Let S be a spherical cap of S2 with centre e and let a be any point

of S2 other than e or −e. Let D be the great circle through a, e and −e. Then D
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intersects the small circle ∂S at two points c and d, where c is the unique point of

∂S furthest from a and d is the unique point of ∂S closest to a.

The equatorial map.

Throughout this thesis, for d > 1 we identify the equator of Sd with the unit

sphere Sd−1 ∈ Rd.

We define the equatorial map Π :
◦
Sd → Sd−1, using the following construction.

Take any point a = ¯(a1, . . . , ad) of
◦
Sd and find the intersection between the equator

and :(a), the meridian through a. This is the point a′ = ¯(a1, . . . , ad−1,
π
2 ). Since we

identify the equator of Sd with the unit sphere Sd−1 we also identify a′ ∈ Sd with

Πa := ¯(a1, . . . , ad−1) ∈ Sd−1. We call Πa the equatorial image of a in Sd−1.

By a slight abuse of notation, for any S ⊂ Sd we define the equatorial image of

S to be ΠS := Π(S ∩ ◦
Sd). Thus the equatorial image of any zone of Sd is the whole of

Sd−1.

The equatorial map has the following properties.

Lemma 2.3.7. Take any point a ∈ ◦
Sd, and any other point q ∈ ◦

Sd where q does not

lie on the great circle defined by the meridian :(a).

Then :(a) and q define a great S2, which we denote by G(a,q). The meridians

:(a) and :(q) are also meridians of G(a,q), and all of the meridians of G(a,q) are

meridians of Sd.

The equator of G(a,q) is a great circle through Πa and Πq, and is the same as

the equatorial image Π
◦
G(a,q).

Lemma 2.3.8. Use the definitions and notation of Lemma 2.3.7. Then for any

X ⊂ ◦
Sd we have

Π
(
X ∩ ◦

G(a,q)
)

= ΠX ∩Π
◦
G(a,q). (2.3.17)

Lemma 2.3.9. Consider a closed spherical cap S(a,Φ) ⊂ ◦
S2, where the point a =

¯(α1, α2). The equatorial image, Π S(a,Φ) of S(a,Φ) is the same as the equatorial
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image Π ∂S(a,Φ) of the boundary of S(a,Φ). This image is an equatorial arc with the

formula

Π S(a,Φ) = Π ∂S(a,Φ) = S1(Πa, φ) = ¯ (
[α1 − φ, α1 + φ] (mod 2π)

)
, (2.3.18)

where

sinφ =
sinΦ
sin θ

. (2.3.19)

We now consider the equatorial image of a spherical cap in Sd.

Lemma 2.3.10. Consider a closed spherical cap S(a,Φ) ⊂ ◦
Sd, where

a = ¯(α1, α2, . . . , αd).

The equatorial image, Π S(a,Φ) of S(a,Φ) is the same as the equatorial image Π ∂S(a,Φ)

of the boundary of S(a,Φ). This image is a spherical cap in Sd−1 with the formula

Π S(a,Φ) = Π ∂S(a,Φ) = Sd−1(Πa, φ), (2.3.20)

where

sinφ =
sinΦ
sin θ

. (2.3.21)

Regions which are rectilinear in spherical polar coordinates.

To describe the recursive zonal equal area partition of Chapter 3, we need to

describe regions of the form

R = ¯ ([τ1, υ1]× . . .× [τd, υd]) , (2.3.22)
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where

τ1 ∈ [0, 2π), υ1 ∈ (τ1, τ1 + 2π], 0 6 τk < υk 6 π, k ∈ {2, . . . , d}. (2.3.23)

More specifically, we have the following definition.

Definition 2.3.11. For the pair of d-tuples (τ1, . . . , τd), (υ1, . . . , υd) ∈ R × [0, π]d−1 sat-

isfying (2.3.23) we define the region

R (
(τ1, . . . , τd), (υ1, . . . , υd)

)
:= {¯(α1, . . . , αd) | αk ∈ [τk, υk], k ∈ {1, . . . , d}} (2.3.24)

= ¯ ([τ1, υ1]× . . .× [τd, υd]) .

We define a RISC region of Sd to be a region of Sd of the form (2.3.24) – with

RISC being a near-acronym for “rectilinear in spherical polar coordinates”.

Each RISC region of Sd can be represented by the pair of d-tuples (τ1, . . . , τd),

(υ1, . . . , υd).

In particular, for d > 1, a North polar cap of Sd can be described as

R (
(0, 0, . . . , 0, 0), (2π, π, . . . , π, υd)

)
= ¯ (

[0, 2, π]× [0, π]d−2 × [0, υd]
)
,

and a South polar cap of Sd can be described as

R (
(0, 0, . . . , 0, τd), (2π, π, . . . , π, π)

)
= ¯ (

[0, 2π]× [0, π]d−2 × [τd, π]
)
.

Each RISC region of Sd has 2d pseudo-vertices, each of which is a d-tuple in

spherical polar coordinates R× [0, π]d−1. The term “pseudo-vertex” is used because

we may have degenerate cases where the points of Sd corresponding to two or more

of these 2d d-tuples coincide, as must happen when τ1 = 0 and υ1 = 2π. In these

degenerate cases, the corresponding point of Sd may be an interior point of the

region, or a point where the boundary of the region is smooth. Examples are:
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1. The pair
(
(0, 0), (2π, υ2)

)
yields the four pseudo-vertices

{
(0, 0), (2π, 0), (0, υ2), (2π, υ2)

}

and the region R (
(0, 0), (2π, υ2)

)
which is a North polar cap of S2. The pseudo-

vertices (0, 0) and (2π, 0) both correspond to ¯ (
(0, 0)

)
, which is the North pole,

an interior point of R (
(0, 0), (2π, υ2)

)
.

2. The pair
(
(0, 0, τ3), (2π, υ2, υ3)

)
yields the eight pseudo-vertices

{
(0, 0, τ3), (2π, 0, τ3), (0, υ2, τ3), (2π, υ2, τ3),

(0, 0, υ3), (2π, 0, υ3), (0, υ2, υ3), (2π, υ2, υ3)
}
.

and the region R (
(0, 0, τ3), (2π, υ2, υ3)

)
of S3 which is a descendant of a polar cap

in S2.

The following elementary relationship between RISC regions follows immediately

from Definition 2.3.11.

Lemma 2.3.12. The equatorial image of a RISC region of Sd is a region of Sd−1

which is also RISC. Specifically, we have

ΠR (
(τ1, . . . , τd−1, τd), (υ1, . . . , υd−1, υd)

)
= R (

(τ1, . . . , τd−1), (υ1, . . . , υd−1)
)
. (2.3.25)

The boundary ∂R of a RISC region R ⊂ Sd consists of a set of facets. In general,

each facet is a d − 1 dimensional rectangular prism in spherical polar coordinates,

defined by fixing one of the coordinates of R to be the high or low boundary value.

For example, the top facet of

R := R (
(τ1, . . . , τd−1, τd), (υ1, . . . , υd−1, υd)

)



22 Chapter 2. Preliminaries

is

Fd,↑ R := ¯ (
[τ1, υ1]× [τ2, υ2]× . . .× {τd}

)
, (2.3.26)

the bottom facet is

Fd,↓ R := ¯ (
[τ1, υ1]× [τ2, υ2]× . . .× {υd}

)
, (2.3.27)

the west facet of R is

F1,↓ R := ¯ ({τ1} × [τ2, υ2]× . . .× [τd, υd]
)
, (2.3.28)

and the east facet is

F1,↑ R := ¯ ({υ1} × [τ2, υ2]× . . .× [τd, υd]
)
. (2.3.29)

A facet which forms part of the boundary of a RISC region is called a boundary

facet.

If a facet has a colatitude which is fixed at 0 or π then the facet is said to be

degenerate. A degenerate facet is not a boundary facet, but rather an artifact of

the spherical polar coordinate system.

Also, if

R = ¯ (
[0, 2π]× [τ2, υ2]× . . .× [τd, υd]

)

then the east and west facets coincide and neither is a boundary facet.

If R does not intersect either the North or South poles of Sd, then ∂R must contain

at least a top facet and a bottom facet.

The top boundary of a region R ⊂ Sd is

∂↑R := ∂R ∩ Fd,↑ R, (2.3.30)
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the bottom boundary is

∂↓R := ∂R ∩ Fd,↓ R, (2.3.31)

and the top and bottom boundary is

∂lR := ∂↑R ∪ ∂↓R. (2.3.32)

A side facet is defined to be any boundary facet other than the top facet or the

bottom facet. In the case where all facets are boundary facets, the boundary ∂R

consists of the top and bottom facets and 2 (d− 1) side facets.

A side facet has either a fixed longitude, eg.

F1,↑ R = ¯ ({τ1} × [τ2, υ2]× . . .× [τd, υd]
)
,

or a fixed colatitude (other than the main colatitude), eg.

F2,↓ R = ¯ (
[τ1, υ1]× {υ2} × . . .× [τd, υd]

)
.

The side boundary of R is

∂↔R := ∂R \ ∂lR. (2.3.33)

Lemma 2.3.13. If R is a RISC region of Sd which does not intersect either the

North or South poles then ∂Π R is the image under Π of the side boundary of R. In

other words,

∂Π R = Π ∂↔R. (2.3.34)



24 Chapter 2. Preliminaries

2.3.6 The area of spheres and spherical caps

The area of a sphere.

We use σd to denote the Lebesgue area measure on Sd, and we often drop the

subscript where the dimension d is understood from the context.

For d > 0, the area of the sphere Sd ⊂ Rd+1 is given by [112, p. 1]

ωd := σd(Sd) =
2π

d+1
2

Γ(d+1
2 )

. (2.3.35)

Remarks. This usage of ωd agrees with Müller [112] and Reimer [124],

but not with Landkof [93, Chapter 1, 2, p. 45] or Andrews, Askey and

Roy [4, Section 9.6, p. 455], who would put ωd+1 where we have ωd.

The area of a spherical cap.

It is well known ([140, (21), p. 623], [112], [94, Lemma 4.1 p. 255]) that the

area of a spherical cap S(x, θ) of spherical radius θ and centre x is

Vd(θ) := σ (S(x, θ)) = ωd−1

∫ θ

0

sind−1 ξ dξ, (2.3.36)

independent of x.

It can be readily seen that V2(θ) = 4 π sin2
(

θ
2

)
and V3(θ) = π (2θ − sin(2θ)).

In this thesis, where we use the Euclidean notation for a spherical cap SE(x, R),

we may also need the area as a function of the Euclidean distance R. We therefore

define

VE,d(R) := σ (SE(x, R)) = ωd−1

∫ Υ-1(R)

0

sind−1 ξ dξ, (2.3.37)

independent of x. It is well known that the integral above can be expressed without

the use of trigonometric functions.
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Lemma 2.3.14. For R ∈ (0, 2] and any x ∈ Sd, the area integral VE,d(R) defined by

(2.3.37) can be evaluated by

VE,d(R) = ωd−1

∫ R

0

rd−1

(
1− r2

4

) d
2−1

dr. (2.3.38)

The area of a spherical cap can also be described using the incomplete Beta

function.

Lemma 2.3.15.

Vd(θ)
ωd

=
Vd(θ)
Vd(π)

=
B

(
sin2 θ

2 ; d
2 ,

d
2

)

B
(

d
2 ,

d
2

) =: I
(

sin2 θ

2
;
d

2
,
d

2

)
,

where B(x; a, b) is the incomplete Beta function [47] and B(a, b) is the Beta function.

The function I of Lemma 2.3.15 is variously called the incomplete Beta function

ratio [81, Chapter 25, p. 211], the regularized Beta function [160], the cumulative

distribution function of the Beta distribution. Somewhat confusingly, some authors

call I the incomplete Beta function [2, Section 26.5] [15].

The incomplete Beta function can be expressed as a hypergeometric function [2,

26.5.23], as

B(x; a, b) =
xa

a
2F1(a, 1− b; a+ 1;x). (2.3.39)

See [15, (1)] for a related expression. As an immediate consequence, we can express

V in terms of a hypergeometric function, as

Vd(θ) = ωd
2 x

d
2

d

2F1

(
d
2 , 1− d

2 ; d
2 + 1; sin2 θ

2

)

B
(

d
2 ,

d
2

) . (2.3.40)

We note that since Vd is defined using an integral, the derivative DVd is given by

DVd(θ) = ωd−1 sind−1 θ, (2.3.41)
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where the limit for the derivative is defined from the right (above) at 0, and from

the left (below) at π.

The following properties of the function V are well known.

Lemma 2.3.16. The function V as defined by (2.3.36) has the following properties:

1. V is smooth.

2. V is monotonic increasing in (0, π).

3. V(0) = 0 and V is positive on (0, π].

4. DV is positive and monotonic increasing in (0, π/2).

5. For θ, h > 0 and θ + h ∈ [0, π/2],

V(θ + h)− V(θ) ∈ h [DV(θ), DV(θ + h)] . (2.3.42)

6. For θ, h > 0, where 0 6 θ + h 6 π/2,

V(θ) + V(h) 6 V(θ + h). (2.3.43)

7. For θ ∈ [0, π],

DV(θ) = DV(π − θ).

8. For θ ∈ [0, π],

V(θ) + V(π − θ) = ωd. (2.3.44)

The spherical radius of a cap of given area.

To determine the spherical radius θ of a cap of area v we need to solve the

equation

Vd(θ) = v.
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By Lemma 2.3.16, Vd is a smooth non-negative monotonic increasing function

of θ, with Vd(0) = 0. It therefore has an inverse, which we will call Θd. We then have

Θd

(Vd(θ)
)

= θ, for θ ∈ [0, π],

Vd

(
Θ(v)

)
= v, for v ∈ [0, ωd]. (2.3.45)

Lemma 2.3.17. The function Θd satisfies

Θd(v) + Θd(ωd − v) = π. (2.3.46)

For brevity, the notation used in the remainder of this thesis usually omits the

explicit dependence of V and Θ on d, ie. we will write V(θ) for the area of a spherical

cap of spherical radius θ.

Estimates.

In the estimates below we assume that θ ∈ (0, ξ], ξ ∈ (0, π/2].

From (2.3.41) we have DV(θ) = ωd−1 sind−1 θ. Using the estimate (2.2.6) therefore

gives us

DV(θ) ∈ [(sinc ξ)d−1, 1] ωd−1θ
d−1,

so

V(θ) ∈ [(sinc ξ)d−1, 1]
ωd−1

d
θd. (2.3.47)

If we then substitute Θ(v) for θ, we obtain for v ∈ [0,V(ξ)],

Θ(v) ∈ [1, (sinc ξ)
1−d

d ]
(

d

ωd−1

) 1
d

v
1
d . (2.3.48)

The estimates (2.3.47) and (2.3.48) are crude. There are instances where we

need a sharper upper bound than that given by (2.3.47). The upper bound (2.3.47)
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is loose away from θ = 0, especially for large d. Other estimates, eg. the estimate

given by [57, Corollary 3.1 p. 467],

V(θ) <
ωd√
2π d

sind θ

cos θ
for θ ∈

(
0,
π

2

)
, (2.3.49)

are more accurate for large d for θ away from π/2. See also [140, V. pp. 623–624].

The estimate below is as simple as that of [57] and is tighter for d > 2.

Lemma 2.3.18. For d > 2 and θ ∈ [0, π/2) we have

V(θ) 6 ωd−1

d

sind θ

cos θ
, (2.3.50)

with equality only when θ = 0.

If we combine (2.3.47) with (2.3.50) we obtain

Corollary 2.3.19. For d > 2 and θ ∈ [0, π/2) we have

V(θ) ∈
[

1
sinc θ

,
1

cos θ

]
ωd−1

d
sind θ. (2.3.51)

The following estimate can be used to prove that (2.3.50) is tighter than (2.3.49)

when d > 2.

Lemma 2.3.20. For d > 2 we have

ωd

ωd−1
>

√
2π
d
. (2.3.52)

The following related estimates are also used in this thesis.

Lemma 2.3.21. For R ∈ (0, T ], T ∈ (0, 2] the normalized area

∗VE,d(R) :=
VE,d(R)
ωd

(2.3.53)
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can be estimated by

∗VE,d(R) ∈ [
CL,d(T ),CH,d

) Rd

d
, (2.3.54)

where

CL,d(T ) :=
(

1− T 2

4

) d
2−1

ωd−1

ωd
, CH,d :=

ωd−1

ωd
. (2.3.55)

Lemma 2.3.22. For d > 2 we have

(ωd−1

d

) 1
d ∈

[(
2π
d

) 1
2

, π
1
2

]
. (2.3.56)

Lemma 2.3.23. For d > 2 we have

(
1 +

1√
8πd

(ωd−1

d

) 1
d

)d

>
3
2

(2.3.57)

and

ωd−1

((
d

ωd−1

) 1
d

+ 1

)d−1

> 1. (2.3.58)

2.4 Partitions, diameter of a region

Partitions.

For the purposes of this thesis, we define an equal area partition of Sd in the

following way.

Definition 2.4.1. An equal area partition of Sd is a nonempty finite set P of

regions, which are closed Lebesgue measurable subsets of Sd such that

1. the regions cover Sd, that is

⋃

R∈P

R = Sd;
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2. the regions have equal area, with the Lebesgue area measure σ of each R ∈ P

being

σ(R) =
σ(Sd)
|P | ,

where |P | denotes the cardinality of P ; and

3. the boundary of each region has area measure zero, that is, for each R ∈ P ,

σ(∂R) = 0.

Note that conditions 1 and 2 above imply that the intersection of any two regions

of P has measure zero. This in turn implies that any two regions of P are either

disjoint or only have boundary points in common. Condition 3 excludes pathological

cases which are not of interest in this thesis.

Diameter of a region.

We also consider the Euclidean diameter of each region, defined as follows.

Definition 2.4.2. The diameter of a region R ∈ Sd ⊂ Rd+1 is

diam R := sup{‖x− y‖ | x,y ∈ R}.

The following definition is used in Chapters 3 and 5.

Definition 2.4.3. A set Z of partitions of Sd is said to be diameter-bounded with

diameter bound K ∈ R+ if for all P ∈ Z, for each R ∈ P ,

diam R 6 K |P |− 1
d .

2.5 Jacobi polynomials

For α, β > −1, the Jacobi polynomials P (α,β)
n are a sequence of polynomials which are

orthogonal on the interval [−1, 1] with weight function

w(α,β)(x) := (1− x)α (1 + x)β , (2.5.1)
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that is, orthogonal with respect to the inner product

〈f, g〉(α,β) :=
∫ 1

−1

f(x)g(x)w(α,β)(x) dx. (2.5.2)

They are obtained by applying the Gram-Schmidt orthogonalization process to the

monomials xn [148, Section 2.1, 2.2], and normalized by defining

P (α,β)
n (1) :=

(
n+ α

n

)
=

Γ(n+ α+ 1)
Γ(n+ 1) Γ(α+ 1)

=
(α+ 1)n

n!
. (2.5.3)

[148, (4.1.1), p. 58]. The last expression above uses the Pochhammer’s shifted

factorial [4, p. 2],

(x)n :=
n−1∏

k=0

(x+ k) =
Γ(x+ n)

Γ(x)
(−x /∈ N0).

Here and below, we also use the normalized Jacobi polynomials P̃
(α,β)
n defined

by

P̃ (α,β)
n (x) :=

P
(α,β)
n (x)

P
(α,β)
n (1)

. (2.5.4)

2.6 Reproducing kernel Hilbert spaces and polynomial spaces

Hilbert spaces.

A Banach space is a normed linear space which is complete, that is every Cauchy

sequence in the norm converges in the space. A Hilbert space is a Banach space

where the norm ‖·‖ is defined by an inner product 〈, 〉, such that for a complex

Hilbert space, ‖x‖2 = 〈x, x〉, and for a real Hilbert space, ‖x‖2 = 〈x, x〉.

This thesis sometimes deals with real Hilbert spaces of functions on Sd, notably

L2(Sd) with normalized inner product

〈f, g〉 :=
∫

Sd

f(x)g(x)d ∗σ(x), (2.6.1)
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where

∗
σ = ∗

σd :=
σd

ωd
. (2.6.2)

Certain finite dimensional Hilbert spaces are also defined and used below.

Kernels.

In this thesis, a kernel φ is a function from Sd × Sd to R, which is possibly

undefined on a set of measure zero.

This thesis usually deals with kernels which are a function of Euclidean or spher-

ical distance, eg. given u : (0, 2] → R we could have φ(x,y) := u(‖x− y‖); given

f : [−1, 1) → R we could have φ(x,y) := f(x · y).

Remarks. Landkof [93, Chapter I, 1, p. 43] uses the term M. Riesz

kernel to describe certain functions k : Rd+1 → R such that k(x) := u(‖x‖)

where u : R+ → R. This thesis does not use the term “kernel” in this

sense.

Reproducing kernel Hilbert spaces.

A reproducing kernel Hilbert space is a Hilbert space which is associated with

a reproducing kernel. For kernel φ and x ∈ Sd, define φx by φx(y) := φ(x,y). Then φ

is a reproducing kernel for a Hilbert space H of real functions on Sd if and only if

φx ∈ H and 〈φx, f〉 = f(x) for all x ∈ Sd and all f ∈ H.

Thus for a reproducing kernel we also have

‖φx‖2 := φ(x,x) (2.6.3)

for all x ∈ Sd.

Polynomial spaces on the unit sphere.

The notation used here parallels that of [124], [142] and [74].
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We use P([−1, 1]) to denote the real polynomials restricted to the interval [−1, 1]

and for any polynomial p ∈ P([−1, 1]) we define p̃ to be the normalized polynomial

p/p(1).

We use
∗
Pt(Sd) to denote the real polynomials on Rd+1, of homogeneous degree t,

restricted to Sd. This space is known [124, (4.1)] to have dimension

∗D(d, t) := dim
∗
Pt(Sd) =

(
t+ d

d

)
. (2.6.4)

We use Pt(Sd) to denote the real polynomials on Rd+1, of maximum total degree

t, restricted to Sd. This space is known [124, (4.4)] to have dimension

D(d, t) := dimPt(Sd) =
(
t+ d

d

)
+

(
t+ d− 1

d

)
=

(2t+ d)(t+ d− 1)!
t! d!

(2.6.5)

=
2t+ d

t!
(d+ 1)t−1 =

2t+ d

d!
(t+ 1)d−1, (2.6.6)

and is known [124, (4.31)] to be a reproducing kernel Hilbert space with inner

product

〈f, g〉 :=
∫

Sd

f(y)g(y) dσ(y) (2.6.7)

and reproducing kernel Φ(d+1)
t (x,y) := Φ(d+1)

t (x ·y), where the kernel polynomial Φ(d+1)
t

is defined by

Φ(d+1)
t :=

2
ωd

(d+ 1)t−1

(d
2 + 1)t−1

P
( d
2 , d

2−1)
t , (2.6.8)

that is

∫

Sd

f(y)Φ(d+1)
t (y · z) dσ(y) = f(z)

for all f ∈ Pt(Sd), z ∈ Sd.
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Remarks. Note that the kernel polynomial is defined on [−1, 1], but the

kernel itself is defined on Sd × Sd. It should be clear from the context

which function is meant.

Using (2.5.3) and (2.6.6) we have

Φ(d+1)
t (1) =

2
ωd

(d+ 1)t−1

(d
2 + 1)t−1

(d
2 + 1)t

t!
=

1
ωd

2t+ d

t!
(d+ 1)t−1 =

D(d, t)
ωd

, (2.6.9)

and therefore, using (2.5.4), we have

Φ(d+1)
t =

D(d, t)
ωd

P̃
( d
2 , d

2−1)
t . (2.6.10)

2.7 Separation and packing

By the minimum distance between points of a code X ⊂ Sd we mean the minimum

Euclidean distance, defined as follows.

Definition 2.7.1.

mindist(X) := min{‖x− y‖ | x,y ∈ X,x 6= y}. (2.7.1)

The problem of maximizing the minimum distance between points of a spherical

code is called the Tammes problem, after the botanist Pieter Merkus Lambertus

Tammes, who studied the problem in his investigation into the arrangement of

pores on pollen grains [150, Chapter 3, Section 1, pp. 62–71].

Well separated sequences of spherical codes.

Definition 2.7.2. We say that a sequence X of Sd codes is well separated if there

is a constant C∆ such that for all X` ∈ X ,

mindist(X`) > C∆N− 1
d

` ,

where N` = |X`|.
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If we use spherical rather than Euclidean distance in Definition 2.7.2, we obtain

an equivalent definition, but the separation constant may be different.

Packing radius.

The packing radius pradX of a code X ⊂ Sd is the half the minimum spherical

distance between codepoints of X.

pradX :=
Υ-1(mindistX)

2
. (2.7.2)

This is the maximum spherical radius ρ such that no two spherical caps of the

set {S(x, ρ) | x ∈ X} have an intersection with positive area.

Definition 2.7.3. A saturated packing of packing radius ρ is a packing of spherical

caps of packing radius ρ such that another cap cannot be added without moving the

existing caps.

We can create a saturated packing of spherical caps with packing radius ρ by

using a greedy algorithm. Place the first cap anywhere. Once i caps have been

placed, let xi+1 be a point of Sd which is at spherical distance ρ from the union of

the k caps. If there is no such point, let N := i and we are done. Otherwise let cap

i+ 1 have the centre xi+1.

Once we have finished the greedy algorithm, we see that no point of Sd is more

than 2ρ from the centre of a cap, otherwise we could have added another cap of

spherical radius ρ to the packing, continuing the greedy algorithm [164, p. 1091]

[165, Lemma 1, p. 2112]. We therefore have the following result.

Lemma 2.7.4. The centre points of a saturated packing of spherical caps on Sd

with packing radius ρ are the centre points of a covering of spherical caps on Sd

with spherical radius 2ρ. That is, if X is the spherical code whose codepoints are the
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centres of the packing caps, then

⋃

x∈X

S(x, 2ρ) ⊇ Sd. (2.7.3)

Packing density.

Definition 2.7.5. The packing density pdensX of a spherical code X ⊂ Sd is the

ratio of area of the union of packing caps to the area of Sd, that is

pdensX := |X| Vd(pradX)
ωd

. (2.7.4)

Voronoi cells.

Given a spherical code X ⊂ Sd, the Voronoi cell Vx corresponding to codepoint

x ∈ X consists of those points of Sd which are at least as close to the codepoint x

as they are to of any of the other codepoints of X [43] [44, Vol II, pp. 37, 41] [35,

‘Dirichlet regions’ p. 263] [17, ‘Dirichlet-Voronoi cells’ pp. 243–244].

2.7.1 Bounds

There are a number of bounds associated with spherical codes and the packing of

spherical caps on Sd. The bounds can be expressed in a number of ways.

For a given number of codepoints in a packing, there are lower and upper bounds

on the maximum packing radius and equivalently, lower and upper bounds on the

maximum of the minimum Euclidean separation.

For a given packing radius or minimum Euclidean separation there are lower

and upper bounds on the maximum number of codepoints in a packing.

Perhaps the simplest way to express these bounds is as bounds on the packing

density as a function of packing radius, minimum Euclidean separation or number

of codepoints.
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We therefore define the maximum density function for spherical codes as

maxpdens(d, ρ) := max {pdensX ⊂ Sd | pradX = ρ}. (2.7.5)

To allow easier comparison with many of the bounds quoted in the literature,

we also define A(d+1,∆2) to be the largest size of a Sd code with minimum distance

at least ∆ [50, Section 1.3]. More formally,

A(d+ 1,∆2) = max {|X| | X ⊂ Sd,mindistX > ∆}. (2.7.6)

The Chabauty-Shannon-Wyner lower bound.

The current situation for general lower bounds is considerably simpler than that

for upper bounds.

The Chabauty-Shannon-Wyner (CSW) lower bound on packing density is based

on the observation that for a packing to have maximum density for a given packing

radius ρ, the packing must be saturated for that radius. Lemma 2.7.4 then tells us

that the corresponding caps of radius 2ρ cover Sd and so we must have

maxpdens(d, ρ) > Vd(ρ)
Vd(2ρ)

. (2.7.7)

See also [50, Theorem 1.6.2, pp. 21–22].

For ρ ∈ (0, π
4 ) the estimate (2.3.51) then gives us

maxpdens(d, ρ) > cos(2ρ)
sinc ρ

sind ρ

sind(2ρ)

> 2−d cos(2ρ)
sinc ρ cosd ρ

> 2−d cos(2ρ). (2.7.8)

There are many specific constructions which supersede the CSW lower bound

[50, p. 22]. For example, the apple peeling codes of el Gamal et al. [49, p. 122]
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beat the CSW lower bound for at least S2 [66, Lemma 3], and the wrapped spherical

codes of Hamkins and Zeger [65, 66] beat the CSW lower bound in general.

In fact, any saturated packing on Sd with more than 2 codepoints must do better

than the CSW lower bound, because the covering caps of Lemma 2.7.4 must overlap.

Definition 2.7.6. For the purposes of this thesis, we define the Wyner ratio of a

spherical code X to be the ratio of the packing density pdensX to the CSW lower

bound corresponding to the packing radius pradX.

Thus if the Wyner ratio of the code X is less than 1, then X does not corre-

spond to a saturated packing, and X can in some sense be considered to be “poorly

packed”. A Wyner ratio of more than 1 does not necessarily mean that the corre-

sponding packing is saturated.

Upper bounds.

Over time, the upper bounds on the maximum packing density have increased in

tightness, sophistication and complexity. We have just used the naive packing bound

which simply says that the packing density is at most 1. The packing arguments

used in this thesis rely on this simple bound.

Below we briefly mention the more sophisticated bounds. More detailed discus-

sion of these bounds is beyond the scope of this thesis. For some deeper overviews,

more details and further references, see [65, Chapter 3], [66, Section II], [34, Chapter

1, Section 2], [50, Chapters 1 to 3], [19, Chapters 2 and 3].

The Rankin bounds.

For ∆ ∈ (
√

2, 2], Rankin’s first and second bounds [121, Theorem 1 (ii), (iii), p.

139] [34, Chapter 1, (59, 60), p. 27] [50, Section 1.4] state that

A(d+ 1,∆2) 6 min
(⌊

∆2

∆2 − 2

⌋
, d+ 2

)
. (2.7.9)

When ∆2

∆2−2 = d + 2 we have ∆2 = 2d+2
d+1 . The spherical code with d + 2 codepoints

on Sd with a squared minimum distance of 2d+2
d+1 consists of the vertices of a regu-
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lar spherical simplex, one of the Platonic solids of Rd+1. For S2, this is a regular

tetrahedron [34, Chapter 1, p. 27] [50, Section 1.5, p. 18].

Rankin’s third bound [121, Theorem 1 (iv), p. 139] [34, Chapter 1, (61), p. 27]

[50, Section 1.4] states that

A(d+ 1, 2) 6 2d+ 2. (2.7.10)

A minimum distance of
√

2 corresponds to a packing radius of π
4 . The spherical

code with 2d + 2 codepoints on Sd with packing radius π
4 consists of the vertices of

a regular cross polytope, another of the Platonic solids of Rd+1. For S2, this is a

regular octahedron [34, Chapter 1, p. 27] [50, Section 1.5, pp. 18–19].

Rankin’s paper also includes a theorem [121, Theorem 2, p. 193] which gives

a relatively simple bound on A(d + 1,∆2) for ∆ <
√

2. This bound has been largely

superseded by the more elaborate bounds mentioned below.

The linear programming bounds.

The linear programming bound is expressed via the following theorem which

follows from [42, Theorem 4.3, p. 368].

Theorem 2.7.7. Given ∆ ∈ (0, 2), let s := 1 − ∆2

2 . Let f be a real polynomial such

that

1. f(x) 6 0 for x ∈ [−1, s] and

2. the coefficients in the Gegenbauer expansion

f(x) =
t∑

k=0

fkP̃
( d
2−1, d

2−1)

k (x)

satisfy f0 > 0 and fk > 0 for k > 0.

Then

A(d+ 1,∆2) 6 f(1)
f0

. (2.7.11)
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The Levenstein bound [50, Section 2.5] [19, Section 2.5.1, pp. 18–19] is a mod-

erately complicated bound which uses a sequence of polynomials which satisfy the

linear programming criteria.

The Boyvalenkov-Danev-Boumova bound [21] [19, Section 3.7, pp. 57–61] [50,

Section 2.6] improves on the Levenstein bound by using polynomials of higher de-

gree.

The Pfender bound [118, Theorem 1.1, p2; Table 2, p. 14] improves on the linear

programming bound by enlarging the function space.

The Samorodnitsky bound [136, Proposition 1.1, Corollary 1.3, p. 387] is a lower

bound on the linear programming bound, which gives an indication of how much

improvement may be possible with bounds of this type.

The simplex bound.

If X is a Sd code with |X| > 2 and with minimum Euclidean distance ∆, consider

a regular spherical simplex T with the common Euclidean distance between the

vertices being ∆. Enclose each of the d + 1 vertices of T in a spherical cap of

spherical radius pradX = Υ-1(∆)
2 . Then the Fejes Tóth-Coxeter-Böröczky (simplex)

bound [50, Sections 3.4, 3.6] [18, Corollary 6.4.2, p. 182] says that the packing

density of X does not exceed the ratio of the area of the portion of the d + 1 caps

which lie inside T to the area of T . This ratio is given by a rather complicated

formula involving Schläfli functions, which is not repeated here because this bound

is not used in this thesis.

The simplex bound was proved by Fejes Tóth [55] for S2, and conjectured by

Coxeter [36] and proved by Böröczky [17] for Sd for d > 2.

This bound is asymptotically related to the Rogers bound [131]. See [65, Lemma

3.3, p. 31] for details.

The packing of small spherical caps in a larger cap.

In this thesis we consider bounds on the number of codepoints of a spherical

code lying within a spherical cap. In order to do this we need bounds on the packing
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density of equal spherical caps within a larger cap. For the purposes of this thesis,

we use the naive upper bound of packing density 1. This is sufficient to prove the

theorems included in this thesis.

For the sake of completeness, we mention here that there are tighter and more

sophisticated bounds on the number of equal spherical caps within a larger cap.

Böröczky [18, Theorem 4.4.2, Corollary 4.4.3, p. 114] proves that for S2, the

simplex bound applies to the case of two or more equal spherical caps of spherical

radius less then π
3 within a larger cap, giving a density less than π√

12
within the

larger cap.

Bezdek, Cohn and Radin [8, Theorem 8.3, p. 9] states that for S3, the density

of two or more equal spherical caps within a larger cap of spherical radius less than

π
2 is less than the Roger’s upper bound of 0.77963 . . ., and conjecture [8, Conjecture

8.2, p. 9] that the bound can be improved to π√
18

= 0.74048 . . .

In the general case of Sd, the recent paper of Barg and Musin [5] can be used to

find many improved bounds on the packing density of small spherical caps within

a larger cap. See especially [5, Corollary 3.4, Theorem 6.1, Corollary 8.2].

Bound on the number of codepoints within a spherical cap.

Lemma 2.7.8. Let X be a spherical code with minimum Euclidean distance mindistX

as per Definition 2.7.1, and choose ∆ ∈ (0,mindistX].

For x ∈ X define the counting function

g(R) := |X ∩ SE(x, R)| . (2.7.12)

Then

g(R) 6
∗VE(R+ ∆)
∗VE

(
∆
2

) 6 2d CH,d

CL,d(1)

(
R+ ∆

∆

)d

(2.7.13)
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and

g(R) 6 4d CH,d

CL,d(1)

(
R

∆

)d

+ 1. (2.7.14)

2.8 Communications theory and spherical codes

The multivariate standard Normal distribution Nd+1(0, I) in Rd+1 has the probability

density function [10, (29.6), p. 383–384]

Nd+1(0, I)(x) := (2π)−
d+1
2 exp

(
−‖x‖

2

2

)
=

d+1∏

k=1

1√
2π

exp
(
−x

2
k

2

)
. (2.8.1)

In other words, it is the product of d+1 independent standard Normal distributions.

This distribution has the property that the probability distribution function is

dependent only on the Euclidean distance from the origin. It can therefore be split

into a radial component and an angular component, where the angular component

is the uniform distribution over the sphere Sd [139, Section VII].

Shannon’s model of communication [138, 139] includes a source, a message en-

coder, a channel encoder, a channel, a channel decoder, a message decoder and

a receiver. The source may be discrete or continuous, but efficient communication

between the source and the channel encoder usually demands a discrete source code.

Gaussian source coding begins with a source which is a random Rd+1 variable

with a multivariate standard Normal distribution. It involves the creation of a

source code which is a finite set of points of Rd+1, and an algorithm which maps

Rd+1 to the code in such a way as to try to minimize the expected error between

the source signal and the image of the map, given the number of points [68].

Since the angular and radial components of the code are separable, it is possible

to code these separately. The encoding of the angular component can be treated

as the encoding of the uniform distribution over the sphere Sd into a spherical
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code. This type of encoding is also known as spherical quantization [65, Chapter 6]

[68, 77, 78, 156, 105].

As well as being a possible component of Gaussian source coding, spherical

quantization is studied for its own sake and for its application to purely angular

sources.

Gaussian channel.

In Shannon’s model of communication [138, 139] the codes used by the message

encoder and the channel encoder are separate and can be optimized independently

to match the communication environment. Shannon’s Gaussian channel model has

a signal which is a point of Rd+1, a transmitter which is limited in power, which

is proportional to distance of the point from the origin, and a channel which adds

Gaussian noise, that is noise with an uncorrelated multivariate Normal distribution

with zero mean [139, Section VII] [140, Section I, Section VI (29)].

The power limitation means that the signal is essentially limited to a ball centred

on the origin. If the transmitted signal is uniformly distributed over the unit ball

in Rd+1 then the expected radius of the signal point approaches 1 as d → ∞ [139,

Section VII]. The transmitted signal can therefore be treated as a point on the

sphere Sd.

Spherical coding and decoding.

In Shannon’s Gaussian channel model, the channel encoder takes a message and

converts it into a sequence of codepoints, the channel adds Gaussian noise and the

channel decoder attempts to map each point of the received signal back into the

finite set of codepoints. Because of the noise, there is a non-zero probability that a

received signal point will be mapped to the wrong codepoint [140, Section I].

In Shannon’s Gaussian channel model, the codepoints of a spherical code are

chosen to maximize the transmission rate at a given arbitrarily small error rate.

The number of bits per point transmitted is log2N , where N is the number of points

of the code.
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In the usual spherical decoding algorithm, a received signal point is mapped to

the nearest codepoint. This is called maximum likelihood decoding. In this case,

the probability of error is the probability that a received signal point lies outside

the Dirichlet-Voronoi cell of the transmitted codepoint [140, Sections I, III].

As the noise level increases, so does the spherical radius containing a given

proportion of random noise vectors. To keep the error rate low, the minimum radius

of each Dirichlet-Voronoi cell corresponding to the spherical code must increase as

well. In other words, the packing radius must increase. A larger packing radius

ultimately means a smaller number of points, but a given number of points can

be arranged to maximize the packing radius [49, Section II]. Thus the study of

spherical codes in communication and coding theory is related to the study of the

packing of spherical caps on Sd.

As well as efficient coding schemes, spherical coding and decoding is concerned

with efficient decoding algorithms. Since spherical decoding and spherical quanti-

zation are related, an efficient spherical decoding algorithm often provides the basis

for an efficient spherical quantization algorithm.

Spherical decoding differs from spherical quantization in that the signal received

by the channel decoder usually does not have a uniform distribution but is concen-

trated towards the points of the spherical code in such a way as to try to minimize

the probability that received signal point will be mapped to the wrong codepoint.

The naive version of the usual spherical decoding algorithm maps a received

signal point to the nearest codepoint by determining the distance to each of the N

codepoints. Since the number of bits per codepoint is only log2(N ) the performance

of the naive algorithm is unacceptable. It is preferable to use an algorithm where

the effort to decode a received signal point is only O
(
log(N )

)
rather than O(N ). [50,

Section 11.2, pp. 390–391].
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2.9 Quadrature

2.9.1 Positive weight quadrature

A quadrature rule Q := (X,W ) on Sd of strength t and cardinality N is a linear

functional on the set of real-valued functions on Sd, (Sd → R) which is defined by

a sequence X of N quadrature points (x1, . . . ,xN ) on Sd and a sequence W of N

corresponding real quadrature weights (w1, . . . , wN ), as follows

Q f :=
N∑

k=1

wk f(xk),

such that, for all p ∈ Pt(Sd),

Q p =
∫

Sd

p(y) dσ(y).

A positive weight quadrature rule has all weights positive.

Recent papers which involve positive weight quadrature on the sphere include

[108, 169, 41, 25, 75, 113, 101].

2.9.2 Spherical designs

A spherical t-design on Sd is an equal weight quadrature rule of strength t. There

are many equivalent definitions of spherical designs [42, Definition 5.1, p. 371] [103,

Definition 4.1, p. 340] [137] [19, Section 2.7, pp. 24–26] [144, II, pp. 253–254].

Since a spherical t-design has a strength t of at least zero, the weight for a N

point t-design on Sd must be ωd

N . In other words, with this weight, any Sd code is

at least a spherical 0-design. Therefore the generic term spherical design usually

means a spherical t-design with t > 0.

Well separated sequences of spherical designs.

The following remarks paraphrase [73, Section 5].

It has been known since the original paper of Delsarte, et al. [42] that any dis-

joint union of spherical t-designs is a spherical t-design. This leads to the following

classification of spherical t-designs.
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• Compound. A disjoint union of two or more spherical t-designs.

• Degenerate. A quadrature rule of strength t with less than N points, where

each weight is a positive integer multiple of ωd

N , can be considered to be a

degenerate N point spherical t-design with a number of co-incident points.

• Simple. Neither compound nor degenerate.

We can use this classification to examine whether a particular sequence of spher-

ical designs can be well separated as per Definition 2.7.2. We first note that any

sequence of spherical designs with a degenerate member is not well separated.

It is also quite easy to construct an infinite sequence of non-degenerate spherical

designs on Sd which is not well separated. This is because a compound spherical

design can have points which are arbitrarily close together.

Given any compound spherical t-design, it is easy to construct an infinite se-

quence of spherical t-designs where the number of points remains constant, but the

minimum distance approaches zero. This can be done by rotating one component

of the compound spherical design with respect to the other components, in such a

way that two of the points approach each other. Specific example of starting points

for such a sequence are any compound spherical 1-design consisting of two pairs of

opposite points, and any compound spherical 3-design consisting of the vertices of

two cubes.

Using a similar principle of construction, it is possible to construct an infi-

nite sequence of compound spherical designs, with increasing strength, where the

minimum distance between codepoints decreases arbitrarily rapidly, and which is

therefore not well separated.

2.10 Polynomial interpolation, fundamental systems

The following definitions are based on [162, Sections 1,2] [124, Sections 5.3] but

with notation modified to match this thesis.
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Definition 2.10.1. A fundamental system X of degree t on Sd is a set of D(d, t)

points on Sd such that the zero polynomial is the only polynomial of Pt(Sd) which is

zero at all points of X.

Fundamental systems exist for all degrees and dimensions. For proof, see [124,

Theorem 5.14, pp. 126–127].

Let L∞(Sd) denote the space of bounded real functions on Sd, that is those

f : Sd → R such that ‖f‖∞ <∞.

Definition 2.10.2. For a given fundamental system X of degree t on Sd, the polyno-

mial interpolation operator ΛX is a projection which maps L∞(Sd) to the polynomial

space Pt(Sd). This operator satisfies ΛXf(x) = f(x) for all x ∈ X. See also [124,

Definition 5.10, p. 130].

Fundamental spherical designs.

Define a fundamental spherical design to be a fundamental system of degree t

which is also a spherical t-design as per Section 2.9.2.

For d > 1 it is currently unknown whether spherical t-designs of cardinality Pt(Sd)

exist for all strengths t, let alone whether there are fundamental spherical designs

for all strengths. See Section 5.3 and also [31].

2.11 Energy, weak-star convergence

2.11.1 Weak convergence of measures

Definition 2.11.1. A sequence of measures (ν1, ν2, . . .) on a compact metric space

S converges weakly to the measure ν if and only if

∫

S

f(x) dν`(x) →
∫

S

f(x) dν(x)

as `→∞ for all continuous f [9, 11].
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Definition 2.11.2. A spherical code X ⊂ Sd defines a normalized counting measure

via equal weight quadrature,

∗
σX(A) :=

|X ∩A|
|X| , (2.11.1)

so that

∫

Sd

f(x) d ∗σX(x) =
1
|X|

∑

x∈X

f(x)

for all continuous f : Sd → R, and we can use this as the definition of a linear

functional defined on L∞(Sd), the bounded real functions on Sd

For a fixed sequence X of spherical codes, we often use the abbreviation ∗
σ` to

mean ∗
σX`

.

Definition 2.11.3. We say that the sequence X = (X`, ` ∈ N) of Sd codes is weak-star

convergent if the corresponding sequence of normalized counting measures ( ∗σX`
, ` ∈

N) defined by Definition 2.11.2 converges weakly to ∗
σ, the normalized Lebesgue area

measure on Sd.

A weak-star convergent sequence of codes has the following useful property.

Lemma 2.11.4. If X = (X`, ` ∈ N) is a weak-star convergent sequence of Sd codes

then the cardinality of the point sets of X diverges to infinity. That is, for any

cardinality N0 > 0 there is an index L0 > 0 such that

N` > N0 for all ` > L0,

where N` is the cardinality of X`.

Thus for a given weak-star convergent sequence X of Sd codes, the function

L(N) := min{L ∈ N | N` > N for all ` > L} (2.11.2)

is well defined and finite for each N ∈ N.
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2.11.2 Spherical cap discrepancy

Definition 2.11.5. The normalized spherical cap discrepancy of a spherical code is

the supremum over all spherical caps of the difference between the normalized area

of the cap and the proportion of codepoints which lie in the cap. In other words,

disc(X) := sup
y∈Sd,θ∈(0,π]

| ∗σ − ∗
σX | S(y, θ). (2.11.3)

Remarks. This is the normalized spherical cap discrepancy. Most au-

thors use the unnormalized discrepancy [6, Theorem 24D, p. 182] [30,

Section 2.5], which is larger by a factor of |X|.

2.11.3 Weak-star convergence and normalized spherical cap discrepancy

It has long been known that there is a relationship between weak convergence of a

sequence of measures and uniform convergence of the same sequence on a subclass

of sets or a subclass of functions.

A paper by R. Ranga Rao [122] was one of the first systematic expositions of this

relationship. His Theorem 4.1 [122, p. 665] states that given a measure µ on Rd+1

such that µL−1 is continuous for every linear function L on Rd+1, a sequence of mea-

sures converges weakly to µ if and only if it converges to µ in certain discrepancies

defined on half spaces.

This theorem can be used to show that a sequence of Sd codes is weak-star

convergent if and only if it is convergent to zero in normalized spherical cap dis-

crepancy.

Lemma 2.11.6. A sequence X of Sd codes is weak-star convergent if and only if the

corresponding sequence of normalized spherical cap discrepancies converges to zero.

Remarks.

Lemma 2.11.6 is well known. Brauchart proves it in another way in his

Diplomarbeit [23], by appealing to Grabner’s [63] Erdös-Turán inequal-

ity on the sphere.
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Damelin and Grabner [39, Remark 4, p. 236] use the term asymptot-

ically equidistributed to describe a sequence of spherical codes whose

corresponding sequence of normalized spherical cap discrepancies con-

verges to zero. Thus Lemma 2.11.6 can be restated as: “A sequence of

spherical codes is weak-star convergent if and only if it is asymptoti-

cally equidistributed”. In the remainder of this thesis, we use these two

equivalent properties interchangeably.

Billingsley and Topsøe [12] generalized and extended the results of Ranga

Rao. See especially Theorem 2, [12, p. 2].

The theory of the relationship between weak convergence and uniform

convergence is not restricted to the sphere or even to finite dimensional

manifolds. Both [122] and [12] treat measures on separable metric spaces

in general, and applications include laws of large numbers and Glivenko-

Cantelli theory [122, p660].

Kuipers and Niederreiter prove Lemma 2.11.6 in the restricted case

where the sequence of Sd codes is taken from a sequence of points on Sd

by adding one point at a time, but do so in the more general context

of compact spaces and continuity sets. See [90, Theorem 1.2, Example

1.3, p. 175].

Dudley’s book on uniform central limit theorems [46] contains a chapter

on Vapnik–Černovenkis (V-C) combinatorics. In particular, the example

[46, Section 4.2 Example I, p. 140] uses the polynomials of degree at

most k on Rd to create a V-C class which contains all ellipsoids in Rd.

This can be used as a basis for an example on Sd.

Let L be the space of polynomials of degree at most 1 on Rd+1, restricted

to Sd, ie. the linear functions. L is a vector space of dimension d + 2,

and so pos(L) is a V-C class. But pos(L) is just the set of all (open)

spherical caps. Also, by [46, Theorem 4.2.1, p. 139], since L contains
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the constants, we have (using Dudley’s notation [46, Section 4.2])

S(pos(L)) = S(nn(L)) = S(U(L)) = d+ 2.

Dudley’s notes [46, Section 4.2, p. 167] say that Theorem 4.2.1 in the

case of linear function on Rm and f = 0 is known as Radon’s theorem,

so the equivalent for Sd could be called Radon’s theorem on the sphere.

2.11.4 Energy functionals

For a measure ν on the compact metric space S and a point x ∈ S, define the

punctured measure ν[x] by

ν[x](A) := ν (A \ {x})

for all measurable A ⊂ S. Then, for example, for the Sd code X` with N` points, and

the point x`,k ∈ X`, we have

∫

Sd

f(y) d ∗σX`
[x`,k](y) =

1
N`

N∑̀

j=1

j 6=k

f(x`,j). (2.11.4)

for all functions f which are defined at the points of evaluation. Later, when we

discuss the weak-star convergence of sequences of punctured counting measures such

as ∗
σX`

[x`,k], we will need to restrict the associated linear functional (2.11.4) to the

space of continuous functions on Sd.

Given a potential, usually a decreasing function of distance, we can define the

energy of a spherical code. For example, the Riesz s energy is defined using the

Riesz r−s potential [39, 24].

Definition 2.11.7. For a measure ν defined on Sd, for a real potential u defined on

[0, 2] define

I(ν) u :=
∫

Sd

∫

Sd

u(‖x− y‖) dν(y) dν(x),
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and for a real potential u defined on (0, 2] define

E(ν) u :=
∫

Sd

∫

Sd

u(‖x− y‖) dν[x](y) dν(x).

For the normalized Lebesgue area measure ∗
σ defined on Sd we define the abbre-

viations

I := I( ∗σ), E := E( ∗σ).

For the normalized counting measure ∗
σX`

defined by (2.11.1) for a sequence

X = (X`, ` ∈ N)) on Sd, we define the abbreviations

I`(X ) := I(X`), := I( ∗σX`
), E`(X ) := E(X`) := E( ∗σX`

).

The Riesz potential for the exponent s is

Us(r) := r−s, 0 < s < d.

For s > 0, since Us(r) diverges to +∞ as r → 0, we extend the definition of Us to [0, 2],

by setting Us(0) := +∞.

For a sequence of codes X on Sd, we therefore have

I Us =
∫

Sd

∫

Sd

‖x− y‖−s
d
∗
σ(x) d ∗σ(y) (2.11.5)

and

E`(X )Us =
1
N 2

`

N∑̀

k=1

N∑̀

j=1

j 6=k

‖x`,k − x`,j‖−s
. (2.11.6)

It is well known that for 0 < s < d an increasing sequence of minimal s energy

Sd codes is asymptotically equidistributed [39, p. 236]. The result in terms of weak

star convergence goes back at least as far as Landkof [93, Chapter II, Section 1.1,
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pp. 131–133, Section 3.12, p. 160–162]. See also Frostman [61, Section 25, pp.

46–48, Section 3, pp. 12–16]. For d−1 < s < d such a sequence is also well separated

[89]. This also holds for s = d− 2 when d > 3 [40, Theorem 3.5, p. 853].

The problem of minimizing the Coulomb (Riesz 1) energy of a S2 code is called

the Thomson problem, after the physicist Joseph John Thomson, who studied a

related but different arrangement of point charges in one of his investigations into

atomic structure [155, p. 255].

We now list a few results on integrals related to energy functionals, all of which

are well known.

Lemma 2.11.8. For R ∈ (0, 2] and any x ∈ Sd, for any potential u : (0, 2] → R, the

single integral

J d(x;R)u :=
∫

‖x−y‖6R

u(‖x− y‖) d ∗σ(y) (2.11.7)

can be evaluated by

J d(x;R) u = J d(R) u :=
ωd−1

ωd

∫ R

0

u(r) rd−1

(
1− r2

4

) d
2−1

dr, (2.11.8)

which is independent of x.

Corollary 2.11.9. For any potential u u : (0, 2] → R, the double integral

I u =
∫

Sd

∫

Sd

u(‖x− y‖) d ∗σ(y) d ∗σ(x)

can be evaluated by

I u = J d(2) u,

where J d is defined by (2.11.8).
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Corollary 2.11.10. For s ∈ (0, d), R ∈ (0, T ], T ∈ (0, 2] and any x ∈ Sd, the integral

J d(x;R)Us =
∫

‖x−y‖6R

‖x− y‖−s
d
∗
σ(y) (2.11.9)

can be evaluated by

J d(x;R)Us = J d(R)Us =
ωd−1

ωd

∫ R

0

rd−s−1

(
1− r2

4

) d
2−1

dr, (2.11.10)

and can be estimated by

J d(R) Us ∈
[
CL,d(T ),CH,d

) Rd−s

d− s
, (2.11.11)

where CL,d and CH,d are defined by (2.3.55).

2.12 Proofs of lemmas

2.12.1 Trigonometric functions and the Gamma function

Proof of Lemma 2.2.1.

For θ, φ ∈ R we have, by the well known addition formulae,

sin(θ + φ)− sin θ = sinφ cos θ + cosφ sin θ − sin θ = sinφ cos θ + (cosφ− 1) sin θ

= 2 sin
φ

2
cos

φ

2
cos θ − 2 sin2 φ

2
sin θ

= 2 sin
φ

2

(
cos

φ

2
cos θ − sin

φ

2
sin θ

)

= 2 sin
φ

2
cos

(
θ +

φ

2

)
.

Therefore for φ ∈ (0, π], θ ∈ (0, π/2− φ/2] we have sin(θ + φ) > sin θ > 0. 2
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Proof of Lemma 2.2.3.

The result follows from [4, Corollary 1.2.6, Theorem 1.2.7, p. 13]. Following [4,

p. 13], within this proof we use the notation

ψ(x) :=
d

dx
log Γ(x).

By [4, (1.2.16)] and [2, 6.3.3] we have

ψ

(
1
2

)
= −γ − 2 log 2 = −1.96351 . . . .

By [4, (1.2.16)] we therefore have

ψ

(
3
2

)
= 2− γ − 2 log 2 = 2− 1.96351 . . . = 0.0036 . . . > 0.

We could have used [2, 6.3.4] directly to obtain the same result.

For the general case x > 3
2 we use the log-convexity of the Gamma function

(2.2.10). 2

Proof of Lemma 2.2.4.

We treat the case x = 1 first. From (2.2.8) we see that this gives equality.

The more general case follows from (2.2.7), (2.2.9) and the Legendre duplication

formula (2.2.11).

These give us

Γ(2x) =
22x−1

√
π

Γ(x) Γ
(
x+

1
2

)
=

22x−2

1
2 Γ

(
1
2

) Γ(x) Γ
(
x+

1
2

)

= 4x−1 Γ
(
x+ 1

2

)

Γ
(

3
2

) Γ(x) > 4x−1 Γ(x)

for x > 1, where the final inequality results from (2.2.12). 2
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Proof of Lemma 2.2.5.

The result follows from the log-convexity of the Gamma function (2.2.10), since

x =
Γ(x+ 1)
Γ

(
x+ 1

2

) Γ
(
x+ 1

2

)

Γ(x)
,

with the log-convexity giving us

Γ(x+ 1)
Γ

(
x+ 1

2

) > Γ
(
x+ 1

2

)

Γ(x)
> 0.

2

Proof of Lemma 2.2.6.

From (2.2.8) and the log-convexity of the Gamma function (2.2.10), we have

log Γ(1) = log Γ(2) = 0 and log Γ(x+ 1) < 0 for x ∈ (0, 1).

Using (2.2.7), we also have

log(x+ 1)x = x log(x+ 1) > 0 for x > 0.

Therefore Γ(x+ 1) < (x+ 1)x for x ∈ (0, 1], and so

Γ(x+ 1) = xΓ(x) < x xx−1 = xx for x ∈ (1, 2].

If we have x such that Γ(x+ 1) < xx then

Γ(x+ 2) = (x+ 1) Γ(x+ 1) < (x+ 1) xx < (x+ 1)x+1.

Therefore by induction, Γ(x+ 1) < xx for x > 1. Finally, Γ(1 + 1) = 11. 2

2.12.2 The geometry of the unit sphere Sd

Euclidean and spherical distances

Proof of Lemma 2.3.2.

These results are well known, but we include a proof for completeness. In order,
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1. For a proof for S2 using the Frenet equation, see [115, Example 5.8, pp. 228–

229]. For an elementary proof for S2 using stereographic projection, see [102].

2. The result is a consequence of property 1 and the length-minimizing properties

of geodesics. For a proof for S2, see [115, Example 5.7, pp. 346–347].

3. It is well known that any two points a,b ∈ Sd define at least one great circle.

If a 6= b and a and b are not antipodal, the great circle is unique. If a = b, the

spherical distance and geodesic arc length are both zero. If the two points are

antipodal, the spherical distance and geodesic arc length are both π.

The arc length of an arc of a great circle is the angle at the centre o of the

circle. Up to π, this angle is

∠aob = cos−1(a · b) = s(a,b).

See also [115, Example 5.7, pp. 346–347].

4. Abbreviating s(a,b) to s and ‖a− b‖ to e, we have

e2 = a · a− 2a · b + b · b = 2− 2 cos s,

so

e =
√

2− 2 cos s = Υ(s).

Using the half angle formula for cos, we also have

e2 = 2− 2 cos s = 2− 2
(
cos2

s

2
− sin2 s

2

)
= 2− 2 cos2

s

2
+ 2 sin2 s

2
= 4 sin2 s

2
,

so

Υ(s) = 2 sin
s

2
.
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5. Using property 4, we see that the function Υ is differentiable in [0, π], with

DΥ(s) =
∂

∂s

(
2 sin

s

2

)
= cos

s

2
> 0 when s ∈ [0, π).

6. We use the addition theorem for the sine function. For α, β ∈ (0, π],

Υ(α+ β) = 2 sin
(
α+ β

2

)
= 2 sin

α

2
cos

β

2
+ 2 sin

β

2
) cos

α

2

< 2 sin
α

2
+ 2 sin

β

2
= Υ(α) + Υ(β),

since sin α
2 and sin β

2 are both positive.

The equality when α = 0 or β = 0 occurs because sin(0) = 0.

7. For a, b, a+ b ∈ [0, 2] apply (2.3.4) with α = Υ-1(a), β = Υ-1(b), to obtain

Υ
(
Υ-1(a) + Υ-1(b)

)
6 a+ b,

which implies that

Υ-1(a) + Υ-1(b) 6 Υ(a+ b),

with equality only when a = 0 or b = 0.

8. Abbreviating s(a,b) to s and ‖a− b‖ to e, and using (2.3.3) and (2.3.2), we

have

e = 2 sin
s

2
< s, when s > 0.

9. Abbreviating s(a,b) to s and ‖a− b‖ to e, using (2.3.3) and (2.3.2), and ex-

panding in Taylor series, we have

e

s
=

Υ(s)
s

=
2 sin s

2

s
=
s− s3

22 3! + . . .

s
= 1− s2

22 3!
+ . . .→ 1 as a → b.

2
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Spherical caps, collars, zones and spherical rectilinear regions

Proof of Lemma 2.3.6.

Use stereographic projection from the point −a. The point a projects to the

origin of R2, the small circle ∂S projects to a circle ∂S′ and the points e and −e

project to the points e′ and e′′ respectively. (The point e′ is in general not the

centre of the circle ∂S′, but this does not matter for the purposes of this proof.)

The great circle D projects to the line D′ which passes through e′, the origin and

e′′. By symmetry, the line D′ passes through the centre of the circle ∂S′.

The line D′ intersects ∂S′ at the points c′ and d′. The circle ∂S′ does not have

the origin as its centre, since this would imply that a is either e or −e and we have

excluded this possibility. Therefore the points c′ and d′ are at different distances to

the origin.

Let us take d′ to be the closer of these two points to the origin. The point d′

is the image under stereographic projection of the point d which is one of the two

points of intersection of ∂S and D.

Now consider the circle C ′ about the origin with radius ‖d′‖. The circle C ′ is

tangent to ∂S′ at d′ because the line D′ passes through the origin, d′ and the centre

of ∂S′ [32, Proposition 84.1, p. 105].

The preimage of C ′ under stereographic projection is a small circle C which is

the boundary of the spherical cap S(a, s(a,d)). This cap contains no point of ∂S other

than d. Thus d is the unique point of ∂S which is closest to a.

A similar argument shows that c is the unique point of ∂S which is furthest from

a. 2

Proof of Lemma 2.3.7.

Consider the embedding of Sd in Rd+1. The poles of Sd and the point a define

a 2-plane Ua which intersects Sd in a great circle Ca which contains the meridian

:(a) and the poles. Since the point q is not on Ca, it does not lie in the 2-plane Ua.

Therefore :(a) and q define a 3 dimensional subspace T (a,q) of Rd. In this subspace,
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:(a) and q lie on a unit 2-sphere, which we have called G(a,q). Since G(a,q) contains

Ca which contains the meridian :(a) it therefore contains the poles of Sd and the

point Πa.

The subspace T (a,q) also contains the 2-plane Uq defined by the poles of Sd and

the point q. The 2-plane Uq intersects Sd in the great circle Cq which contains the

poles and the point q. Since Uq is a subspace of T (a,q) we must have Cq ⊂ G(a,q).

This implies that G(a,q) contains the meridian :(q) and the point Πq.

Any point x ∈ ◦
G(a,q) is also a point of

◦
Sd. The point x and the poles define a

2-plane Ux which contains the great circle Cx ⊂ Sd which contains the meridian :(x).

The meridian :(x) is evidently contained in
◦
G(a,q) and within G(a,q) is an arc of a

great circle between the poles extending from the North pole to the South pole but

not including either pole.

The points Πa and Πq are each at spherical distance π
2 from both of the poles

of Sd and so they both lie on the equator of G(a,q).

The equator of G(a,q) is the equatorial image of
◦
G(a,q) within G(a,q), that is

the set of points {(x1, . . . , xd−1,
π
2 ) | x ∈ ◦

G(a,q)}.

Finally, every point of Π
◦
G(a,q) is at spherical distance π

2 from both of the poles

of Sd and therefore lies on the equator of G(a,q). 2

Proof of Lemma 2.3.8.

It is easy to see that

Π
(
X ∩ ◦

G(a,q)
) ⊆ ΠX ∩Π

◦
G(a,q).

If x ∈ X ∩ ◦
G(a,q) then x ∈ X and x ∈ ◦

G(a,q), so Πx ∈ ΠX ∩Π
◦
G(a,q).

Now suppose that y ∈ ΠX ∩ Π
◦
G(a,q). Therefore there exist x ∈ X, g ∈ ◦

G(a,q)

such that

y = Πx = Πg.
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Therefore x and g lie on the same meridian. But :(g) ∈ Π
◦
G(a,q) and x ∈ :(x) = :(g).

Therefore x ∈ X ∩ ◦
G(a,q), and therefore

y ∈ Π
(
X ∩ ◦

G(a,q)
)
.

2

Proof of Lemma 2.3.9.

Let C = S(a,Φ). Note that since C ⊂ ◦
S2, the spherical cap C does not contain

either pole, and therefore every point of C has a meridian passing through it. Each

meridian through a point of C also passes through ∂(C) and therefore Π ∂C = ΠC.

Since C does not contain either pole, we must have Φ < π
2 . Therefore every point

of C has longitude between α1 − π
2 and α1 + π

2 (mod 2π).

We now note that two there are two meridians tangential to ∂C, to the west and

east of a. Denote by w the point of tangency with longitude less than a, and denote

by e the point of tangency with longitude more than a (mod 2π).

The corresponding meridians are :(w) and :(e). Since a is the centre of C, we

can use reflection symmetry through the meridian :(a) to show that :(w) and :(e)

make equal angles with :(a). Call the North pole O and define the angle φ := ∠wOa.

Then ∠aOe = φ.

Thus the meridian :(w) meets the equator at the point Πw with longitude

α1−φ (mod 2π) and similarly the point Π e has longitude α1 +φ (mod 2π). Thus the

equatorial image of C is

ΠC = ¯ (
[α1 − φ, α1 + φ] (mod 2π)

)
= S1(Πa, φ).

The statements above can be verified by using stereographic projection based

on the South pole of S2. to R2 [22, Section 5.2.4, pp. 223-227, Section 7.4.1, pp.

349–351], projecting the South pole to infinity and the North pole to the origin.

We then use Euclidean geometry on the plane.
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We now examine the angle φ. The North pole O and the points a and e form

a spherical triangle, bounded by the meridians :(a) and :(e) and the geodesic ae.

By the well known sine formula for spherical triangles [22, Chapter 7, Theorem 8,

p. 348] we have

sin s(O, e)
sin ∠eaO

=
sin s(e,a)
sin ∠aOe

=
sin s(O,a)
sin ∠Oea

. (2.12.1)

Since a is the centre of the cap C and since the meridian :(e) is tangential to ∂C at

e, :(e) meets the geodesic ae at a right angle. We therefore have ∠Oea = π
2 and

sinΦ
sinφ

=
sin s(e,a)
sin ∠aOe

= sin s(O,a) = sin θ. (2.12.2)

2

Proof of Lemma 2.3.10.

Note that since S(a,Φ) ⊂ ◦
Sd, the spherical cap S(a,Φ) does not contain either pole,

and therefore every point of S(a,Φ) has a meridian passing through it. Each meridian

through a point of S(a,Φ) also passes through ∂S(a,Φ) and therefore Π ∂S(a,Φ) =

Π S(a,Φ).

Now consider the meridian :(a) and a point q ∈ ◦
Sd which does not lie on the

great circle defined by :(a). As per Lemma 2.3.7, these define the great S2, G(a,q).

We now consider the intersection

Sq(a,Φ) := S(a,Φ) ∩G(a,q). (2.12.3)

We see that Sq(a,Φ) is the spherical cap in G(a,q) with centre a and spherical radius

Φ, since Sq(a,Φ) is the intersection of the Sd spherical cap with centre a and spherical

radius Φ with G(a,q) which is a great S2 through a.

We also have

∂Sq(a,Φ) = ∂S(a,Φ) ∩G(a,q). (2.12.4)



2.12. Proofs of lemmas 63

2

Proof of Lemma 2.3.13.

For a RISC region R which does not intersect either the North or South poles

of Sd, each side facet is the disjoint union of a set of meridian arcs. Each of the

meridian arcs which make up a side facet is a geodesic which joins a point of the

top facet to the corresponding point of the bottom facet, eg.

F2,↓ R =
⋃

α∈[τ1,υ1]×{υ2}×...×[τd−1,υd−1]

¯ ({α} × [τd, υd]
)
.

Each of the meridian arcs which make up the side facets of the region R is part

of a meridian which meets the equator at the boundary ∂Π R of Π R. In fact ∂Π R is

the disjoint union of all such intersections between these meridians and the equator,

since every point of ∂Π R corresponds to a meridian through at least one of the side

facets of R.

This is straightforward to prove if all of the facets of R are boundary facets.

Now note that a degenerate facet of R corresponds to a degenerate facet of Π R, and

a pair of coincident facets of R corresponds to a pair of coincident facets of Π R.

2

The area of a spherical cap

Proof of Lemma 2.3.14.

From (2.3.37) we have

VE,d(R) = ωd−1

∫ Υ-1(R)

0

sind−1 θ dθ.

We use the change of variables r = Υ(θ) = 2 sin θ
2 , giving

d r

d θ
= cos

θ

2
=

√
1− sin2

(
θ

2

)
=

√
1− r2

4
,
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since θ ∈ [0, π]. We therefore obtain

dθ =
dr√

1− r2

4

.

Also

sin θ = 2 sin
θ

2
cos

θ

2
= r

√
1− r2

4
.

We can therefore express the area element in terms of r as

ωd−1(sin θ)d−1 dθ = ωd−1r
d−1

(
1− r2

4

) d
2−1

dr, (2.12.5)

and therefore

VE,d(R) = ωd−1

∫ R

0

rd−1

(
1− r2

4

) d
2−1

dr.

2

Proof of Lemma 2.3.15.

From (2.3.35) we know that

Vd(θ)
Vd(π)

=

∫ θ

0
sind−1 ξ dξ∫ π

0
sind−1 ξ dξ

.

Now substitute u = sin2(ξ/2). Then, since θ ∈ [0, π], by a well-known half angle

formula we have sin ξ = 2u
1
2 (1− u)

1
2 and we also have du = u

1
2 (1− u)

1
2 dξ, so

Vd(θ)
Vd(π)

=

∫ sin2( θ
2 )

0
u

d
2−1(1− u)

d
2−1 du∫ 1

0
u

d
2−1(1− u)

d
2−1 du

=
B

(
sin2 θ

2 ; d
2 ,

d
2

)

B
(

d
2 ,

d
2

) .

2

The properties of the function V as given by Lemma 2.3.16 are well known, but

we provide a proof here for completeness.
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Proof of Lemma 2.3.16.

In order,

1. V is smooth since it is an integral of a smooth function over an interval.

2. V is monotonic increasing in (0, π), since, using (2.3.41) DV(θ) = ωd−1 sind−1 θ,

which is positive for θ ∈ (0, π).

3. V(0) = 0 trivially. Property 3 then implies that V(θ) > 0 for θ > 0.

4. We have D2V(θ) = (d−1)ωd−1 sind−2 θ cos θ, which is positive in (0, π/2) since both

sin and cos are positive there. Therefore DV is monotonic increasing in (0, π/2).

5. From properties 3 and 5, we therefore have, for 0 < h < π/2,

0 < hDV(θ) 6
∫ θ+h

θ

DV(ξ) dξ = V(θ + h)− V(θ) 6 hDV(θ + h),

for θ ∈ [0, π/2− h].

6. Property 6 implies in particular that

V(h) 6 hDV(h),

for h ∈ [0, π/2], since V(0) = 0. We then have, for h 6 θ 6 π/2− h,

V(θ + h)− V(θ) > hDV(θ) > hDV(h) > V(h),

and for θ 6 h 6 π/2− θ,

V(θ + h)− V(h) > θDV(h) > θDV(θ) > V(θ),

so for 0 6 θ + h 6 π/2,

V(θ) + V(h) 6 V(θ + h).

7. Using Property 2, we have DV(θ) = DV(π − θ) since sin(θ) = sin(π − θ).
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8. Using property 8, we have

V(θ) = ωd−1

∫ θ

0

sind−1 ξ dξ = ωd−1

∫ θ

0

sind−1(π − ξ) dξ

= ωd−1

∫ π

π−θ

sind−1 ξ dξ.

Therefore,

V(θ) + V(π − θ) = ωd−1

∫ π

0

sind−1 ξ dξ = ωd.

2

Proof of Lemma 2.3.17.

Using (2.3.44) with ϑ = Θd(v), we have Vd(π −Θd(v)) = ωd − Vd(Θd(v)) = ωd − v, so

π −Θd(v) = Θd(ωd − v).

2

Estimates

Proof of Lemma 2.3.18.

We see immediately that V(0) = 0. For θ ∈ (0, π/2), since cos ξ > cos θ for ξ ∈ [0, θ),

this gives us

cos θ V(θ) = ωd−1

∫ θ

0

cos θ sind−1 ξ dξ < ωd−1

∫ θ

0

cos ξ sind−1 ξ dξ = ωd−1
sind θ

d
.

2

Proof of Lemma 2.3.20.

For d > 2 we use (2.2.14) to obtain

ωd d

ωd−1
=

2 π
d+1
2 d

Γ
(

d+1
2

) Γ
(

d
2

)

2 π
d
2

= d
√
π

Γ
(

d
2

)

Γ
(

d+1
2

) > d
√
π

Γ
(

d
2

)
√

d
2 Γ

(
d
2

) =
√

2π d.
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2

Proof of Lemma 2.3.21.

As a result of Lemma 2.3.14 and (2.3.53), the normalized area
∗VE,d(R) is given

by

∗VE,d(R) =
ωd−1

ωd

∫ R

0

rd−1

(
1− r2

4

) d
2−1

dr.

For R ∈ (0, T ], T ∈ (0, 2], we have

1− r2

4
∈

[
1− T 2

4
, 1

)
.

The result follows immediately. 2

Proof of Lemma 2.3.22.

Assume d > 2. By (2.3.35),

ωd−1

d
=

2 π
d
2

Γ
(

d
2

)
d

=
π

d
2

Γ
(

d
2 + 1

) ∈
[(

2π
d

) d
2

, π
d
2

]
,

where the upper bound results from (2.2.15). The result (2.3.56) follows immedi-

ately. 2

Proof of Lemma 2.3.23.

Assume d > 2. By (2.3.56) we have

(
1 +

1√
8πd

(ωd−1

d

) 1
d

)d

>
(

1 +
1
2d

)d

> 1 +
1
2
.

We also have

ωd−1

((
d

ωd−1

) 1
d

+ 1

)d−1

=

(
1 +

(ωd−1
d

) 1
d

)d

1 +
(ωd−1

d

) 1
d

d
(ωd−1

d

) 1
d > 1 +

√
2πd

1 +
√
π

√
2πd > 1.

2
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2.12.3 Separation and packing

Proof of Lemma 2.7.8.

Define

ρ :=
Υ-1(∆)

2
= sin−1

(
∆
2

)
(2.12.6)

We therefore have ρ 6 pradX, the packing radius of X. This implies that we can

place each codepoint y of X in a spherical cap S(y, ρ) with no two caps overlapping.

This places an upper bound on g, of the form

g(R) =
∣∣X ∩ S(x,Υ-1(R))

∣∣

6
∗
σ
(
S(x,Υ-1(R) + ρ)

)
∗
σ
(
S(x, ρ)

) =

∗VE

(
Υ(Υ-1(R) + ρ)

)
∗VE

(
Υ(ρ)

)

where we have used (2.3.37) and (2.3.53) at the last step.

Since ρ ∈ (
0, π

2

]
we have

Υ(ρ) = 2 sin
ρ

2
> sin ρ =

Υ(2ρ)
2

=
∆
2
,

and since (2.3.5) gives us

Υ-1(R) + ρ < Υ-1(R) + 2ρ = Υ-1(R) + Υ-1(∆) < Υ-1(R+ ∆),

we see that

∗VE

(
Υ(ρ)

)
>

∗VE

(
∆
2

)
and

∗VE

(
Υ(Υ-1(R) + ρ)

)
<

∗VE(R+ ∆).

From (2.12.7) we therefore have

g(R) 6
∗VE(R+ ∆)
∗VE

(
∆
2

) .
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Since ∆ 6 2, (2.3.54) and (2.3.55) give us

g(R) 6 CH,d (R+ ∆)d

CL,d(1)
(

∆
2

)d
= 2d CH,d

CL,d(1)

(
R+ ∆

∆

)d

. (2.12.7)

This establishes (2.7.13).

To obtain (2.7.14) we note that for R 6 ∆ we must have g(R) = 1 since the cap

contains x itself. For R > ∆ we have 2R > R+ ∆ and so

(
R+ ∆

∆

)d

< 2d

(
R

∆

)d

.

2

2.12.4 Energy, weak-star convergence

Proof of Lemma 2.11.4.

Given N0, define N0+1 continuous non-negative functions f1 to fN0+1 with disjoint

support, such that for each j ∈ {1, . . . , N0 + 1},

∫

Sd

fj(y)d ∗σ(y) = 1.

Now define ε < 1. Since X is weak-star convergent, this means that for each

j ∈ {1, . . . , N0 + 1}, there is an Lj such that for all ` > Lj we have

∣∣∣∣
∫

Sd

fj(y)d ∗σX`
(y)− 1

∣∣∣∣ < ε. (2.12.8)

The inequality (2.12.8) implies that at least one point of X` is contained in the

support of fj. Now take L0 = max(L1, . . . , LN+1). For ` > L0 we therefore must have

at least one point of X` in each of the N0 + 1 disjoint sets which are the supports of

{f1, . . . , fN0+1}. 2
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Proof of Lemma 2.11.6.

This proof uses [122, Theorem 4.1, p. 665] with measures on Sd. Given a

sequence X of Sd codes, consider the corresponding sequence of normalized counting

measures, ( ∗σX`
, ` ∈ N) and the normalized Lebesgue measure ∗

σ on Sd as measures on

Rd+1.

Let L be the space of real linear functions on Rd+1, restricted to Sd. For p ∈ L

and v ∈ R the set p−1(v) is the preimage of v in Sd. For the constant functions, this

is either empty or is the whole of Sd. The non-constant linear functions are of the

form p(x) = a ·x+ b, with a non-zero. In Rd+1 functions of this form have a preimage

of the form {x ∈ Rd+1 | a ·x = v−b}, which is a hyperplane orthogonal to a, at distance

v−b
‖a‖ from the origin. When p is restricted to Sd the corresponding preimage is the

intersection of the hyperplane with Sd, in other words, either the empty set, a single

point or a small sphere. As v varies continuously, the distance from the origin of

the corresponding hyperplane also varies continuously, as do the small spheres and

their normalized Lebesgue measures. We have shown that ∗
σ ◦ p is continuous for

each p ∈ A.

Following [122, 4. p. 665], let H1 be the class of half spaces of Rd+1, that is, sets

of the form {x ∈ Rd+1 | p(x) < v} for some p ∈ L and some v ∈ R. If we have A ∈ H1

then A ∩ Sd is the empty set, a point or a spherical cap, ∗
σX`

(A) = ∗
σX`

(A ∩ Sd) and

∗
σ(A) = ∗

σ(A ∩ Sd). Therefore

sup
A∈H1

‖ ∗σX`
(A)− ∗

σ(A)‖ = disc(X`).

If a real function is continuous on Rd+1 it is continuous on Sd, and therefore ∗
σX`

converges weakly to ∗
σ on Rd+1 if and only if it converges weakly to ∗

σ on Sd. Thus

by [122, Theorem 4.1, p. 665], if a sequence X of Sd codes is weak-star convergent

then the corresponding sequence of spherical cap discrepancies converges to zero.

One way to prove the converse is by first referring to [85, Theorem 3.3, p.

113], which gives an upper bound on the quadrature error of spherical harmonic
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polynomials in terms of the spherical cap discrepancy, and then using the Stone-

Weierstrass theorem.

In more detail, for a Sd code X where |X| = N , [85, (8), p. 109] defines a

discrepancy based on spherical harmonics by

discS(X) := sup
µ>1

1
µd

∗
D(d,µ)
sup
j=1

∣∣∣∣∣
1
N

N∑

k=1

Y j
µ (xk)

∣∣∣∣∣ , (2.12.9)

where Y j
µ is the spherical harmonic of degree µ and order j, and where

∗D(d, µ) is

the dimension of
∗
Pµ(Sd), the space of Sd polynomials of homogeneous degree µ, as

per (2.6.4). In [85, Theorem 3.3, p. 113] it is shown that for any Sd code X where

|X| = N , the inequality

discS(X) 6 2d(d+ 1)
ωd−1 π

discX (2.12.10)

holds. We then take any polynomial p ∈ Pt(Sd) and expand it in spherical harmonics

to give

p :=
t∑

µ=0

∗
D(d,µ)∑

j=1

c(µ,j)Y
j
µ .

The triangle inequality, (2.12.9) and (2.12.10) then yield

∣∣∣∣
∫

Sd

p(x)d ∗σ(x)−
∫

Sd

p(x)d ∗σX(x)
∣∣∣∣ 6

t∑
µ=0

∗
D(d,µ)∑

j=1

∣∣c(µ,j)

∣∣
∣∣∣∣
∫

Sd

Y j
µ (x)d ∗σ(x)−

∫

Sd

Y j
µ (x)d ∗σX(x)

∣∣∣∣

6
t∑

µ=1

∗
D(d,µ)∑

j=1

∣∣c(µ,j)

∣∣µd discS(X)

6
t∑

µ=1

∗
D(d,µ)∑

j=1

∣∣c(µ,j)

∣∣µd 2d(d+ 1)
ωd−1 π

disc(X)

→ 0 as disc(X) → 0.

We now use [93, Theorem 0.4, p. 7] which applies to vague convergence of

measures. As per [93, p. 3], vague convergence is defined in terms of Cc(Sd), the
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space of real continuous functions on Sd with compact support. But since Sd is

itself compact, Cc(Sd) coincides with C(Sd), the space of real continuous functions

on Sd. The definition of [93, (0.1.7), p. 7] as applied to Sd therefore coincides with

Definition 2.11.1, and we can therefore apply [93, Theorem 0.4, p. 7] here. We

define C+(Sd) to be the non-negative real continuous functions on Sd. As applied to

our case, [93, Theorem 0.4, p. 7] then states that if the set M ⊂ C+(Sd) is dense in

C+(Sd) and if

∫

Sd

f(x) dν`(x) →
∫

Sd

f(x) dν(x),

for any function f ∈M , then ν` weakly converges to ν.

Finally, we apply the Stone-Weierstrass theorem [90, Lemma 1.1, p. 173], which

in our case states that the polynomials on Sd are dense in C(Sd). With a little

effort, this can be used to show that the non-negative polynomials on Sd are dense

in C+(Sd). (See also [124, Theorem 5.8, p. 121] for a proof of Weierstrass’ theorem

which is sufficient for our purposes here.) 2

Proof of Lemma 2.11.8.

Fix d > 1 and use the abbreviation J := J d. For any particular x,y, define

r := ‖x− y‖, θ := Υ-1(r), so that r is the Euclidean distance from x to y, and θ is

the spherical distance. The expression J (x;R)u is an integral over the spherical cap

SE(x, R). From the proof of Lemma 2.3.14 and from (2.12.5) we see that the relevant

area element for the integral J (x;R)u is

ωd−1

ωd
(sin θ)d−1 dθ =

ωd−1

ωd
rd−1

(
1− r2

4

) d
2−1

dr.

We therefore have

J (x;R)u =
ωd−1

ωd

∫ R

0

u(r) rd−1

(
1− r2

4

) d
2−1

dr = J (R)u

independent of x. 2
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Equal area partitions

“And so we two shall all love’s lemmas prove,

And in our bound partition never part.”

– Lem [95, Love and Tensor Algebra, pp. 52–53].

3.1 Introduction

This chapter describes a partition of the unit sphere Sd ⊂ Rd+1 which is here called

the recursive zonal equal area (EQ) partition. Parts of this chapter appear in [99].

The partition EQ(d,N ) is a partition of the unit sphere Sd into N regions of equal

area and small diameter. It is defined via the algorithm given in Section 3.2.

Figure 3.1 shows an example of the partition EQ(2, 33), the recursive zonal equal

area partition of S2 into 33 regions. A movie showing the build-up of an example

of the partition EQ(3, 99) is available via the author’s web site at UNSW [100].

Definition 3.1.1. The set of recursive zonal equal area partitions of Sd is defined

as

EQ(d) := {EQ(d,N ) | N ∈ N+}. (3.1.1)

where EQ(d,N ) denotes the recursive zonal equal area partition of the unit sphere Sd

into N regions, which is defined via the algorithm given in Section 3.2.

73
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Figure 3.1: Partition EQ(2, 33)

Later in this section we prove that the partition defined via the algorithm given

in Section 3.2 has the following properties.

Theorem 3.1.2. For d > 1 and N > 1, the partition EQ(d,N ) is an equal area

partition of Sd.

Theorem 3.1.3. For d > 1, EQ(d) is diameter-bounded in the sense of Definition

2.4.3.

The proof of Theorem 3.1.2 is straightforward, following immediately from the

construction of Section 3.2. A sketch of the proof of Theorem 3.1.3 is given in

Section 3.4, and the full proof is given in Section 3.6.

The construction for the recursive zonal equal area partition is based on Zhou’s

construction for S2 [167], as modified by Saff [133], and on Sloan’s notes on the

partition of S3 [141].

The existence of partitions of Sd into regions of equal area and small diameter

is well known and has been used in a number of ways. Alexander [3, Lemma 2.4
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p. 447] uses such a partition of S2 to derive a lower bound for the maximum sum

of distances between points. The paper also suggests a construction for S2 [3, p.

447], which differs from Zhou’s construction. For 6m2 regions, Alexander begins

with a spherical cube which divides S2 into 6 regions, then divides each face into m

slices by using a pencil of m − 1 great circles with positions adjusted so that each

slice has the same area. Finally, each slice is divided into m regions of equal area

by another pencil of m− 1 great circles, which may differ for each slice. Alexander

then asserts that the diameters are the right magnitude and omits a proof. This

construction has an obvious generalization for Sd with 2(d+1)md regions. Start with

the appropriate spherical hypercube, then divide each face into m equal pieces, and

so on. It is not clear that this partition of Sd is diameter-bounded in the sense of

Definition 2.4.3.

The existence of a diameter bounded set of equal area partitions of Sd is used

by Stolarsky [147], Beck and Chen [6] and Bourgain and Lindenstrauss [20], but no

construction is given.

Stolarsky [147, p. 581] asserts the existence of such a set, saying simply,

“Now clearly one can choose the Ai so that their Euclidean diameters

are À¿ N− 1
m−1 for 1 6 i 6 N .”

Here Stolarsky is discussing a partition of Sm−1 into N regions labelled Ai. Sto-

larsky’s notation À¿ is equivalent to order notation, and his assertion can be

restated as:

There are constants c, C > 0 such that for any N > 0 one can choose the

regions Ai so that their Euclidean diameters are bounded by cN− 1
m−1 6

diamAi 6 CN− 1
m−1 for 1 6 i 6 N .

The paper then uses this assertion to prove a theorem which relates the sum of

distances between N points on Sm−1 to a discrepancy which is defined in the paper.

Beck and Chen [6, pp. 237–238] essentially cites Stolarsky’s result, asserting

that
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“One can easily find a partition

Sd =
N⋃

`=1

R`

such that for 1 6 ` 6 N , σ(R`) = σ(Sd)
N and diam R` ¿ N− 1

d , where diam R` is

the diameter of R`.”

[With notation adjusted to match this thesis.]

Bourgain and Lindenstrauss [20, p. 26] cite Beck and Chen [6] and use a

diameter-bounded equal area partition of Sn−1 to prove their Theorem 1 on the

approximation of zonoids by zonotopes.

Stolarsky’s assertion can be proved using the method used by Feige and Schecht-

man [54] to prove the following lemma.

Lemma 3.1.4. (Feige and Schechtman [54, Lemma 21, pp. 430–431])

For each 0 < γ < π
2 the sphere Sd−1 can be partitioned into N =

(
O(1)

γ

)d

regions of

equal area, each of diameter at most γ.

Feige and Schechtman’s proof is not fully constructive. The construction as-

sumes the existence of an algorithm which creates a packing on the unit sphere

having the maximum number of equal spherical caps of given spherical radius [164,

p. 1091] [165, Lemma 1, p. 2112]. This assumption is not necessary for the proof,

and a fully constructive proof is therefore possible. This is given here as the proof

of Lemma 3.8.1 below.

Wagner [159, p. 112] implies that a diameter-bounded sequence of equal area

partitions of Sd can be constructed where each region is a rectangular polytope in

spherical polar coordinates. For S2, this is the same form of partition as [167] and

[133], and for Sd, this is the same form as given in this thesis.

Rakhmanov, Saff and Zhou [120], Zhou [167, 168] and Kuijlaars and Saff [134, 88]

use the partition of S2 given by Zhou’s construction to obtain bounds on the extremal

energy of point sets.
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Other constructions for equal area partitions of S2 have been used in the geo-

sciences [84, 145] and astronomy [152, 37, 62], but these constructions do not have

a proven bound on the diameter of regions. In particular, the regions of the “igloo”

partitions of [37] have the same form as [167] and [133]. The paper [37] also discusses

nesting schemes for “igloo” partitions.

The paper [96], on the problem of partitioning Sd into spherical quadrilaterals

of equal area, describes in great detail a construction very similar to Alexander’s

construction [3], but does not reference [3]. It instead says “We have found no

references on this problem in the literature”.

The remainder of this chapter is organized as follows. Section 3.2 describes the

partition algorithm. Section 3.3 presents an analysis of the regions of a partition,

including a number of lemmas used to prove the main theorems. Section 3.4 gives

a sketch of the proof of Theorem 3.1.3. Section 3.5 describes a continuous model

of the partition algorithm. Section 3.6 presents the proof of the main theorems.

Section 3.7 proves a per-region bound on diameters. Section 3.8 presents a proof of

Stolarsky’s assertion [147, p. 581] on the existence of equal area partitions of the

sphere with small diameter. Section 3.9 describes the Matlab implementation of

the EQ partition algorithm. Section 3.10 presents numerical results. Section 3.11

contains detailed proofs of lemmas. Section 3.12 contains estimates of the values of

some constants resulting from Theorem 3.1.3 and its proof.

3.2 The recursive zonal equal area partition

This section describes the recursive zonal equal area partition and recursive zonal

equal area partition algorithm in some detail.

3.2.1 The recursive zonal equal area partition algorithm in outline

The recursive zonal equal area partition algorithm is recursive in dimension d. The

pseudocode description for the algorithm for EQ(d,N ) is given by Figure 3.2.
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if N = 1 then
There is a single region which is the whole sphere;

else if d = 1 then
Divide the circle into N equal segments;

else
Divide the sphere into zones, each the same area as an integer number of regions:

1. Determine the colatitudes of polar caps,
2. Determine an ideal collar angle,
3. Determine an ideal number of collars,
4. Determine the actual number of collars,
5. Create a list of the ideal number of regions in each collar,
6. Create a list of the actual number of regions in each collar,
7. Create a list of colatitudes of each zone;

Partition each spherical collar into regions of equal area,
using the recursive zonal equal area partition algorithm for dimension d− 1;

endif .

Figure 3.2: The recursive zonal equal area Partition algorithm

EQ(3,99) Steps 1 to 2

θ
c ∆
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) = V

R
 

    = σ(S3)/99
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Figure 3.3: Partition algorithm for EQ(3, 99)

Figure 3.3 is an illustration of the algorithm for EQ(3, 99), with step numbers corre-

sponding to the step numbers in the pseudocode. We now describe key steps of the

algorithm in more detail.
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3.2.2 Dividing the sphere into zones

This is the key part of the algorithm, and is split into a number of steps. Each

step is described in more detail below. For brevity, we assume d > 1 and N > 1 and

we omit mentioning dependence on the variables d and N , where this can be done

without confusion.

1. Determining the colatitudes of polar caps.

Each polar cap is a spherical cap with the same area as that required for a

region. For an N region partition of Sd, the required area of a region R is

VR :=
ωd

N , (3.2.1)

where ωd is the area of Sd, as per (2.3.35).

The colatitude of the bottom of the North polar cap, ϑc is the spherical radius

of a spherical cap of area VR. Therefore

ϑc := Θ(VR), (3.2.2)

where the function Θ is defined by (2.3.45). The colatitude of top of the South

polar cap is then π − ϑc.

2. Determining an ideal collar angle.

As a result of Lemma 2.3.2, spherical distance approaches Euclidean distance

as the distance goes to zero. We now use the idea that to keep the diameter

bounded we want the shape of each region to approach a d-dimensional Eu-

clidean hypercube as N goes to infinity. That way, the diameter approaches

the diagonal length of the hypercube. The collar angle, the spherical distance

between the top and bottom of a collar in the partition, therefore should

approach V
1
d

R as N approaches infinity.

We therefore define the ideal collar angle to be

δI := V
1
d

R . (3.2.3)
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3. Determining an ideal number of collars.

Ideally, the sphere is to be partitioned into the North and South spherical

caps, and a number of collars, all of which have angle δI . The ideal number

of collars is therefore

nI :=
π − 2ϑc

δI
. (3.2.4)

4. Determining the actual number of collars.

We use a rounding procedure to obtain an integer n close to the ideal number

of collars.

If N = 2, then n := 0. Otherwise

n := max (1, round (nI)) , (3.2.5)

where, as usual, for x > 0,

round(x) := bx+ 0.5c, (3.2.6)

where bc is the floor (greatest integer) function.

The number of collars is then n.

5. Creating a list of the ideal number of regions in each collar.

We number the zones southward from 1 for the North polar cap to n + 2 for

the South polar cap, and number the collars so that collar i is zone i+ 1.

We now assume N > 2. The “fitting” collar angle is

δF :=
nI

n
δI =

π − 2ϑc

n
. (3.2.7)

We use δF to produce an increasing list of “fitting” colatitudes of caps, defined

by

ϑF,i := ϑc + (i− 1)δF , (3.2.8)
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for i ∈ {1, . . . , n + 1}.

The area of each corresponding “fitting” collar is given by successive colati-

tudes in this list. The ideal number of regions, yi, in each collar i ∈ {1, . . . , n}

is then

yi :=
V(ϑF,i+1)− V(ϑF,i)

VR
. (3.2.9)

6. Creating a list of the actual number of regions in each collar.

We use a rounding procedure similar to that of Zhou Lemma 2.11 [167, pp.

16–17]. With n the number of collars as defined by (3.2.5), we define mi, the

required number of regions in collar i ∈ {1, . . . , n} as follows.

Define the sequences a and m by starting with a0 := 0, and for i ∈ {1, . . . , n},

mi := round(yi + ai−1), ai :=
i∑

j=1

(yj −mj). (3.2.10)

7. Creating a list of colatitudes of each zone.

We now define ϑ0 := 0, ϑn+2 := π and for i ∈ {1, . . . , n + 1}, we define

ϑi := Θ




(
1 +

i−1∑

j=1

mj

)
VR


 . (3.2.11)

For i ∈ {0, . . . , n + 1}, we use Z as per (2.3.16) to define zone i to be Z(ϑi, ϑi+1).

Finally, for i ∈ {1, . . . , n}, we define collar i to be zone i.

3.2.3 Partitioning a collar

We partition collar i of EQ(d,N ) into mi regions, each corresponding to a region of

the partition EQ(d−1,mi). We assume that each region of EQ(d−1,mi) is rectilinear in

spherical polar coordinates (RISC) as per Definition 2.3.11. If region j ∈ {1, . . . ,mi}

of EQ(d − 1,mi) is R((τ1, . . . , τd−1), (υ1, . . . , υd−1)), then we define the region R of collar

i of EQ(d,N ) corresponding to region j of EQ(d− 1,mi) to be

R := R (
(τ1, . . . , τd−1, ϑi), (υ1, . . . , υd−1, ϑi+1)

)
. (3.2.12)
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Remarks. The partition EQ(d,N ) is not fully specified by this algorithm.

The algorithm instead specifies an equivalence class of partitions, unique

up to rotations of the sectors of the partitions of S1. This means that

the collars of EQ(2,N ) are free to rotate without changing diameters of

the regions and without changing the colatitudes of the collars. The

regions remain rectilinear in spherical polar coordinates.

3.3 Analysis of the recursive zonal equal area partition

The proofs of Theorems 3.1.2 and 3.1.3 proceed by induction on d, matching the

recursion of the recursive zonal equal area partition algorithm. This section presents

the preliminary analysis of the recursive zonal equal area partition, including the

lemmas needed by the proofs of Theorems 3.1.2 and 3.1.3. Section 3.11 contains

proofs of the lemmas.

First, we characterize the regions of a recursive zonal equal area partition. Fol-

lowing this, we examine the case d > 1, N > 1 in some detail. The cases d = 1 and

N = 1 are simpler and are included in the proof itself.

By induction on the construction given in Section 3.2, we see that the regions

produced by the recursive zonal equal area partition algorithm are RISC regions as

per Definition 2.3.11, and for d > 1 each region R of collar i is of the form (3.2.12).

Each such region therefore has an equatorial image of the form

Π R = ¯ ([τ1, υ1]× [τ2, υ2]× . . .× [τd−1, υd−1]) (3.3.1)

= R((τ1, . . . , τd−1), (υ1, . . . , υd−1)) ∈ EQ(d− 1,mi)

as per Lemma 2.3.12 and Section 3.2.3 above.

We now consider the two polar caps. The following lemma on the diameter

of the polar caps has an elementary proof, which is included in Section 3.11 for

completeness.

Lemma 3.3.1. For d > 1 and N > 1, the diameter of each of the polar caps of the

recursive zonal equal area partition EQ(d,N ) is 2 sinϑc, where ϑc is defined by (3.2.2).



3.3. Analysis of the recursive zonal equal area partition 83

An analysis of the diameter of the polar caps is not needed for the proof of

Theorem 3.1.3. This is a consequence of the isodiametric inequality for Sd.

Theorem 3.3.2. (Isodiametric inequality for Sd)

Any region R ⊂ Sd of spherical diameter δ < π has area bounded by

σ(R) 6 V
(
δ

2

)
.

Equality holds only for spherical caps of spherical radius δ
2 .

Remarks. This result is well known. See [16] for a proof of a generalized

version of this inequality, based on the proof of [7].

The corresponding result for Euclidean space – with no restriction on

diameter – is also well known [53, Corollary 2.10.33 p. 197].

Corollary 3.3.3. The polar caps are the regions of smallest diameter of EQ(d,N ).

Considering Corollary 3.3.3, the polar caps need not be taken into account when

estimating the maximum diameter of regions of EQ(d,N ) for N > 2. We therefore

turn our attention to the regions contained in collars.

The following lemma leads to a bound on the diameter of a region contained in

a collar.

Lemma 3.3.4. Given a,b, c ∈ Sd where

a := ¯(α1, α2, . . . , αd−1, A), b := ¯(β1, β2, . . . , βd−1, B), c := ¯(α1, α2, . . . , αd−1, B),

(3.3.2)

with sinB > sinA, then the Euclidean Rd+1 distance ‖a− b‖ satisfies

‖a− b‖ 6
√
‖a− c‖2 + ‖c− b‖2.

The following definitions are of use in examining the diameter of R in terms of

‖a− c‖ and ‖c− b‖. For region R contained in collar i of EQ(d,N ),
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• the spherical distance between the top and bottom parallels of region R is

δi := ϑi+1 − ϑi, (3.3.3)

• the maximum Euclidean radius of collar i is

wi := max
ξ∈[ϑi,ϑi+1]

sin ξ =





sinϑi+1 if ϑi+1 <
π
2 ,

sinϑi if ϑi >
π
2 ,

1 otherwise.

(3.3.4)

We can now use Lemmas 2.3.2 and 3.3.4 to show that

Lemma 3.3.5. For region R contained in collar i of EQ(d,N ) we have

diam R 6
√

Υ(δi)2 + w2
i (diamΠ R)2

6
√
δ2i + w2

i (diamΠ R)2,

where δi and wi are given by (3.3.3) and (3.3.4) respectively.

3.4 Sketch of the proof of Theorem 3.1.3

The proof of Theorem 3.1.3 proceeds by induction on the dimension d. The inductive

step of the proof starts with the observation that if d > 1 and if the set EQ(d − 1)

has diameter bound κ, then for any region R of collar i of the partition EQ(d,N ) we

have

diamΠR 6 κm
1

1−d

i ,

and therefore from Lemma 3.3.5 we have

diam R 6
√
δ2i + κ2p2

i ,
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where the scaled Sd−1 diameter bound pi is

pi := wim
1

1−d

i . (3.4.1)

As a consequence, if d > 1 and if EQ(d − 1) has diameter bound κ, then for any

region R of the partition EQ(d,N )

diam R 6
√

(max δ)2 + κ2(max p)2, (3.4.2)

where max δ := max
i∈{1,...,n}

δi, max p := max
i∈{1,...,n}

pi,

and n is the number of collars in the partition EQ(d,N ).

Thus to prove the theorem it suffices to show that max δ and max p are both of

order N− 1
d . Since the Euclidean diameter of a region of Sd is always bounded above

by 2, we need only prove that there is an N0 > 1 such that for N > N0 we have

bounds of the right order. This is because for any N0 > 1 and any N ∈ [1, N0] we

have

2N
1
d
0 N− 1

d > 2.

Remarks. Lemma 3.3.5 in its current form is not strictly necessary for

the proof of Theorem 3.1.3. A lemma using the triangle inequality would

suffice. The main reason for using Lemma 3.3.5 is to improve the value

of the constant Kd of Theorem 3.1.3.

The key strategy in estimating max δ and max p is to replace the integer variable

i by a small number of real valued variables constrained to some feasible domain,

replace δ and p with the equivalent functions of these real variables, and then to

find and estimate continuous functions which dominate these equivalent functions.

To replace i, we first must model the rounding steps of the partition algorithm.

We model the first rounding step by finding appropriate bounds for ρ = nI

n = δF

δI
,

where δF is defined by (3.2.7).
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The second rounding step takes the sequence y and produces the sequences m

and a. To model this step, we first show that ai ∈
[− 1

2 ,
1
2

)
. This allows us to

define the analog functions Y,M,∆,W,P corresponding to y,m, δ,w, p respectively.

These analog functions are defined on the real rounding variables τ and β and the

colatitude variable ϑ, such that Y coincides with y, etc. when τ = −ai−1, β = ai and

ϑ = ϑF,i, where ϑF,i is defined by (3.2.8).

We then define the feasible domain D such that the second rounding step always

corresponds to a set of points in D.

The final and longest part of the proof is to show that both ∆ and P are asymp-

totically bounded of order N− 1
d over the whole of D. In this final part, we need

estimates for the area function V and the inverse function Θ. Crude but very simple

estimates of these functions yield bounds for ∆ and P of the correct order.

3.5 A continuous model of the partition algorithm

3.5.1 Rounding the number of collars

For the first rounding step, which produces n from nI , we define

ρ :=
nI

n
(3.5.1)

so that

δF = ρδI (3.5.2)

We recall from (3.2.6) that for x > 0,

round(x) ∈
(
x− 1

2
, x+

1
2

]
(3.5.3)

Therefore, using (3.2.5) and (3.5.3), for N > 2, if nI > 1
2 then

n ∈
(

nI − 1
2
, nI +

1
2

]
. (3.5.4)
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We can now prove the following.

Lemma 3.5.1. For N > 2, if nI >
1
2 then

ρ ∈
[
1− 1

2nI + 1
, 1 +

1
2nI − 1

)
. (3.5.5)

Using (3.2.4) and Lemma 3.5.1, we see that bounds for ρ are given by lower

bounds for nI . The crudest bound is given by nI >
1
2 , for then

ρ ∈
[
1− 1

2nI + 1
, 1 +

1
2nI − 1

)
⊂

(
1
2
,∞

)
. (3.5.6)

We can re-express the bound nI >
1
2 in terms of a lower bound on N by means

of the function ν, where

ν(x) :=
(
x

ωd

) 1
d (

π − 2Θ
(ωd

x

))
. (3.5.7)

Lemma 3.5.2. The function ν defined by (3.5.7) has the following properties.

1. ν(2) = 0.

2. ν(N ) = nI.

3. ν(x) is monotonically increasing in x for x > 2.

As a consequence of Lemma 3.5.2, it is possible to define the inverse function

N0 where

N0(y) := ν−1(y), (3.5.8)

for y > 0. We then have N0

(
ν(x)

)
= x and ν

(N0(y)
)

= y for x > 2 and y > 0, and by the

inverse function theorem, N0(y) is monotonic increasing in y for y > 0.

For N > x such that x > N0(1/2), we then have

nI > ν(x) >
1
2

(3.5.9)
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and

ρ ∈ [ρL(x), ρH(x)], (3.5.10)

where

ρL(x) := 1− 1
2ν(x) + 1

and ρH(x) := 1 +
1

2ν(x)− 1
. (3.5.11)

We can make ρL(x) and ρH(x) arbitrarily close to 1 by making x large enough. More

precisely,

ρL(x) ↗ 1, and ρH(x) ↘ 1 as x→∞. (3.5.12)

3.5.2 Rounding the number of regions in a collar

To model the second rounding step of the partition algorithm, we take note of the

following two lemmas.

Lemma 3.5.3. For d > 1 and N > 1, with n, ϑi, ϑF,i, yi, mi, ai and VR as per (3.2.5),

(3.2.11), (3.2.8), (3.2.9), (3.2.10) and (3.2.1) respectively, we have

n∑

i=1

yi = N − 2 (3.5.13)

and

mi = yi + ai−1 − ai, (3.5.14)

for i ∈ {1, . . . , n};

V(ϑi) = V(ϑF,i) + ai−1VR, (3.5.15)
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for i ∈ {1, . . . , n + 1}; and

mi =
V(ϑi+1)− V(ϑi)

VR
, (3.5.16)

for i ∈ {1, . . . , n}.

Lemma 3.5.4. Given a finite sequence y of length n, where

yi ∈ R, yi > 1
2

for i ∈ {1, . . . , n}, and
n∑

i=1

yi = N − 2 ∈ N,

if we use (3.2.10) to define the sequences m and a, then m and a have the following

properties:

m1 ∈ N, mi ∈ N0 for i ∈ {2, . . . , n}, (3.5.17)

ai ∈
[
−1

2
,
1
2

)
for i ∈ {1, . . . , n}, (3.5.18)

an = 0,
n∑

i=1

mi =
n∑

i=1

yi. (3.5.19)

If the sequence y is symmetric, then m and a have additional symmetry prop-

erties, which we examine here. These symmetry properties are not needed for the

proof of Theorem 3.1.3, but are used to optimize the Matlab implementation of the

partition algorithm.

Lemma 3.5.5. Assuming the definitions of Lemma 3.5.4, define L := b n
2c.

If in addition to conditions of Lemma 3.5.4, the sequence y is symmetric, that

is, yi = yn−i+1 for i ∈ {1, . . . , L}, then the sequences m and a then have the following

properties.

1. If n is even and N is odd then the sequence m is not symmetric.

2. If the sequence m is symmetric then the sequence a has aj = −an−j for all

j ∈ {0, . . . , L}.

3. The sequence m is symmetric if and only if, for all i ∈ {1, . . . , L}, ai 6= − 1
2 .
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Remarks. From Step 5 of the partition algorithm, we see that the se-

quence y is symmetric. Thus the only circumstances where m is not

symmetric are when n is even and N is odd, and otherwise when some

ai = − 1
2 . Since the sequence a is the result of a rounding process, in prac-

tice we rarely have any ai = − 1
2 unless n is even and N is odd. Therefore

the sequence m is symmetric often enough for this property to be use-

ful in the optimization of the Matlab implementation of the partition

algorithm.

3.5.3 Functions which model the regions in a collar

To make it easier to find bounds for functions which vary from zone to zone, such

as y,m we define and use continuous analogs of these functions. This way, instead

of having to find a bound for a function value over n + 2 points, where n varies with

N , we need only find a bound for a function over a fixed number of points and

continuous intervals.

Motivated by Lemmas 3.5.3 and 3.5.4, we define

Y(ϑ) :=
V(ϑ+ δF )− V(ϑ)

VR
, (3.5.20)

T (τ, ϑ) := Θ
(V(ϑ)− τVR

)
, (3.5.21)

B(β, ϑ) := Θ
(V(ϑ+ δF ) + βVR

)
, (3.5.22)

M(τ, β, ϑ) := Y(ϑ) + τ + β, (3.5.23)

∆(τ, β, ϑ) := B(β, ϑ)− T (τ, ϑ), (3.5.24)

W(τ, β, ϑ) := max
ξ∈[T (τ,ϑ),B(β,ϑ)]

sin ξ, (3.5.25)

P(τ, β, ϑ) := W(τ, β, ϑ)M(τ, β, ϑ)
1

1−d . (3.5.26)

These functions have the following desirable properties.
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Lemma 3.5.6. For i ∈ {1, . . . , n} we have

Y(ϑF,i) = yi, (3.5.27)

T (−ai−1, ϑF,i) = ϑi, (3.5.28)

B(ai, ϑF,i) = ϑi+1, (3.5.29)

M(−ai−1, ai, ϑF,i) = mi, (3.5.30)

∆(−ai−1, ai, ϑF,i) = δi, (3.5.31)

W(−ai−1, ai, ϑF,i) = wi, (3.5.32)

P(−ai−1, ai, ϑF,i) = pi. (3.5.33)

3.5.4 Symmetries of the continuous analogs

Lemma 3.5.7. The function Y satisfies

Y(π − ϑ) = Y(ϑ− δF ). (3.5.34)

Lemma 3.5.8. The functions T and B satisfy the identities

T (τ, π − ϑ) = π − B(τ, ϑ− δF ), and (3.5.35)

B(β, π − ϑ) = π − T (β, ϑ− δF ). (3.5.36)

Lemma 3.5.9. For each f ∈ {M,∆,W,P}, the function f satisfies

f(τ, β, π − ϑ) = f(β, τ, ϑ− δF ). (3.5.37)

3.5.5 Feasible domains

For our feasible domain we therefore use the set D, defined as follows.

Definition 3.5.10. The feasible domain D is defined as

D := Dt ∪ Dm ∪ Db,
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where

Dt := {(τ, β, ϑ) | τ = 0, β ∈
[
−1

2
,
1
2

]
, ϑ = ϑc}, (3.5.38)

Dm := {(τ, β, ϑ) | τ ∈
[
−1

2
,
1
2

]
, β ∈

[
−1

2
,
1
2

]
, ϑ ∈ [ϑF,2, π − ϑc − 2δF ]}, (3.5.39)

Db := {(τ, β, ϑ) | τ ∈
[
−1

2
,
1
2

]
, β = 0, ϑ = π − ϑc − δF }. (3.5.40)

We use closed intervals for τ and β because we need to support a number of

symmetry properties which we will examine in Section 3.5.4 below.

Lemma 3.5.11. Assume that d > 1 and that EQ(d− 1) has diameter bound κ. Then

for N > 2, if we define

maxdiam(d,N ) := max
R∈EQ(d,N )

diam R, (3.5.41)

then

maxdiam(d,N ) 6
√

(max
D

∆)2 + κ2(max
D
P)2,

3.5.6 Symmetries of the feasible domain D

We now show that we need only consider the northern hemisphere to obtain a valid

bound for the diameter of a region of the recursive zonal equal area partition of Sd.

We first define the following subdomains of the feasible domain D.

D+ :=
{

(τ, β, ϑ) ∈ D
∣∣∣∣ ϑ 6 π

2
− δF

2

}
, (3.5.42)

D− :=
{

(τ, β, ϑ) ∈ D
∣∣∣∣ ϑ >

π

2
− δF

2

}
, (3.5.43)

Dm+ := Dm ∩ D+, (3.5.44)

The following result then holds.
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Lemma 3.5.12. For f ∈ {M,∆,W,P} and (τ, β, ϑ) ∈ D−, we can find (τ ′, β′, ϑ′) ∈ D+

such that f(τ ′, β′, ϑ′) = f(τ, β, ϑ). In particular, if (τ, β, ϑ) ∈ Db, then (τ ′, β′, ϑ′) ∈ Dt, and

if (τ, β, ϑ) ∈ Dm−, then (τ ′, β′, ϑ′) ∈ Dm+.

Corollary 3.5.13. For f ∈ {M,∆,W,P},

max
D

f = max
D+

f.

3.5.7 Estimates

Recall from (3.2.2) and (3.2.1) that ϑc = Θ
(

ωd

N
)

and define

Jc(x) := sinc Θ
(ωd

x

)
. (3.5.45)

As a result of (2.3.48), for N > x > 2 we have

ϑc ∈ [1, Jc(x)
1−d

d ]
(

d

ωd−1

) 1
d

δI . (3.5.46)

Using Lemma 2.3.18, we obtain the following upper bound for sinϑc.

Lemma 3.5.14. For x > 2,

x
1
d sin Θ

(ωd

x

)
6

(
ωd d

ωd−1

) 1
d

. (3.5.47)

Therefore, for N > 2,

sinϑc 6
(

d

ωd−1

) 1
d

δI . (3.5.48)

Combining (3.5.45), (3.5.46) and (3.5.48) we have the estimate

sinϑc ∈ [Jc(x), 1]
(

d

ωd−1

) 1
d

δI (3.5.49)

for N > x > 2.
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Recalling (3.2.3), we also have

δI = ω
1
d

d N− 1
d . (3.5.50)

As another consequence of (3.5.46) we have the following estimate for the number

of collars of EQ(d,N ).

Lemma 3.5.15. For N > N0(1/2), the number of collars n satisfies the estimate

n 6 π

δI
. (3.5.51)

The definitions of the functions ∆ and P and the definition of the feasible domain

D depend on the fitting collar angle δF . Thus the proofs of Lemmas 3.5.25 and 3.5.26

need an estimate for δF .

Recall from (3.5.2) that δF = ρδI . Therefore, from (3.5.10), for N > x > N0(1/2),

where N0 is defined by (3.5.8) we have

δF ∈ [ρL(x), ρH(x)]δI . (3.5.52)

We also need estimates for ϑF,i, as defined by (3.2.8), and for sinϑF,i and V(ϑF,i).

Here and below, we generalize the definition of ϑF,i, by defining

ϑF,ι := ϑc + (ι− 1)δF , (3.5.53)

for ι ∈ [1, n + 1].

For N > x > N0(1/2), where N0 is defined by (3.5.8), the estimates (3.5.46) and

(3.5.52) now yield

ϑF,ι ∈
[(

d

ωd−1

) 1
d

+ (ι− 1)ρL(x),
(

d

ωd−1

) 1
d

Jc(x)
1−d

d + (ι− 1)ρH(x)

]
δI . (3.5.54)
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The estimates for sinϑF,ι and V(ϑF,ι) below assume that N > x > N0(1/2), where

N0 is defined by (3.5.8), and the lower bounds for these estimates also assume that

Θ
(ωd

x

)
+ (ι− 1)ρH(x)

(ωd

x

) 1
d 6 π

2
. (3.5.55)

If we define

JF,ι(x) := sinc
(

Θ
(ωd

x

)
+ (ι− 1)ρH(x)

(ωd

x

) 1
d

)
, (3.5.56)

then from (2.2.6) and (3.5.54) we have the estimate

sinϑF,ι ∈
[
JF,ι(x)

((
d

ωd−1

) 1
d

+ (ι− 1)ρL(x)

)
,

(
d

ωd−1

) 1
d

Jc(x)
1−d

d + (ι− 1)ρH(x)

]
δI

(3.5.57)

and from (2.3.47) we have the estimate

V(ϑF,ι) ∈ [sL,ι(x), sH,ι(x)]VR, (3.5.58)

where

sL,ι(x) := JF,ι(x)d−1

(
1 + (ι− 1)ρL(x)

(ωd−1

d

) 1
d

)d

,

sH,ι(x) :=
(
Jc(x)

1−d
d + (ι− 1)ρH(x)

(ωd−1

d

) 1
d

)d

.

If we define

sι :=
(

1 + (ι− 1)
(ωd−1

d

) 1
d

)d

, (3.5.59)

then, since JF,ι(x) ↗ 1, Jc(x) ↗ 1, ρL(x) ↗ 1 and ρH(x) ↘ 1, as x→∞ we see that

sL,ι(x) ↗ sι and sH,ι(x) ↘ sι (3.5.60)
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as x→∞.

By making x large enough and ι small enough, we can ensure that (3.5.55) holds.

Lemma 3.5.16. If x > N0(5), where N0 is defined by (3.5.8), then (3.5.55) holds

for

ι ∈
[
1,

13
4

]
.

For the remainder of this chapter we use the abbreviation

η :=
1√
8πd

. (3.5.61)

The proofs of Lemmas 3.5.25 and 3.5.26 require the following results, which

follow from Lemma 2.3.23.

Lemma 3.5.17. There is an x > N0(5), where N0 is defined by (3.5.8), such that

JF,(1+η)(x)d−1

(
1 + η ρL(x)

(ωd−1

d

) 1
d

)d

>
3
2
. (3.5.62)

Lemma 3.5.18. There is an x > N0(5), where N0 is defined by (3.5.8), such that x

satisfies (3.5.62) and also satisfies

ρL(x) ωd−1 JF,2(x)d−1

((
d

ωd−1

) 1
d

+ ρL(x)

)d−1

> 1. (3.5.63)

The following result and its corollaries are also used in the proofs of Lemmas

3.5.25 and 3.5.26.

Lemma 3.5.19. If x > N0(5), where N0 is defined by (3.5.8), and x satisfies (3.5.62)

then for N > x we have

V(ϑc + ηδF ) >
3
2
VR. (3.5.64)
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As a result of (3.5.64) we have

V(ϑc + ηδF )− V(ϑc) >
VR

2
. (3.5.65)

Using Lemma 2.3.16 and the symmetries of the sine function, we have

∂

∂ϑ
(V(ϑ+ ηδF )− V(ϑ)) = DV(ϑ+ ηδF )−DV(ϑ)

= ωd−1

(
sind−1(ϑ+ ηδF )− sind−1 ϑ

)

> 0 for ϑ ∈
(

0,
π

2
− η

δF
2

]
, (3.5.66)

with equality only when ϑ = π
2 − η δF

2 .

This results in the following corollary.

Corollary 3.5.20. If x > N0(5), where N0 is defined by (3.5.8), and x satisfies

(3.5.62) then for N > x and ϑ ∈ [ϑc, π − ϑc − ηδF ] we have

V(ϑ+ ηδF )− V(ϑ) >
VR

2
. (3.5.67)

If x > N0(5), where N0 is defined by (3.5.8), and N > x then n > 5, so ϑF,2 <
π
2 .

Since 8πd > 16π > 49, we therefore have

ηδF <
δF
7
. (3.5.68)

The convexity of V as per Lemma 2.3.16 together with (3.5.69) and (3.5.68) then

yield the following results.

Corollary 3.5.21. If x > N0(5), where N0 is defined by (3.5.8), and x satisfies

(3.5.62) then for N > x and ϑ ∈ [ϑc, π − ϑc − δF ] we have

V(ϑ+ δF )− V(ϑ) >
7
2
VR. (3.5.69)
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In particular,

V(ϑF,2) >
9
2
VR. (3.5.70)

By (2.3.41) and (2.3.42) we also have

V(ϑF,2)− V(ϑc) 6 δF ωd−1 sind−1 ϑF,2,

and we have the following result.

Corollary 3.5.22. If x > N0(5), where N0 is defined by (3.5.8), and x satisfies

(3.5.62) then for N > x we have

δF ωd−1 sind−1 ϑF,2 >
7
2
VR. (3.5.71)

The upper bound for V(ϑ+ δF )− V(ϑ) is a little easier to analyze than the lower

bound. From (2.3.36), for ϑ ∈ [0, π − δF ] we have the crude upper bound

V(ϑ+ δF )− V(ϑ) = ωd−1

∫ ϑ+δF

ϑ

sind−1 ξ dξ 6 ωd−1 δF . (3.5.72)

While crude, this bound is sufficient to prove the following estimates. Firstly, from

(3.5.20) and (3.5.72) we immediately have for Y(ϑ) for ϑ ∈ [0, π − δF ] the estimate

Y(ϑ) 6 ωd−1

VR
δF .

Together with (3.2.1), (3.2.3) and (3.5.2), this gives us

Y(ϑ) 6 ρ ωd−1 δ
1−d
I = ρ ωd−1 ω

1−d
d

d N d−1
d . (3.5.73)

Secondly, we have a crude estimate for the maximum number of regions in zone

i.
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Lemma 3.5.23. For i ∈ {0, . . . ,N +1}, the number of regions mi in zone i of EQ(d,N )

satisfies the upper bound

mi 6





1, N 6 2,

N − 2, N ∈ [3,N0(1/2)) ,

ρH(x) ωd−1 ω
1−d

d

d N d−1
d + 1, N > x > N0(1/2).

As a result, we have the estimate

mi 6 mª := Cª,d N
d−1

d , (3.5.74)

where

Cª,d := max
(
N0(1/2)

1
d − 2 N0(1/2)

1−d
d , ρH

(N0(1/2)
)
ωd−1 ω

1−d
d

d + 1
)
. (3.5.75)

3.5.8 Bounds

As a consequence of Theorem 3.3.2 (the isodiametric inequality), the following result

on diameter bounds for the polar cap is not needed for the proof of Theorem 3.1.3.

It is included for completeness, and for comparison to the Feige–Schechtman bound

to be examined below.

As an immediate consequence of Lemma 3.5.14 we have the following upper

bound for the diameter of a polar cap of EQ(d,N ).

Lemma 3.5.24. For d > 1 and N > 2, the diameter of each polar cap of EQ(d,N ) is

bounded above by KcN− 1
d , where

Kc := 2
(
ωd d

ωd−1

) 1
d

. (3.5.76)

The following two bounds are used in the proof of Theorem 3.1.3.

Lemma 3.5.25. For d > 1, there is a positive constant N∆ ∈ N and a monotonic

decreasing positive real function K∆ such that for each partition EQ(d,N ) with
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N > x > N∆,

max
D

∆ 6 K∆(x)N− 1
d .

Lemma 3.5.26. For d > 1, there is a positive constant NP ∈ N and a monotonic

decreasing positive real function CP such that for each partition EQ(d,N ) with

N > x > NP ,

max
D
P 6 CP (x)N− 1

d .

3.6 Proofs of main theorems

We first examine the equal area property.

Proof of Theorem 3.1.2.

The theorem is true for d = 1, since the recursive zonal equal area partition

algorithm partitions the circle S1 into N equal segments.

We now assume that d > 1. At Step 7 of the partition algorithm, we define

zone i to be Z(ϑi, ϑi+1). Using (3.2.11), the area of each polar cap is VR and, for

i ∈ {1, . . . , n}, the area of collar i is

σ
(
Z(ϑi, ϑi+1)

)
= miVR.

From Lemmas 3.5.3 and 3.5.4, we know that mi is a positive integer. At Step 3.2.3

of the recursive zonal equal area partition algorithm, we recursively use EQ(d−1,mi)

to partition each collar into mi regions. Therefore, by induction, each region of the

partition EQ(d,N ) has area VR. 2

We now examine the diameter property.

Proof of Theorem 3.1.3.

The theorem is true for d = 1, with EQ(1) having diameter bound K1 = 2π, since

the recursive zonal equal area partition algorithm partitions the circle S1 into N
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equal segments, each of arc length 2π/N , and therefore each segment has diameter

less than 2π/N .

Now assume that d > 1 and N > 2. We know from Lemma 3.5.11 that

maxdiam(d,N ) 6
√(

max
D

∆
)2

+ κ2
(
max
D
P

)2

.

From Lemma 3.5.25, we know that there is a positive constant N∆ ∈ N and a

monotonic decreasing positive real function K∆ such that for each partition EQ(d,N )

with N > x > N∆,

max
D

∆ 6 K∆(x)N− 1
d .

From Lemma 3.5.26, we know that there is a positive constant NP ∈ N and a

monotonic decreasing positive real function CP such that for each partition EQ(d,N )

with N > x > NP ,

max
D
P 6 CP (x)N− 1

d .

Define

NH := max(N∆, NP ). (3.6.1)

Assuming that EQ(d− 1) is diameter bounded, with diameter bound κ, then for

N > NH , we have maxdiam(d,N ) 6 KHN− 1
d , where

KH :=
√
K∆(NH)2 + κ2CP (NH)2. (3.6.2)

For d > 1 and N 6 NH , we note that the diameter of Sd is 2, and so the diameter

of any region is bounded by 2. Therefore for N 6 NH , maxdiam(d,N ) 6 KLN− 1
d ,
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where

KL := 2N
1
d

H . (3.6.3)

Finally, we see by induction that for d > 1, maxdiam(d,N ) 6 KdN− 1
d , where

Kd := max(KL,KH). (3.6.4)

2

3.7 A per-region bound on diameter

The following bound is not needed for the proof of Theorem 3.1.3, but is useful in

checking the calculation of the diameters of individual regions.

Definition 3.7.1. The region diameter bound function db is defined on the regions

of a partition EQ(d,N ) as follows.

For the whole sphere Sd,

db Sd := 2.

For a region R contained in EQ(1,N ),

db R := Υ
(

2π
N

)
,

where Υ is defined by (2.3.2).

For d > 1, for a spherical cap R with spherical radius ϑc,

db R := 2 sinϑc.
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For d > 1, for a region R contained in collar i ∈ {1, . . . , n} of a partition EQ(d,N )

with n collars,

dbR :=
√

Υ(δi)2 + w2
i (dbΠ R)2,

where Π R is defined by (3.3.1).

Theorem 3.7.2. For any region R ∈ EQ(d,N ),

diam R 6 db R.

3.8 Proof of Stolarsky’s assertion

Feige and Schechtman’s construction yields the following upper bound on the small-

est maximum diameter of an equal area partition of Sd.

Lemma 3.8.1. [54, Lemma 21, p. 430-431]

For d > 1, N > 2, there is a partition FS(d,N ) of the unit sphere Sd into N

regions, with each region R ∈ FS(d,N ) having area ωd/N and Euclidean diameter

bounded above by

diam R 6 Υ
(
min(π, 8ϑc)

)
, (3.8.1)

with Υ defined by (2.3.2) and ϑc defined by (3.2.2).

We now use the Feige–Schechtman construction to prove Stolarsky’s assertion.

Theorem 3.8.2. [147, p. 581] For each d > 0, there is a constant cd such that for

all N > 0, there is a partition of the unit sphere Sd into N regions, with each region

having area ωd/N and diameter at most cdN− 1
d .

Proof. For d = 1, we partition the circle into equal segments and the proof is as per

the proof of Theorem 3.1.3.

For d > 1 and N = 1, there is one region of diameter 2 = 2N− 1
d . For d > 1 and

N = 2, there are two regions, each of diameter 2 = 2
d+1

d N− 1
d .
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Otherwise we use Lemma 3.8.1 and the estimates (3.5.46) and (3.5.48). Define

NFS =
ωd

V (
π
8

) . (3.8.2)

Then for N > NFS,

ϑc = Θ
(ωd

N
)

6 π

8
, (3.8.3)

with equality only when N = NFS. Therefore, for N > NFS, Lemmas 3.5.14 and

3.8.1 give us

max
R∈FS(d,N )

diam R 6 2 sin 4ϑc < 8 sinϑc < KFSN− 1
d ,

where

KFS := 8
(
ωd d

ωd−1

) 1
d

. (3.8.4)

For 2 < N < NFS, we have

maxdiamFS(d,N ) 6 2 = 2 N 1
dN− 1

d < 2 N
1
d

FSN− 1
d .

Let KFSL := 2 N
1
d

FS. Using (2.3.51) we have

V
(π

8

)
> 1

sinc π
8

ωd−1

d
sind π

8
>
ωd−1

d
sind π

8
.

We also have sin π
8 >

1
4 so that

V
(π

8

)
>
ωd−1

4d d
.
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Therefore

NFS =
ωd

V (
π
8

) < 4d ωd d

ωd−1
,

in other words,

Kd
FSL = 2d NFS < 8d ωd d

ωd−1
= Kd

FS .

We therefore have KFSL < KFS.

For the case N = 2, from (2.3.52) we obtain

2d+1 < 8d
√

2πd < 8d ωd d

ωd−1
= Kd

FS .

Therefore Theorem 3.8.2 is satisfied by cd = KFS. 2

Remarks. The Feige–Schechtman constant KFS thus provides an upper

bound for the minimum constant for the diameter bound of an equal

area partition of Sd.

Theorems 3.1.2 and 3.1.3 yield an alternate proof of Theorem 3.8.2, with

cd = Kd.

3.9 Implementation

The Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox is a suite of

Matlab [154] functions. These functions are intended for use in exploring different

aspects of EQ sphere partitioning.

The functions are grouped into the following groups of tasks:

1. Create EQ partitions

2. Find properties of EQ partitions

3. Find properties of EQ point sets

4. Produce illustrations

5. Test the toolbox
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6. Perform some utility function

An EQ point set is the set of centre points of the regions of an EQ partition.

Each region is defined as a product of intervals in spherical polar coordinates. The

centre point of a region is defined via the centre points of each interval, with the

exception of spherical caps and their descendants, where the centre point is defined

using the centre of the spherical cap.

The toolbox has been tested with Matlab versions 6.5 and 7.0.1 on Linux, and

6.5.1 on Windows.

3.9.1 Implementation of the functions V and Θ

For d 6 2, the area function Vd(θ) uses the closed solution to the integral (2.3.36),

and for d > 3 the area function uses the Matlab [154] function BETAINC to evaluate

the regularized incomplete Beta function I of Lemma 2.3.15. For d = 3 the area

function uses the closed solution for θ ∈ [π/6, 5π/6] and otherwise uses BETAINC.

The inverse function Θd(v) uses the closed solution to the inverse for d 6 2, and

otherwise uses the Matlab [154] function FZERO to find the solution. This loses

some accuracy for area arguments v near zero. In future, the inverse function may

instead be based on an implementation of the inverse Beta distribution algorithm

of Abernathy and Smith [1].

3.9.2 Limitations

Ultimately, the Matlab code is limited by the speed of the processor and the amount

of memory available.

Any function which has dim as a parameter will work for any integer dim > 1.

Any function which takes N as an argument will work with any positive integer

value of N , but for very large N , the function may be slow, or may consume large

amounts of memory.
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3.10 Numerical results

3.10.1 Maximum diameters of regions

Figures 3.4, 3.5 and 3.6 are log-log plots corresponding to the recursive zonal equal

area partitions of Sd for d = 2, d = 3 and d = 4 respectively. For each partition

EQ(d,N ), for N from 1 to 100 000, each figure shows the coefficients corresponding to

the maximum per-region upper bound on diameter, as per Definition 3.7.1, depicted

as red dots, and the maximum vertex diameter, depicted as blue + signs. Each of

these coefficients is obtained by multiplying the corresponding diameter bound by

N 1
d .
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Figure 3.4: Maximum diameters of EQ(2,N ) (log-log scale)

The vertex diameter of a region is the maximum distance between pseudo-

vertices of a region, except where a region spans 2π in longitude, in which case

one of each pair of coincident pseudo-vertices is replaced by a point with the same

colatitudes and a longitude increased by π. For low dimensions and for regions which

do not straddle the equator, the vertex diameter provides a good lower bound on

the diameter.

Only the upper and lower bounds on the maximum diameter are plotted, rather

than the maximum diameter itself. This is because, for each region of each partition,
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Figure 3.5: Maximum diameters of EQ(3,N ) (log-log scale)
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Figure 3.6: Maximum diameters of EQ(4,N ) (log-log scale)

the diameter is the solution of a constrained nonlinear optimization problem. It

would therefore take quite a long time to calculate the maximum diameter of every

partition for N from 1 to 100 000.

The black curve on each figure is the Feige-Schechtman bound (3.8.1). On each

figure, this curve joins a straight line for which the maximum diameter of a region

is 2.



3.10. Numerical results 109

Figures 3.4, 3.5 and 3.6 show that for N 6 100 000, we have maxdiam(2,N )N 1
2 < 6.5,

maxdiam(3,N )N 1/3 < 7 and maxdiam(4,N )N 1/4 < 7.5 respectively. Figure 3.7 is a log-

log plot corresponding to the partitions EQ(d, 2k), for d from 2 to 8, for k from 1 to

20. The figure shows the coefficient obtained by multiplying N 1
d by the maximum

per-region upper bound on diameter, as per Definition 3.7.1, depicted as red dots,

and by the maximum vertex diameter, depicted as blue + signs. For the cases

shown, we have 2
k
d maxdiam(d, 2k) < 8.
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Figure 3.7: Maximum diameters of EQ(d,N ), d from 2 to 8 (log-log scale)

3.10.2 Running time

To benchmark the speed of the partition algorithm, the function

eq regions(d,N ) was run for d from 1 to 11 and N from 2 to 222 = 4194304, in

successive powers of 2, on a 2 GHz AMD Opteron processor, using Matlab 7.01

[154]. The benchmark was repeated a total of three times. For d from 2 to 11 and

N from 8 to 222, the running time t was approximately

t(d,N ) = (0.24± 0.04) d1.90±0.07 N 0.60±0.01 ms,
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with the error bounds having 95% confidence level. Thus for this range of d and

N , the running time of the partition algorithm is approximately O(N 0.6), which is

faster than linear in N .

3.11 Remaining proofs

3.11.1 The regions of a recursive zonal equal area partition

The following lemmas show that the diameter of a region of an EQ partition is

attained by the maximum Euclidean distance between two points of the region.

The proofs are entirely elementary – in fact almost obvious – and are included only

for the sake of completeness.

Lemma 3.11.1. Each R ∈ EQ(d,N ) is closed in the topology of Sd induced by the

Euclidean metric in Rd+1.

Proof. Since, from (3.2.12) each R ∈ EQ(d,N ) is described as the product of closed

intervals in spherical polar coordinates, R is closed in the topology of Sd induced by

the Euclidean metric in Rd+1. 2

Lemma 3.11.2. For each R ∈ EQ(d,N ), there are two points a,b ∈ R such that the

diameter of R is ‖a− b‖.

Proof. The diameter of R is the supremum of the Euclidean distance in Rd+1 between

pairs of points of R ∈ Sd.

Since, as a result of Lemma 3.11.1, R is closed, the diameter of R is the maximum

Euclidean distance in Rd+1 between pairs of points of R. That is, there are two points

a,b ∈ R such that the diameter of R is ‖a− b‖. 2

The proof of Lemma 3.3.1 depends on the following elementary results.

Lemma 3.11.3. For any closed subset R of Sd, either

• the diameter of R is 2 and R contains a pair of antipodal points, or

• there are two points, p,q ∈ ∂R, the boundary of R, such that the diameter of R

is the Euclidean distance ‖p− q‖.
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Proof. The diameter of R is the maximum of the Euclidean distance in Rd+1 between

pairs of points of R ∈ Sd, since R is closed. That is, there are two points p,q ∈ R such

that the diameter of R is ‖p− q‖.

Now consider any two points, a,b ∈ R. If a is an interior point of R, then either

‖a− b‖ = 2, which is the maximum possible distance, and a and b are antipodal, or

there is a point c of R in a neighbourhood of a with ‖c− b‖ > ‖a− b‖.

To see this, take a geodesic between a and b and extend it through any neigh-

bourhood of b which is contained in R. Now recall from Lemma 2.3.2 that Euclidean

distance is a monotonic increasing function of spherical distance, and that spherical

distance is the same as geodesic arc length, up to π. 2

Corollary 3.11.4. The diameter of an arc C of S1, with end points a and b, is the

Euclidean distance between a and b, if the arc length of C is less than π. Otherwise,

the Euclidean diameter of C is 2.

Proof of Lemma 3.3.1.

Since we have d > 1 and N > 1, we know that the EQ algorithm yields two polar

caps, both with spherical radius ϑc, and therefore we know that ϑc 6 π
2 .

Let R be the North polar cap with colatitude ϑc. From Lemma 3.11.3, we see

that either R contains a pair of antipodal points or there are points p,q ∈ ∂R such

that the diameter of R is ‖p− q‖.

Since ϑc 6 π
2 , then any point a ∈ R is of the form

a = ¯(s1, . . . , ϑ) = (x1, . . . , cosϑ),

where ϑ < ϑc 6 π
2 . The antipodal point, −a is therefore −a = (−x1, . . . ,− cosϑ). But

we know that − cosϑ = cos(π − ϑ), but then π − ϑ > π − ϑc > π
2 .

If ϑc <
π
2 , then −a is not contained in R, and R does not contain pairs of antipodal

points. If ϑc = π
2 , then R contains pairs of antipodal points, which are all boundary

points. So there must be points p,q ∈ ∂R such that the diameter of R is ‖p− q‖.
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Now recall that ∂R is the parallel at colatitude ϑc, which is a small sphere of

Euclidean radius sinϑc and Euclidean diameter 2 sinϑc.

The analysis of the South polar cap is almost identical. 2

Proof of Lemma 3.3.4.

For any a,b, c ∈ Rd+1 we have

‖a− c‖2 + ‖c− b‖2 − ‖a− b‖2 = (a− c) · (a− c) + (c− b) · (c− b)− (a− b) · (a− b)

= 2a · b− 2a · c− 2 c · b + 2 c · c = 2 (a− c) · (b− c).

We therefore prove Lemma 3.3.4 by proving that (a− c) · (b− c) > 0.

First, note that rotations of Sd are isometries and therefore without loss of

generality we may rotate the triangle acb to make calculation more convenient. Now

note that we can apply a single Sd−1 rotation to Sd while keeping the Sd colatitude

fixed. Therefore we can assume that

a = ¯(0, . . . , 0, 0, A), b = ¯(0, . . . , 0, C,B), c = ¯(0, . . . , 0, 0, B).

In Cartesian coordinates, for d > 3, we obtain

a = (0, . . . , 0, 0, sinA, cosA),

b = (0, . . . , 0, sinB sinC, sinB cosC, cosB),

c = (0, . . . , 0, 0, sinB, cosB).

Due to an unfortunate feature of the conventional mapping from spherical to Carte-

sian coordinates, for S2 ⊂ R3, we obtain

a = (sinA, 0, cosA), b = (sinB cosC, sinB sinC, cosB), c = (sinB, 0, cosB),
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and for S3 ⊂ R4, we obtain

a = (0, 0, sinA, cosA), b = (sinB sinC, 0, sinB cosC, cosB), c = (0, 0, sinB, cosB).

In all three cases, we obtain

(a− c) · (b− c) = (sinA− sinB)(sinB cosC − sinB) + (0)(sinB sinC) + (cosA− cosB)(0)

= (sinB − sinA) (1− cosC) sinB > 0.

2

To prove Lemma 3.3.5 we use the following results.

Lemma 3.11.5. Let a, c be points of region R in collar i of EQ(d,N ), which addi-

tionally satisfy (3.3.2) with sinB > sinA, that is,

R = R (
(τ1, . . . , τd−1, ϑi), (υ1, . . . , υd−1, ϑi+1)

)
),

a = ¯(α1, α2, . . . , αd−1, A), c = ¯(α1, α2, . . . , αd−1, B),

αk ∈ [τk, υk], k ∈ {1, . . . , d− 1}, A,B ∈ [ϑi, ϑi+1], sinB > sinA.

We then have ‖a− c‖ 6 Υ(δi) < δi, where δi is given by (3.3.3).

Proof. Since a and c differ only in colatitude we have

s(a, c) = |B −A| 6 ϑi+1 − ϑi = δi.

Using Lemma 2.3.2 we note that the function Υ increases monotonically with

spherical distance, and for all θ ∈ (0, π] we have Υ(θ) < θ. Therefore

‖a− c‖ = Υ
(
s(a, c)

)
< Υ(δi) < δi.

2
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Lemma 3.11.6. Let b, c be points of region R in collar i of EQ(d,N ), which addi-

tionally satisfy (3.3.2), that is,

R = R (
(τ1, . . . , τd−1, ϑi), (υ1, . . . , υd−1, ϑi+1)

)
),

b = ¯(β1, β2, . . . , βd−1, B), c = ¯(α1, α2, . . . , αd−1, B),

αk, βk ∈ [τk, υk], k ∈ {1, . . . , d− 1}, B ∈ [ϑi, ϑi+1].

We then have ‖c− b‖ 6 wi diamΠ R, where wi is given by (3.3.4).

Proof. The points b and c both have colatitude B. Using the spherical polar co-

ordinates of b and c and the mappings ¯ and Π we see that if Πb = (b′1, . . . , b
′
d)

then

b = (sinB b′1, . . . , sinB b′d, cosB),

and similarly for point c. It follows that ‖c− b‖ = sinB e(Π c,Πb).

Since Π(b),Π(c) ∈ Π R, the Euclidean distance e(Π (c),Π(b)) is bounded by the

diameter of Π R, so we have ‖c− b‖ 6 sinB diamΠ R. Since B ∈ [ϑi, ϑi+1],

sinB 6 wi = max
ξ∈[ϑi,ϑi+1]

sin ξ.

We therefore have ‖c− b‖ 6 wi diamΠ R. 2

We now use these results to prove Lemma 3.3.5.

Proof of Lemma 3.3.5.

Let a,b be points of region R such that ‖a− b‖ = diam R and let

a = ¯(α1, α2, . . . , αd−1, A), b = ¯(β1, β2, . . . , βd−1, B),

with sinB > sinA. Now define c := ¯(α1, α2, . . . , αd−1, B).
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By Lemmas 3.11.5, 3.11.6, 2.3.2 and 3.3.4, we then have

diam R = ‖a− b‖ 6
√
‖a− c‖2 + ‖c− b‖2

6
√

Υ(δi)2 + w2
i (diamΠ R)2 6

√
δ2i + w2

i (diamΠ R)2.

2

3.11.2 A continuous model of the partition algorithm

Rounding the number of collars.

Proof of Lemma 3.5.1.

Assume that N > 2 and nI >
1
2 . Therefore, using (3.5.1) and (3.5.4) we have

1
ρ

=
n

nI
∈

(
1− 1

2nI
, 1 +

1
2nI

]
.

Therefore

ρ ∈
[

1
1 + 1

2nI

,
1

1− 1
2nI

)
=

[
2nI

2nI + 1
,

2nI

2nI − 1

)
=

[
1− 1

2nI + 1
, 1 +

1
2nI − 1

)
.

2

Proof of Lemma 3.5.2.

In order,

1. We calculate

ν(2) =
(

2
ωd

) 1
d (

π − 2Θ
(ωd

2

))
=

(
2
ωd

) 1
d (

π − 2
π

2

)
= 0.

2. We expand ν(N ) to obtain

ν(N ) =
(N
ωd

) 1
d (

π − 2Θ
(ωd

N
))

=
π − 2ϑc

VR
= nI .
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3. We take the derivative of ν and obtain

∂

∂x
ν(x) = π

∂

∂x

(
x

ωd

) 1
d

− 2π
∂

∂x

((
x

ωd

) 1
d

Θ
(ωd

x

))

=
π

d
ω
− 1

d

d x
1−d

d − 2
∂

∂x

((
x

ωd

) 1
d

Θ
(ωd

x

))

=
π

d
ω
− 1

d

d x
1−d

d − 2Θ
(ωd

x

) ∂

∂x

(
x

ωd

) 1
d

− 2
(
x

ωd

) 1
d ∂

∂x
Θ

(ωd

x

)

=
π

d
ω
− 1

d

d x
1−d

d − 2
d
ω
− 1

d

d x
1−d

d Θ
(ωd

x

)
− 2π

(
x

ωd

) 1
d ∂

∂x
Θ

(ωd

x

)

=
(
π − 2Θ

(ωd

x

)) 1
d
ω
− 1

d

d x
1−d

d − 2π
(
x

ωd

) 1
d ∂

∂x
Θ

(ωd

x

)
.

Using the chain rule and inverse function theorem, we have

∂

∂x
Θ

(ωd

x

)
= DΘ

(ωd

x

)
(−ωd)x−2 =

−ωd x
−2

DV (
Θ

(
ωd

x

)) =
−ωd x

−2 d

ωd−1 sin
(
Θ

(
ωd

x

)d
) < 0

for x > 2. We also know that 2Θ(ωd/x) 6 π for x > 2. Therefore Dν(x) > 0 and

ν(x) is monotonically increasing in x for x > 2.

2

Rounding the number of regions in a collar.

Proof of Lemma 3.5.3.

To prove (3.5.13), first use (3.2.9) and (3.2.8) to show that for k ∈ {1, . . . , n}

k∑

i=1

yi =
V(ϑF,k+1)

VR
− 1.

Then use (3.2.8), (3.2.7) and (3.2.4) to show that

ϑF,n+1 = ϑc + nδF = π − ϑc.

Therefore, by (2.3.44),

V(ϑF,n+1)
VR

=
ωd − VR

VR
= N − 1.
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For (3.5.14), recall from Definition 3.2.10 that a0 = 0 and for i ∈ {1, . . . , n},

ai =
i∑

j=1

(yj −mj) =
i−1∑

j=1

(yj −mj) + yi −mi = ai−1 + yi −mi.

The result (3.5.14) follows immediately.

For (3.5.15), recalling (3.2.9) we have

1 +
i−1∑

j=1

yj = 1 +
V(ϑF,i)− V(ϑF,1)

VR
= 1 +

V(ϑF,i)− V(ϑc)
VR

=
V(ϑF,i)
VR

,

where we have used (3.2.8) and (3.2.2). Using Definition 3.2.10 again, we have for

i ∈ {1, . . . , n + 1},

V(ϑF,i)
VR

= 1 +
i−1∑

j=1

yj = 1 +




i−1∑

j=1

mj


− ai−1,

so

V(ϑF,i) =


1 +




i−1∑

j=1

mj


− ai−1


VR = V(ϑi)− ai−1VR,

where we have used (3.2.11). The result (3.5.15) follows.

Finally, by (3.2.9), (3.5.14) and (3.5.15), for i ∈ {1, . . . , n},

V(ϑi+1)− V(ϑi) = V(ϑF,i+1) + aiVR − V(ϑF,i)− ai−1VR

= V(ϑF,i+1)− V(ϑF,i) + (ai − ai−1)VR = (yi + ai − ai−1)VR = mi.

2

Proof of Lemma 3.5.4.

Using Definition 3.2.10, define zi := yi + ai−1.

We first prove (3.5.18). By Definition 3.2.10, we have for i ∈ {1, . . . , n},

ai = ai−1 + (yi −mi) = yi + ai−1 − round(yi + ai−1) = zi − round(zi).
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Since yi > 1
2 , if ai−1 > − 1

2 then zi > 0, so then ai ∈ [− 1
2 ,

1
2 ). But we have a0 = 0, so the

result follows by induction.

We now prove (3.5.17). For i ∈ {1, . . . , n}, by the analysis above, we have mi =

round(zi) and zi > 0, so mi ∈ N0. Also, since a0 = 0, we have m1 > 0, so m1 ∈ N.

We can now prove (3.5.19). We have, by Definition 3.2.10,

an =
n∑

j=1

(yj −mj) =
n∑

j=1

yj −
n∑

j=1

mj ∈ Z.

We know from (3.5.18) that an ∈ [− 1
2 ,

1
2 ), so we must have an = 0. Now, by Lemma

3.5.3, we have for i ∈ {1, . . . , n},

yi −mi = ai − ai−1,

so for i ∈ {2, . . . , n− 1}, by (3.5.18),

yi −mi = ai − ai−1,∈ (−1, 1), and

y1 −m1 = a1 − a0 = a1 ∈
[
−1

2
,
1
2

)
,

and by (3.5.18),

yn −mn = an − an−1 = −an−1 ∈
(
−1

2
,
1
2

]
,

since an = 0. 2

Proof of Lemma 3.5.5.

To prove property 1, suppose that m is symmetric and n is even. Then

N − 2 =
n∑

j=1

yj =
n∑

j=1

mj = 2
L∑

j=1

mj ∈ 2Z,

by Lemma 3.5.4, so N must be even.



3.11. Remaining proofs 119

To prove property 2, assume that the sequence m is symmetric. That is, mi =

mn−i+1 for i ∈ {1, . . . , L}. Using (3.5.14) we have

ai = ai−1 + yi −mi,

an−i+1 = an−i + yn−i+1 −mn−i+1,

for i ∈ {1, . . . , n− 1}. If we subtract and rearrange, we obtain, for i ∈ {1, . . . , L}

ai − an−i+1 = ai−1 − an−i + yi − yn−i+1 + mn−i+1 −mi,

ai − an−i+1 = ai−1 − an−i,

ai + an−i = ai−1 + an−i+1.

Therefore for i ∈ {1, . . . , L}, if ai−1 + an−i+1 = 0 then ai + an−i = 0. But by (3.2.10)

a0 = 0, and by (3.5.19) an = 0. So, by induction, ai + an−i = 0 for i ∈ {0, . . . , L}.

To prove property 3, for some p ∈ {0, . . . , L} assume that the sequence m is

symmetric up to mp. That is, mi = mn−i+1 for i ∈ {1, . . . , p}. By an argument similar

to that for property 2, we can show that ap + an−p = 0. Using (3.5.14) we have

ap+1 = ap + yp+1 −mp+1, an−p = an−p−1 + yn−p −mn−p.

If we subtract and rearrange, we then obtain

ap+1 − an−p = ap − an−p−1 + yp+1 − yn−p + mn−p −mp+1,

ap+1 + an−p−1 = ap + an−p + yp+1 − yn−p + mn−p −mp+1,

ap+1 + an−p−1 = mn−p −mp+1,

since the sequence y is symmetric.

From (3.5.18) we know that ap+1 + an−p−1 ∈ [−1, 1), and from (3.5.17) we know

that mn−p −mp+1 ∈ Z. There are therefore only two cases:
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1. If mn−p −mp+1 = ap+1 + an−p−1 = −1, then m is not symmetric, and by (3.5.18),

ap+1 = an−p−1 = −1
2
;

2. If mn−p −mp+1 = ap+1 + an−p−1 = 0, then m is symmetric up to mp+1.

Property 3 now follows by induction on p. 2

Functions which model the regions in a collar.

Proof of Lemma 3.5.6.

In order,

1. Using (3.2.9) we obtain,

Y(ϑF,i) =
V(ϑF,i + δF )− V(ϑF,i)

VR
=
V(ϑF,i+1)− V(ϑF,i)

VR
= yi.

2. Using (3.5.15) we have,

T (−ai−1, ϑF,i) = Θ
(V(ϑF,i) + ai−1VR

)
= Θ

(V(ϑi)
)

= ϑi.

3. Again using (3.5.15) we have,

B(ai, ϑF,i) = Θ
(V(ϑF,i + δF ) + aiVR

)
= Θ

(V(ϑF,i+1) + aiVR

)
= ϑi+1.

4. Another use of (3.5.15), together with (3.5.16) yields

M(−ai−1, ai, ϑF,i) = Y(ϑF,i)− ai−1 + ai =
V(ϑF,i+1)− V(ϑF,i)

VR
− ai−1 + ai

=
V(ϑF,i+1)

VR
+ ai − V(ϑF,i)

VR
− ai−1 =

V(ϑi+1)− V(ϑi)
VR

= mi.

5. Using (3.5.29), (3.5.28) and (3.3.3), we have

∆(−ai−1, ai, ϑF,i) = B(ai, ϑF,i)− T (−ai−1, ϑF,i) = ϑi+1 − ϑi = δi.
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6. Using (3.5.29), (3.5.28) and (3.3.4) we have

W(−ai−1, ai, ϑF,i) = max
ξ∈[T (−ai−1,ϑF,i),B(ai,ϑF,i)]

sin ξ = max
ξ∈[ϑi,ϑi+1]

sin ξ = wi.

7. Finally, using (3.5.30) and (3.5.32) we have

P(−ai−1, ai, ϑF,i) = W(−ai−1, ai, ϑF,i)M(−ai−1, ai, ϑF,i)
1

1−d = wim
1

1−d

i = pi.

2

Symmetries of the continuous analogs.

Proof of Lemma 3.5.7.

Using (2.3.44), we have

Y(π − ϑ) =
V(π − ϑ+ δF )− V(π − ϑ)

VR
=
ωd − V(ϑ− δF )− ωd + V(ϑ)

VR
= Y(ϑ− δF ).

2

Proof of Lemma 3.5.8.

Using (2.3.46), we have

T (τ, π − ϑ) = Θ (V(π − ϑ)− τVR) = Θ (ωd − V(ϑ)− τVR)

= π −Θ(V(ϑ) + τVR) = π − B(τ, ϑ− δF ),

and so

B(β, π − ϑ) = B (β, (π − ϑ+ δF )− δF ) = π − T (β, π − (π − ϑ+ δF )) = π − T (β, ϑ− δF ).

2
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Proof of Lemma 3.5.9.

For M, we have

M(τ, β, π − ϑ) = Y(π − ϑ) + τ + β = Y(ϑ− δF ) + β + τ = M(β, τ, ϑ− δF ).

For ∆, we have

∆(τ, β, π − ϑ) = B(β, π − ϑ)− T (τ, π − ϑ) = π − T (β, ϑ− δF )− π + B(τ, ϑ− δF )

= ∆(β, τ, ϑ− δF ).

For W, first note that

sin T (τ, π − ϑ) = sin (π − B(τ, ϑ− δF )) = sinB(τ, ϑ− δF )

and similarly

sinB(β, π − ϑ) = sin T (β, ϑ− δF ).

Now recall from (3.5.25) that

W(τ, β, ϑ) = max
ξ∈[T (τ,ϑ),B(β,ϑ)]

sin ξ,

so

W(τ, β, π − ϑ) = max
ξ∈[T (τ,π−ϑ),B(β,π−ϑ)]

sin ξ,= max
ξ∈[π−B(τ,ϑ−δF ),π−T (β,ϑ−δF )]

sin ξ

= max
ξ∈[T (β,ϑ−δF ),B(τ,ϑ−δF )]

sin(π − ξ) = max
ξ∈[T (β,ϑ−δF ),B(τ,ϑ−δF )]

sin ξ

= W(β, τ, ϑ− δF ).
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For P, we have

P(τ, β, π − ϑ) = W(τ, β, π − ϑ)M(τ, β, π − ϑ)
1

1−d = W(β, τ, ϑ− δF )M(β, τ, ϑ− δF )
1

1−d

= P(β, τ, ϑ− δF ).

2

Feasible domains.

Proof of Lemma 3.5.11.

Assume that d > 1 and N > 2 and that EQ(d − 1) has diameter bound κ. From

Corollary 3.3.3 we see that we need only consider the regions of EQ(d,N ) which are

contained in collars.

For D as per Definition 3.5.10, if i ∈ {1, . . . , n}, where n is the number of collars

in EQ(d,N ), Lemma 3.5.4 ensures that (−ai−1, ai, ϑF,i) ∈ D.

We therefore have the inequality

max
i∈{1,...,n}

f(−ai−1, ai, ϑF,i) 6 max
(τ,β,ϑ)∈D

f(τ, β, ϑ) = max
D

f

for any f defined on D. Lemma 3.5.6 and (3.4.2) then imply the current result. 2

Symmetries of the feasible domain D.

Proof of Lemma 3.5.12.

Assume that (τ, β, ϑ) ∈ D−. From Lemma 3.5.9 we know that

f(τ, β, ϑ) = f(β, τ, π − ϑ− δF ),

so we have f(τ ′, β′, ϑ′) = f(τ, β, ϑ) where

τ ′ := β, β′ := τ and ϑ′ := π − ϑ− δF .
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For Dm−, we have ϑ ∈ [
π
2 − δF

2 , π − ϑc − 2δF
]
. Then (τ ′, β′, ϑ′) ∈ Dm+, since π−ϑ−δF ∈

[
ϑF,2,

π
2 − δF

2

]
.

For Db, we have ϑ = π − ϑc − δF . Then (τ ′, β′, ϑ′) ∈ Dt, since π − ϑ− δF = ϑc. 2

Estimates.

Proof of Lemma 3.5.14.

For x > 2 let

f(x) := x
1
d sinΘ

(ωd

x

)
.

Then f(N ) = N 1
d sinϑc. Since Θ(v) > 0 for v > 0 we see that f(x) > 0.

We now compute the derivative

∂

∂x
f(x)d = sind Θ

(ωd

x

)
+ x

∂

∂x
sind Θ

(ωd

x

)

= sind Θ
(ωd

x

)
+ x d sind−1 Θ

(ωd

x

)
cos Θ

(ωd

x

) ∂

∂x
Θ

(ωd

x

)
.

Using the inverse function theorem, we have

∂

∂x
Θ

(ωd

x

)
=

1
DV (

Θ
(

ωd

x

)) ∂

∂x

(ωd

x

)
=

−ωd

x2ωd−1 sind−1 Θ
(

ωd

x

) ,

so

∂

∂x
f(x)d = sind Θ

(ωd

x

)
− ωd d

ωd−1 x
cos Θ

(ωd

x

)
.

From (2.3.50), for x > 2 we have

0 <
ωd

x
<
ωd−1

d

sind Θ
(

ωd

x

)

cosΘ
(

ωd

x

) ,

so

0 <
ωd d

ωd−1 x
cosΘ

(ωd

x

)
< sind Θ

(ωd

x

)
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and therefore

∂

∂x
f(x)d > 0,

which implies that f(x) is monotonically increasing in x for x > 2.

On the other hand (2.2.6) and (3.5.46) result in the estimate

f(x) = x
1
d sinΘ

(ωd

x

)
∈ [Jc(y), Jc(y)

1−d
d ]

(
ωd d

ωd−1

) 1
d

for x > y > 2, with Jc(y) ↗ 1 as y →∞. Therefore

x
1
d sinΘ

(ωd

x

)
↗

(
ωd d

ωd−1

) 1
d

as x→∞. The results (3.5.47) and (3.5.48) follow. 2

Proof of Lemma 3.5.15.

For N > 2, the EQ algorithm at (3.2.5) defines

n = max (1, round (nI)) ,

For N > N0(1/2), Lemma 3.5.2 implies that N0(1/2) > 2 and (3.5.9) gives us nI >
1
2 .

Together with (3.2.5), this implies that

n 6 nI +
1
2

(3.11.1)

for N > N0(1/2).

From (3.2.4) we have

nI =
π − 2ϑc

δI
.



126 Chapter 3. Equal area partitions

From the estimate (3.5.46) we have

ϑc >
(

d

ωd−1

) 1
d

δI .

From (2.3.56) we have

(
d

ωd−1

) 1
d

> π−
1
2 ,

and so

ϑc > δI√
π
>
δI
2
.

Therefore (3.11.1) implies that

n 6 nI +
1
2

6 nI + 1 =
π − 2ϑc + δI

δI
6 π

δI
.

2

Proof of Lemma 3.5.16.

If ι 6 13
4 then

10
9

(ι− 1) 6 5
2
. (3.11.2)

By Lemma 3.5.2, if x > N0(5) then ν(x) > 5 so that

π

2
−Θ

(ωd

x

)
> 5

2

(ωd

x

) 1
d

. (3.11.3)

Also, by (3.5.11) we have ρH(x) 6 10
9 . Therefore from (3.11.2) and (3.11.3) we

have

ρH(x)(ι− 1)
(ωd

x

) 1
d 6 5

2

(ωd

x

) 1
d 6 π

2
−Θ

(ωd

x

)
.
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2

Proof of Lemma 3.5.17.

The result follows from (2.3.57), since both JF,(1+η)(x) ↗ 1 and ρL(x) ↗ 1 as

x→∞. 2

Proof of Lemma 3.5.18.

The result follows from (2.3.58) and Lemma 3.5.17, since both JF,2(x) ↗ 1 and

ρL(x) ↗ 1 as x→∞. 2

Proof of Lemma 3.5.19.

We have x > N0(5) and 1 + η < 13
4 . By Lemma 3.5.16 the condition (3.5.55) holds

for ι = 1 + η and we can therefore apply the lower estimate of (3.5.58).

By (2.3.47), (3.5.46), (3.5.58) and (3.5.62) we now have

V(ϑc + ηδF ) = V(ϑF,(1+η)) > JF,(1+η)(x)d−1

(
1 + η ρL(x)

(ωd−1

d

) 1
d

)d

VR >
3
2
VR.

2

Proof of Corollary 3.5.20.

For ϑ ∈ [
ϑc,

π
2 − η δF

2

]
, the result follows immediately from (3.5.65) and (3.5.66).

Otherwise, let ϑ̄ := π − ηδF − ϑ. Then for ϑ ∈ (
π
2 − η δF

2 , π − ϑc − ηδF
]

we have

ϑ̄ ∈ [
ϑc,

π
2 − η δF

2

]
. Using Lemma 2.3.16 we then have

V(ϑ+ ηδF )− V(ϑ) = V(π − ϑ̄)− V(π − ηδF − ϑ̄) = ωd − V(ϑ̄)− ωd + V(ϑ̄+ ηδF )

= V(ϑ̄+ ηδF )− V(ϑ̄) >
VR

2
.

2

Proof of Lemma 3.5.23.

We have m0 = 1. For N = 2, m1 = 1, the single region of the south polar cap. For

N > 1 we have N d−1
d > 1.
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For N ∈ [3,N0(1/2)), using (3.2.5), Lemma 3.5.2 and (3.5.8) we see that we have

one collar containing N − 2 regions. For N ∈ (2,N0(1/2)) we have

(
N0(1/2)

1
d − 2 N0(1/2)

1−d
d

)
N d−1

d >
(
N 1

d − 2 N 1−d
d

)
N d−1

d = N − 2.

For N > x > N0(1/2) we use (3.5.10), (3.5.11), Definition 3.5.10, (3.5.23), (3.5.30)

and (3.5.73) to show that for i ∈ {1, . . . , n} we have

mi 6 ρ ωd−1 ω
1−d

d

d N d−1
d + 1

6 ρH(x) ωd−1 ω
1−d

d

d N d−1
d + 1.

From (3.5.12) we know that ρH(x) 6 ρH

(N0(1/2)
)

for x > N0(1/2). We therefore have

ρH(x) ωd−1 ω
1−d

d

d N d−1
d + 1 6 ρH

(N0(1/2)
)
ωd−1 ω

1−d
d

d N d−1
d +N d−1

d .

2

Bounds.

Proof of Lemma 3.5.24.

Assume that d > 1 and N > 1. From Lemma 3.3.1, we know that the diameter

of each of the polar caps of the partition EQ(d,N ) is 2 sinϑc, where ϑc is defined by

(3.2.2). From (3.5.48) we have the estimate

2 sinϑc 6 2
(
ωd d

ωd−1

) 1
d

N− 1
d .

for N > x > 2. 2

Proof of Lemma 3.5.25.

Throughout this proof, we assume that N > x where x > N0(5), with N0 defined

by (3.5.8), so that n > 5. Using Corollary 3.5.13, we also assume that (τ, β, ϑ) ∈ D+.
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For the top collar, (τ, β, ϑ) ∈ Dt, (3.5.38) gives τ = 0, β ∈ [− 1
2 ,

1
2

]
, ϑ = ϑc. Using

Lemma 2.3.16 we have

V (B(β, ϑc)) = V(ϑc + δF ) + βVR 6 V(ϑc + δF ) +
VR

2
.

Since n > 5, we have ϑc + δF ∈ [ϑc, π − ϑc − ηδF ], and we can use (3.5.67) to obtain

V (B(β, ϑc)) 6 V(ϑc + δF ) +
VR

2
< V(

ϑc + (1 + η)δF
)
.

Therefore, using Lemma 2.3.16 again, we have

B(β, ϑc) < ϑc + (1 + η)δF . (3.11.4)

Therefore (3.5.21) and (3.5.24) yield

∆(τ, β, ϑ) = ∆(0, β, ϑc) = B(β, ϑc)− T (0, ϑc) = B(β, ϑc)− ϑc < (1 + η)δF .

For (τ, β, ϑ) ∈ Dm+ (3.5.44) gives τ ∈ [− 1
2 ,

1
2

]
, β ∈ [− 1

2 ,
1
2

]
, ϑ ∈ [

ϑF,2,
π
2 − δF

2

]
. Since

n > 5, we have ϑ+ δF ∈ [ϑc, π − ϑc − ηδF ], since

ϑc +
3
2
δF < ϑc + 2δF <

π

2
,

yielding

ϑ+ δF 6 π

2
+
δF
2
< π − ϑc − δF .

Using Lemma 2.3.16, (3.5.22) and (3.5.67) we now have

V(B(β, ϑ)
)

= V(ϑ+ δF ) + βVR 6 V(ϑ+ δF ) +
VR

2
< V(

ϑ+ (1 + η)δF
)
.
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Using Lemma 2.3.16 again, we therefore have

B(β, ϑ) < ϑ+ (1 + η)δF . (3.11.5)

Since ϑ− ηδF > ϑc, using Lemma 2.3.16, (3.5.21) and (3.5.67) we also have

V( T (τ, ϑ)
)

= V(ϑ) + τVR > V(ϑ)− VR

2
> V(ϑ− ηδF ),

so that

ϑ− ηδF < T (τ, ϑ). (3.11.6)

Combining (3.11.5) and (3.11.6), and using (3.5.24) we therefore have

∆(τ, β, ϑ) = B(β, ϑ)− T (τ, ϑ) < (1 + 2η)δF .

The estimate (3.5.52) now yields

∆(τ, β, ϑ) < K∆(x)N− 1
d ,

where

K∆(x) := (1 + 2η) ρH(x) ω
1
d

d , (3.11.7)

with ρH(x) defined by (3.5.11).

We also have

K∆(x) ↘ K∆(∞) := (1 + 2η) ω
1
d

d (3.11.8)

as x→∞, since ρH(x) ↘ 1 as x→∞, by (3.5.12). 2
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Proof of Lemma 3.5.26.

Throughout this proof, we assume that N > x where x > N0(5), with N0 defined

by (3.5.8), and x satisfies (3.5.62) and (3.5.63). Lemma 3.5.18 assures us that such

an x exists. As a consequence, we have at least 5 collars,

nI > 5, n > 5, (3.11.9)

and (3.5.69) and (3.5.71) are satisfied. We also use Corollary 3.5.13, and assume

that (τ, β, ϑ) ∈ D+. The reasons for assuming that x satisfies (3.5.62) and (3.5.63)

will become clear in the course of the proof.

Within this proof, we use the abbreviation

γ := 1 + η, (3.11.10)

where η is defined by (3.5.61).

We now divide D+ into Dt and Dm+, as per (3.5.38) and (3.5.44), and we examine

Dt first.

Bounds for P in Dt.

For the top collar, (τ, β, ϑ) ∈ Dt, (3.5.38) gives τ = 0, β ∈ [− 1
2 ,

1
2

]
, ϑ = ϑc. Therefore,

in Dt, we consider

P̃ (β) := P(0, β, ϑc) = W̃ (β)M̃(β)
1

1−d ,

where

W̃ (β) := W(0, β, ϑc) = max
ξ∈[T (0,ϑc),B(β,ϑc)]

sin ξ,

M̃(β) := M(0, β, ϑc) =
V(ϑF,2)− V(ϑc)

VR
+ β.

We made weaker assumptions for N and x for the analysis of Dt in the proof of

Lemma 3.5.25, in particular, we assumed there as we do here that x is large enough
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that (3.11.9) holds. We therefore see that (3.11.4) holds here, so that the top collar

is completely contained in the Northern hemisphere, in other words, B(β, ϑc) < π
2 .

We therefore have

W̃ (β) = sinB(β, ϑc).

As a consequence,

P̃ (β) = sinB(β, ϑc)
(V(ϑF,2)

VR
− 1 + β

) 1
1−d

= sin Θ
(V(ϑF,2) + βVR

)(V(ϑF,2)
VR

− 1 + β

) 1
1−d

= sin Θ
(
(s+ β)VR

)
(s+ β − 1)

1
1−d ,

where

s :=
V(ϑF,2)
VR

. (3.11.11)

By (3.5.38) and (3.5.70) we have β > − 1
2 and s > 9/2. Therefore s+ β − 1 > 3. Also,

Θ
(
(s+ β)VR

)
= B(β, ϑc) <

π

2
.

Applying (2.2.6), (2.3.48) and (3.5.56) we now have 0 < P̃ (β) 6 Q̃(β), where

Q̃(β) := r(x)(s+ β)
1
d (s+ β − 1)

1
1−d δI (3.11.12)

and

r(x) := JF,(2+η)(x)
1−d

d

(
d

ωd−1

) 1
d

. (3.11.13)
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This estimate requires that

Θ
(ωd

x

)
+ γ ρH(x)

(ωd

x

) 1
d 6 π

2
. (3.11.14)

Since ρH(x) ↘ 1 as x → ∞, the expression on the left of (3.11.14) is positive and

monotonic decreasing in x, and so this condition holds for x sufficiently large.

Since JF,(2+η)(x) ↗ 1 as x→∞, we see that

r(x) ↘
(

d

ωd−1

) 1
d

(3.11.15)

as x→∞.

To determine whether Q̃(β) is monotonic in β, we compute

∂

∂β
Q̃(β) = r(x)

(
1
d
(s+ β)

1−d
d (s+ β − 1)

1
1−d − 1

d− 1
(s+ β)

1
d (s+ β − 1)

d
1−d

)
δI

= Q̃(β)
(

1
d(s+ β)

− 1
(d− 1)(s+ β − 1)

)

= Q̃(β)
−d− s− β + 1

d (d− 1)(s+ β)(s+ β − 1)
< 0,

since d > 2, s > 9/2, β > − 1
2 . The maximum of Q̃(β) therefore occurs when β = − 1

2 .

Therefore

P̃ (β) 6 Q̃

(
−1

2

)
. (3.11.16)

Estimate for Dt.

From (3.5.58) and (3.11.11) we see that s ∈ [sL,2, sH,2] and therefore (3.11.16)

yields

P̃ (β) 6 r(x)
(
sH,2(x)− 1

2

) 1
d

(
sL,2(x)− 3

2

) 1
1−d

δI .
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Using (3.5.60) and (3.11.15) we see that

r(x)
(
sH,2(x)− 1

2

) 1
d

(
sL,2(x)− 3

2

) 1
1−d

↘
(

d

ωd−1

) 1
d

(
s2 − 1

2

) 1
d

(
s2 − 3

2

) 1
1−d

as x→∞.

Assuming that N > x > N0(5), where N0 is defined by (3.5.8), and that x satisfies

(3.5.62), (3.5.63) and (3.11.14), the resulting estimate is then

P̃ (β) 6 Ct(x)N− 1
d ,

where

Ct(x) := r(x)
(
sH,2(x)− 1

2

) 1
d

(
sL,2(x)− 3

2

) 1
1−d

ω
1
d

d , (3.11.17)

with

Ct(x) ↘ Ct(∞) :=
(

d

ωd−1

) 1
d

(
s2 − 1

2

) 1
d

(
s2 − 3

2

) 1
1−d

ω
1
d

d (3.11.18)

as x→∞.

Bounds for P in Dm+.

In the following arguments the notation suppresses the explicit dependence of

various functions on τ and β, wherever sensible.

By (3.5.22), (3.5.68) and (3.5.67), for ϑ ∈ [
ϑF,2,

π
2 − δF

2

]
we have

V (B(β, ϑ)) = V(ϑ+ δF ) + βVR 6 V(ϑ+ δF ) +
VR

2

< V(
ϑ+ (1 + η)δF

)
= V(ϑ+ γδF ).

Therefore by Lemma 2.3.16, we have B(β, ϑ) < ϑ+ γδF .
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If ϑ ∈ [ϑF,2,
π
2 − γδF ], then for ξ ∈ [T (τ, ϑ),B(β, ϑ)], we have

sin ξ 6 sin(ϑ+ γδF ),

and therefore W(ϑ) 6 sin(ϑ+ γδF ).

Motivated by (3.11.25), define

DmL = {(τ, β, ϑ) ∈ Dm+ | ϑ 6 π

2
− γδF }, (3.11.19)

DmH = {(τ, β, ϑ) ∈ Dm+ | ϑ > π

2
− γδF }, (3.11.20)

Since we have n > 5, we have

ϑF,2 = ϑc + δF 6 π

2
− 3

2
δF <

π

2
− γδF <

π

2
− δF

2
.

Therefore both DmL and DmH are non-empty.

The domain DmL.

For DmL we have ϑ ∈ [ϑF,2,
π
2 − γδF ]. Define

Q(ϑ) := sin(ϑ+ γδF )M(ϑ)
1

1−d , (3.11.21)

We then have, for ϑ ∈ [ϑF,2,
π
2 − γδF ],

P(ϑ) 6 Q(ϑ). (3.11.22)

From (2.3.42) we know that for ϑ ∈ [0, π
2 − δF ],

V(ϑ+ δF )− V(ϑ) ∈ [
DV(ϑ), DV(ϑ+ δF )

]
δF , (3.11.23)
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and therefore, from (3.5.20) and (3.5.23)

Y(ϑ) ∈ [DV(ϑ), DV(ϑ+ δF )]
δF
VR

,

and

M(ϑ) > δF
VR

DV(ϑ) + τ + β.

Now define

G(ϑ) := sin(ϑ+ γδF )
(
δF
VR

DV(ϑ) + τ + β

) 1
1−d

, (3.11.24)

Then, since δF < γδF , we have, for ϑ ∈ [ϑF,2,
π
2 − γδF ],

Q(ϑ) 6 G(ϑ). (3.11.25)

We use the abbreviation

χ :=
δF
VR

ωd−1, (3.11.26)

and define

S(ϑ) := sind−1(ϑ+ γδF )
(
χ sind−1 ϑ− 1

)−1
. (3.11.27)

By (3.5.71) we have

χ sind−1 ϑ− 1 > χ sind−1 ϑF,2 − 1 >
5
2
> 0.
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From (3.5.39) we know that |τ + β| 6 1. Therefore by (2.3.41) and (2.2.6) we

have

G(ϑ)d−1 = sind−1(ϑ+ γδF )
(
δF
VR

DV(ϑ) + τ + β

)−1

= sind−1(ϑ+ γδF )
(
δF
VR

ωd−1 sind−1 ϑ+ τ + β

)−1

6 sind−1(ϑ+ γδF )
(
χ sind−1 ϑ− 1

)−1
= S(ϑ). (3.11.28)

To determine if S(ϑ) is monotonic in ϑ, we differentiate and find that

∂

∂ϑ
S(ϑ) =

∂

∂ϑ

(
sind−1(ϑ+ γδF )(χ sind−1 ϑ− 1)−1

)

=
∂

∂ϑ

(
sind−1(ϑ+ γδF )

)
(χ sind−1 ϑ− 1)−1

+ sind−1(ϑ+ γδF )
∂

∂ϑ

(
(χ sind−1 ϑ− 1)−1

)

= (d− 1) sind−2(ϑ+ γδF ) cos(ϑ+ γδF )(χ sind−1 ϑ− 1)−1

+ sind−1(ϑ+ γδF )
(− (χ sind−1 ϑ− 1)−2(d− 1)χ sind−2 ϑ cosϑ

)

= (d− 1) sind−2(ϑ+ γδF )(χ sind−1 ϑ− 1)−2

(
cos(ϑ+ γδF )(χ sind−1 ϑ− 1)− sin(ϑ+ γδF ) χ sind−2 ϑ cosϑ

)
.

But

cos(ϑ+ γδF )(χ sind−1 ϑ− 1)− sin(ϑ+ γδF ) χ sind−2 ϑ cosϑ

= cos(ϑ+ γδF ) χ sind−2 ϑ sinϑ− sin(ϑ+ γδF ) χ sind−2 ϑ cosϑ− cos(ϑ+ γδF )

= χ sind−2 ϑ
(
cos(ϑ+ γδF ) sinϑ− sin(ϑ+ γδF ) cosϑ

)− cos(ϑ+ γδF )

= −χ sind−2 ϑ sin γδF − cos(ϑ+ γδF ) < 0.

So S(ϑ) is monotonically decreasing with ϑ in the domain DmL. Therefore

S(ϑ) 6 S(ϑF,2). (3.11.29)
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Finally, using (3.11.22), (3.11.25), (3.11.28) and (3.11.29) we have

P(ϑ) 6 S(ϑF,2)
1

d−1 .

Estimate for DmL.

From (3.11.27) we obtain

P(ϑ) 6 S(ϑF,2)
1

d−1 = sin(ϑF,(3+η))
(
χ sind−1 ϑF,2 − 1

) 1
1−d

6 ϑF,(3+η)

(
χ sind−1 ϑF,2 − 1

) 1
1−d

= ϑF,(3+η)χ
1

1−d (sinϑF,2)−1

(
1− 1

χ sind−1 ϑF,2

) 1
1−d

.

Motivated by (3.5.57) define

L(x) := JF,2(x)

((
d

ωd−1

) 1
d

+ ρL(x)

)
(3.11.30)

so that sinϑF,2 > L(x)δI . This estimate requires that

Θ
(ωd

x

)
+ ρH(x)

(ωd

x

) 1
d 6 π

2
.

This is implied by the stronger condition (3.11.14), which we assume from here

onwards. Since JF,2(x) ↗ 1 and ρL(x) ↗ 1 as x→∞, we have

L(x) ↗ L(∞) :=
(

d

ωd−1

) 1
d

+ 1 (3.11.31)

as x→∞.

Recall from (3.11.26) that

χ =
δF
VR

ωd−1 = ρδ1−d
I ωd−1.
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We then have

χ sind−1 ϑF,2 > ρL(x) δ1−d
I ωd−1L(x)d−1δd−1

I = ρL(x) ωd−1L(x)d−1,

so that, using (3.5.54), we have

P(ϑ) 6 ϑF,(3+η) χ
1

1−d (sinϑF,2)−1

(
1− 1

χ sind−1 ϑF,2

) 1
1−d

6

(
d

ωd−1

) 1
d

Jc(x)
1−d

d + (2 + η)ρH(x)
(
ρL(x) ωd−1

) 1
d−1 L(x)

(
1− L(x)1−d

ρL(x) ωd−1

) 1
1−d

δI .

The estimate above requires that

ρL(x) ωd−1L(x)d−1 > 1,

but this condition is (3.5.63), which we have already assumed. We know that

Jc(x) ↗ 1, ρH(x) ↘ 1, ρL(x) ↗ 1 and from (3.11.31) we have L(x) ↗ L(∞). We

therefore see that

(
d

ωd−1

) 1
d

Jc(x)
1−d

d + (2 + η)ρH(x)
(
ρL(x) ωd−1

) 1
d−1 L(x)

(
1− L(x)1−d

ρL(x) ωd−1

) 1
1−d

↘

(
d

ωd−1

) 1
d

+ (2 + η)

ω
1

d−1
d−1 L(∞)

(
1− L(∞)1−d

ωd−1

) 1
1−d

.

Assuming that N > x > N0(5), where N0 is defined by (3.5.8), and that x satisfies

(3.5.62), (3.5.63) and (3.11.14), the resulting estimate is then

P(ϑ) 6 CmL(x)N− 1
d ,

where

CmL(x) :=

(
d

ωd−1

) 1
d

Jc(x)
1−d

d + (2 + η)ρH(x)
(
ρL(x) ωd−1

) 1
d−1 L(x)

(
1− L(x)1−d

ρL(x) ωd−1

) 1
1−d

ω
1
d

d , (3.11.32)
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with

CmL(x) ↘ CmL(∞) :=

(
d

ωd−1

) 1
d

+ (2 + η)

ω
1

d−1
d−1 L(∞)

(
1− L(∞)1−d

ωd−1

) 1
1−d

ω
1
d

d (3.11.33)

as x→∞.

The domain DmH.

Here we have ϑ ∈ (
π
2 − γδF ,

π
2 − δF

2

]
. We know from (3.5.25) that

P(ϑ) = W(ϑ)M(ϑ)
1

1−d

=
(

max
ξ∈[T (τ,ϑ),B(β,ϑ)]

sin ξ
)
M(ϑ)

1
1−d

6 M(ϑ)
1

1−d . (3.11.34)

The case DmH now splits temporarily into two sub-cases.

1. For ϑ ∈ (
π
2 − γδF ,

π
2 − δF

]
, (2.3.42) yields

V(ϑ+ δF )− V(ϑ) ∈ [δFDV(ϑ), δFDV(ϑ+ δF )] .

2. For ϑ ∈ (
π
2 − δF ,

π
2 − δF

2

]
, we know from (2.3.44) that

V(ϑ+ δF ) = ωd − V(π − ϑ− δF ) and V
(π

2

)
=
ωd

2
.

Therefore

V(ϑ+ δF )− V
(π

2

)
= V

(π
2

)
− V(π − ϑ− δF ).

This means that the portion of the interval [ϑ, ϑ+δF ] which lies in the Southern

hemisphere is equivalent to the interval
[
π − ϑ− δF ,

π
2

]
in the Northern hemi-

sphere. If we now define ϑ := π − ϑ − δF , we have ϑ ∈ [
π
2 − δF ,

π
2 − δF

2

]
, and
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therefore

V(ϑ+ δF )− V(ϑ) = V
(π

2

)
− V(ϑ) + V

(π
2

)
− V(ϑ)

>
(π

2
− ϑ

)
DV(ϑ) +

(π
2
− ϑ

)
DV(ϑ)

>
(
π − (ϑ+ ϑ)

)
min

(
DV(ϑ), DV(ϑ)

)
> δFDV

(π
2
− δF

)
.

The last inequality is justified by Lemma 2.3.16.

We can now put the two sub-cases back together by noting that

DV
(π

2
− γδF

)
< DV

(π
2
− δF

)
,

since γδF > δF . In other words

V(ϑ+ δF )− V(ϑ) > δFDV(
π

2
− γδF ).

Using (2.3.41), (3.5.23), (3.5.39) and (3.11.26), we therefore have

M(ϑ) > χ sind−1
(π

2
− γδF

)
+ τ + β

> χ sind−1
(π

2
− γδF

)
− 1

> χ

(
1− 2

π
γδF

)d−1

− 1

> ρL(x)δI
VR

ωd−1

(
1− 2

π
γ ρH(x)δI

)d−1

− 1

> ρL(x)δI
VR

ωd−1

(
1− 2

π
γ ρH(x) ω

1
d

d x−
1
d

)d−1

− 1.

Therefore

M(ϑ) > Λ(x)N d−1
d − 1, (3.11.35)
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where

Λ(x) := ρL(x) ω
1−d

d

d ωd−1

(
1− 2

π
γ ρH(x) ω

1
d

d x−
1
d

)d−1

. (3.11.36)

Here we need to assume that

2
π
γ ρH(x) ω

1
d

d x−
1
d < 1,

so that Λ(x) > 0. This occurs when

x

ρH(x)d
>

(
2γ
π

)d

ωd. (3.11.37)

This holds for x sufficiently large, since ρH(x) ↘ 1 as x→∞.

In fact we see that since ρL(x) ↗ 1 and ρH(x) ↘ 1 as x→∞,

Λ(x) ↗ Λ(∞) := ω
1−d

d

d ωd−1 (3.11.38)

as x→∞.

Estimate for DmH.

Assume that N > x > N0(5), where N0 is defined by (3.5.8), and that x satisfies

(3.5.62), (3.5.63) and (3.11.37).

First, we see that

Λ(x)N d−1
d − 1 >

(
Λ(x)− x

1−d
d

)N d−1
d ,

We want this last expression to be positive. This occurs when x > Λ(x)
d

d−1 , that is,

when

x > ω−1
d (ρL(x) ωd−1)

d
d−1

(
1− 2

π
γ ρH(x) ω

1
d

d x−
1
d

)d

. (3.11.39)
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Since

Λ(x)
d

d−1 ↗ Λ(∞)
d

d−1 = ω−1
d ω

d
d−1
d−1

as x→∞, we see that (3.11.39) holds for x sufficiently large.

We now have from (3.11.34) and (3.11.35) that for N > x > N0(5), where N0

is defined by (3.5.8), and x satisfies (3.5.62), (3.5.63), (3.11.37) and (3.11.39) the

estimate

P(ϑ) 6 M(ϑ)
1

1−d 6 CmH(x)N− 1
d ,

where

CmH(x) :=
(
Λ(x)− x

1−d
d

) 1
1−d , (3.11.40)

and where, considering (3.11.38), we have

CmH(x) ↘ CmH(∞) := Λ(∞)
1

1−d = ω
1
d

d ω
1

1−d

d−1 (3.11.41)

as x→∞.

Final result.

Given x > N0(5), where N0 is defined by (3.5.8), such that x satisfies (3.5.62),

(3.5.63), (3.11.14), (3.11.37) and (3.11.39), the following estimate obtains.

For N > x and (τ, β, ϑ) ∈ D+, we have

P(ϑ) 6 CP (x)N− 1
d , where CP (x) := max(Ct(x),CmL(x),CmH(x)), (3.11.42)

with CP (x) monotonic decreasing in x. This completes the proof of Lemma 3.5.26.

2
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3.11.3 A per-region bound on diameter

Proof of Theorem 3.7.2.

For the whole sphere Sd, we have

diamSd = 2 = db Sd.

The partition algorithm for EQ(1,N ), with N > 1, divides S1 into N equal seg-

ments, as described in Section 3.2.1. For a region R contained in EQ(1,N ), with

N > 1, the region can be therefore be described by the pair of polar coordinates α,

β. That is, R = R(α, β). The spherical distance s
(¯(α),¯(β)

)
is then given by

s
(¯(α),¯(β)

)
=

2π
N 6 π.

Using Lemma 2.3.2, the diameter of R is then

diamR = ‖¯(α)−¯(β)‖ = Υ
(

s
(¯(α),¯(β)

))
= Υ

(
2π
N

)
= dbR.

For d > 1, for a spherical cap R with spherical radius ϑc, by Lemma 3.3.1,

diam R = 2 sinϑc = db R.

For d > 1, for a region R contained in collar i ∈ {1, . . . , n} of a recursive zonal equal

area partition of Sd with n collars, by Lemma 3.3.5, if diamΠ R 6 dbΠ R then

diam R 6
√

Υ(δi)2 + w2
i (diamΠ R)2

6
√

Υ(δi)2 + w2
i (dbΠ R)2 = db R.

The result follows by induction on d. 2
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3.11.4 The Feige–Schechtman lemma

Proof of Lemma 3.8.1.

This proof essentially follows [54, Lemma 21, p. 430-431].

1. Given d > 1, N > 2, use (3.2.2) to determine ϑc. Then we have V(ϑc) = VR =

ωd/N , with VR being the area we need for each region of the partition.

2. Now create a saturated packing of Sd by caps of spherical radius ϑc, as per

Definition 2.7.3, constructed via a greedy algorithm so that each cap kisses at

least one other cap. Let m be the number of caps in the packing.

Figure 3.8: Step 2 of the Feige-Schechtman construction

(Figure 3.8 uses the putatively optimal packing of 27 points on S2 as found by

Tarnai and Gáspár [151, pp. 205–206], and listed by Kottwitz [87, Table 1,

p. 161] and Sloane [143, pack.3.27.txt]. This packing is used for illustration

purposes only.)

We see that no point of Sd is more than 2ϑc from the centre of a cap, otherwise

we could have added another cap. Therefore the m centre points of the packing

are also the centres of a covering of Sd by spherical caps of spherical radius 2ϑc

[164, p. 1091] [165, Lemma 1, p. 2112]. (See Figure 3.9, where the boundaries

of the covering caps are shown in yellow.)

3. Now partition Sd into Voronoi cells Vi, i ∈ {1, . . . ,m} based on these m centre

points. The Voronoi cell Vi corresponding to centre point i consists of those
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Figure 3.9: Step 2 of the Feige-Schechtman construction, showing covering caps

points of Sd which are at least as close to the centre point i as they are to of

any of the other centre points. (See Figure 3.10.)

Figure 3.10: Step 3 of the Feige-Schechtman construction

We see that the Voronoi cells must contain the packing caps and be contained

in the covering caps. Thus each Vi has area at least VR and spherical diameter

at most min(π, 2ϑc).

4. Now create a graph Γ with a node for each centre point and an edge for each

pair of kissing packing caps. (See Figure 3.11.)

5. Take any spanning tree S of Γ (also known as a maximal tree [116, Section

6.2 pp. 101–103]). (See Figure 3.12.)
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Figure 3.11: Step 4 of the Feige-Schechtman construction

Figure 3.12: Step 5 of the Feige-Schechtman construction

The tree S has leaves, which are nodes having only one edge, and either a

single centre node, or a bicentre, which is a pair of nodes joined by an edge.

The centre or bicentre nodes are the nodes for which the shortest path to

any leaf has the maximum number of edges [27] [28, Volume 9, p. 430] [128,

Chapter 6, Section 9, p. 135]. If there is a single centre, mark it as the root

node. If there is a bicentre, arbitrarily mark one of the two nodes as the root

node. Now create the directed tree T from S by directing the edges from the

leaves towards the root [128, Chapter 6, Section 7, p. 129].

6. For each leaf j, of T define nj := bσ(Vj)/VRc, (with bxc denoting the least integer

function of x).

7. Partition Vj into the super-region Uj with σ(Uj) = njVR and the remainder

Wj := Vj \ Uj.
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8. For each nonleaf node k other than the root, define Xk = Vk ∪
⋃

(j,k)∈T Wj, that

is, we add all the remainders of the daughters of k to Vk to obtain Xk.

9. Now define nk := bσ(Xk)/VRc and partition Xk into the super-region Uk with

σ(Uk) = nkVR and the remainder Wk := Xk \ Uk.

10. Continue until only the root node is left.

11. For the root node `, if we define U` := V` ∪
⋃

(k,`)∈T Wk, we see that we must

have σ(U`) = n`VR, where

n` := N −
∑

i 6=`

ni.

that is, the area of the super-region corresponding to the root node must be

an integer multiple of VR.

Since at each step we have assembled Ui only from the Voronoi cells corre-

sponding to kissing packing caps, each Ui is contained in a spherical cap with

centre the same as the centre of the corresponding packing cap, and spher-

ical radius min(π, 4ϑc), and so the spherical diameter of each Ui is at most

min(π, 8ϑc).

12. Now partition each Ui into ni regions of area VR, and let FS(d,N ) be the

resulting partition of Sd. Then FS(d,N ) is a partition of Sd into N regions, with

each region R ∈ FS(d,N ) having area ωd/N and Euclidean diameter bounded

above by

diam R 6 Υ
(
min(π, 8ϑc)

)
= 2 sin

(
min

(π
2
, 4ϑc

))
.

2

Remarks. Feige and Schechtman’s proof [54, Lemma 21, p. 430-431]

uses a maximal packing instead of a saturated packing, but maximality

is harder to achieve and the proof of Lemma 3.8.1 only needs a saturated

packing.
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3.12 Approximate values of constants

We here tabulate the approximate values of Nd and Kd as calculated by Maple using

the various definitions given in the proofs of lemmas in Section 3.11 and the proof

of Theorem 3.1.3. The values depend on the choice of NH > x > N0(5), where N0

is defined by (3.5.8), and x is further constrained by (3.5.62), (3.5.63), (3.11.14),

(3.11.37) and (3.11.39).

First, we try setting NH to be dxe, where x satisfies all the necessary constraints.

We then use Maple to calculate the constants listed in Table 3.1.

d NH KL K∆ Ct CmL CmH CP KH Kd

2 7.90× 101 17.78 4.91 1.15 1.20 0.98 1.20 9.01 17.78
3 1.56× 102 10.77 3.69 1.54 1.52 1.37 1.54 27.54 27.54
4 4.41× 102 9.17 3.02 1.60 1.61 1.42 1.61 44.45 44.45
5 1.13× 103 8.16 2.60 1.63 1.66 1.44 1.66 73.74 73.74
6 2.70× 103 7.46 2.31 1.63 1.69 1.45 1.69 124.60 124.60
7 6.78× 103 7.05 2.10 1.62 1.70 1.44 1.70 211.99 211.99
8 2.26× 104 7.00 1.92 1.57 1.68 1.40 1.68 356.91 356.91
9 7.89× 104 7.00 1.77 1.52 1.67 1.36 1.67 595.28 595.28

10 2.87× 105 7.03 1.66 1.48 1.65 1.33 1.65 985.08 985.08

Table 3.1: Constants from proof of Theorem 3.1.3

We now improve the constants above in two ways. First, for d 6 4 and N 6

100 000, we estimate maxdiam(d,N ) by computing the per region diameter bound for

each region of EQ(d,N ) as per Sections 5 and 8 of [99]. We then set NH = 100 000 for

these values of d and set KL to be the maximum estimated value of maxdiam(d,N )

obtained.

Second, for d > 4, we use Maple to find NH > x such that x satisfies all the

necessary constraints and such that KL = KH . Maple then obtains the constants

listed in Table 3.2. In particular, for this choice of NH , we have K2 < 7.4 and

K3 < 9.1. Zhou obtains K2 6 7 for his algorithm [167, Theorem 2.8 p 13]. The larger

bound here can be explained by the crudeness of the approximations used to prove

the lemmas and Theorem 3.1.3, and in particular, the use of separate bounds for K∆
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d NH KL K∆ Ct CmL CmH CP KH Kd KFS

2 1.00× 105 < 6.5 4.55 0.87 0.92 0.57 0.92 7.37 7.37 16.00
3 1.00× 105 < 7.0 3.36 1.09 1.14 0.80 1.14 9.06 9.06 13.41
4 1.00× 105 < 7.5 2.78 1.18 1.26 0.93 1.26 11.77 11.77 12.16
5 3.82× 104 16.50 2.45 1.29 1.39 1.07 1.39 16.50 16.50 11.41
6 2.04× 106 22.52 2.14 1.22 1.36 1.02 1.36 22.52 22.52 10.90
7 1.92× 108 30.50 1.93 1.19 1.35 1.00 1.35 30.50 30.50 10.54
8 3.29× 1010 41.28 1.76 1.17 1.35 0.98 1.35 41.28 41.28 10.26
9 1.07× 1013 56.05 1.64 1.16 1.36 0.97 1.36 56.05 56.05 10.04

10 6.71× 1015 76.51 1.53 1.14 1.36 0.97 1.36 76.51 76.51 9.86

Table 3.2: Improved constants from proof of Theorem 3.1.3

and CP over D. We have added the Feige–Schechtman constant KFS for comparison

and we see that Kd < KFS for d 6 4.

If we ignore KL and take the limit of KH as NH →∞, Maple obtains the constants

listed in Table 3.3.

d K∆(∞) Ct(∞) CmL(∞) CmH(∞) CP (∞) Kd(∞) KFS

2 4.54 0.87 0.92 0.56 0.92 7.34 16.00
3 3.32 1.07 1.12 0.76 1.12 8.86 13.41
4 2.72 1.13 1.21 0.84 1.21 11.02 12.16
5 2.34 1.15 1.25 0.88 1.25 14.00 11.41
6 2.08 1.15 1.28 0.90 1.28 18.10 10.90
7 1.89 1.15 1.31 0.92 1.31 23.71 10.54
8 1.74 1.15 1.32 0.93 1.32 31.43 10.26
9 1.62 1.14 1.34 0.94 1.34 42.11 10.04

10 1.52 1.14 1.35 0.94 1.35 56.99 9.86

Table 3.3: Limiting constants from proof of Theorem 3.1.3
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Spherical codes based on equal area partitions

“That’s a thread that has linked several recent projects: we (usually

Hardin and me) run the computer to find good packings, or coverings,

or designs, we stare hard at the results, we learn, and we generalize.”

– Neil Sloane interviewed by A. R. Calderbank in [48].

We use the notation EQP(d,N ) to denote the recursive zonal equal area (EQ)

code with N codepoints in the unit sphere Sd ⊂ R+1.

4.1 Construction of the EQ codes

In essence, EQP(d,N ) is constructed by taking the partition EQ(d,N ) and placing one

point, called a codepoint at the “centre” of each region of the partition. There are

two areas of ambiguity in this construction, which will be discussed and removed

in this section.

Figure 4.1 illustrates the code EQP(2, 33) in red, with the boundaries of the

partition EQ(2, 33) shown in blue.

4.1.1 Exactly where is the centre of a region?

First, we need to specify what is meant by the “centre” of a region. Recalling

(3.2.12), each region R of EQ(d,N ) is of the form

R = R (
(τ1, . . . , τd), (υ1, . . . , υd)

)
= ¯ (

[τ1, υ1]× . . .× [τd, υd]
)
.

151
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Figure 4.1: EQ code EQP(2, 33), showing the partition EQ(2, 33)

In particular, the North polar cap is of the form

R1 = ¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [0, ϑc]

)
,

and the South polar cap is of the form

RN = ¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [π − ϑc, π]

)
.

In general, because of the recursive nature of the construction, some regions of

EQ(d,N ) may be descendants of a circle, having the form

R = ¯ (
[0, 2π]× [τ2, υ2]× . . .× [τd, υd]

)
,
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or may be descendants of a polar cap, having the form

R = ¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [0, υk]× [τk+1, υk+1]× . . .× [τd, υd]

)
,

or

R = ¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [τk, π]× [τk+1, υk+1]× . . .× [τd, υd]

)
.

In fact, the interval of longitude may be of the form [τ1, τ1 + 2π] (mod 2π).

The algorithm to determine the spherical coordinates of the codepoint

a = ¯(α1, . . . , αd) = �R(τ, υ) := �(τ, υ)

in terms of the pseudo-vertices τ and υ, can be written in pseudocode as:

if υ1 = τ1 + 2π (mod 2π) then

α1 := 0;

else α1 := (τ1 + υ1)/2 (mod 2π);

endif ;

for k ∈ {2, . . . , d} do

if τk = 0 then αk := 0;

else if υk = π then αk := π;

else αk := (τk + υk)/2;

endif ;

enddo.

Using this algorithm, we see that

R1 = ¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [0, υk]× [τk+1, υk+1]× . . .× [τd, υd]

)
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yields

�R1 = ¯
(

0, 0, . . . , 0, 0,
τk+1 + υk+1

2
, . . . ,

τd + υd

2

)
,

while

R2 = ¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [τk, π]× [τk+1, υk+1]× . . .× [τd, υd]

)

yields

�R2 = ¯
(

0, 0, . . . , 0, π,
τk+1 + υk+1

2
, . . . ,

τd + υd

2

)
,

and in particular, a North polar cap yields the North Pole,

�¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [0, υd]

)
= ¯(0, 0, . . . , 0, 0),

while a South polar cap yields the South pole,

�¯ (
[0, 2π]× [0, π]× . . .× [0, π]× [τd, π]

)
= ¯(0, 0, . . . , 0, π).

4.1.2 Exactly where are the regions?

As noted in Section 3.2, the partition EQ(d,N ) is not fully specified by the algorithm

described there. The algorithm instead specifies an equivalence class of partitions,

unique up to rotations of the partitions of S1. This means that the collars of EQ(2,N )

are free to rotate without changing diameters of the regions and without changing

the colatitudes of the collars.

Here we complete the specification of the partition algorithm by specifying a

SO(2) rotation for each collar which aims to maximize the minimum distance be-

tween the codepoints of successive collars of EQ(2,N ).
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The offset rotation applied to collar i+ 1 of EQ(2,N ) with respect to collar i is

offset =
π

mi+1
− π

mi
+
π gcd(mi,mi+1)

mi mi+1
. (4.1.1)

The first two terms above align the first codepoint in collar i+ 1 directly south

of the first codepoint in collar i.

The third term adds an extra rotation which maximizes the minimum difference

in longitude between points of collar i and points of collar i+1. This is because the

greatest common divisor g := gcd(mi,mi+1) is the smallest positive integer such that

the equation

g = x mi + y mi+1 (4.1.2)

has a solution in integers. This characterization of g is a well-known result in

number theory. See, for example, [114, Theorem 1.4, pp. 4–5].

As a result of (4.1.2) we have

g

mimi+1
=

y

mi
+

x

mi+1

for some integer x, y, implying that since the first codepoint of collar i+ 1 is aligned

with the first codepoint of collar i+ 1, there must be some codepoint of collar i+ 1

which differs in longitude by 2π g/(mimi+1) from some codepoint of collar i, and that

this is the smallest non-zero difference in longitude.

4.2 The EQ codes are not good for polynomial interpolation

Here we elaborate the point made in Chapter 1, that the EQ codes for square

numbers of points of S2, are not suitable for polynomial interpolation, because the

corresponding Gram matrix is often singular to machine precision. In terms of

Definition 2.10.1, the EQ codes for square numbers of points of S2 are either not

fundamental systems or are very close to a code which is not a fundamental system.
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It can in fact be proven that the stronger condition holds asymptotically in

degree for d > 1.

Theorem 4.2.1. For d > 1 there is a polynomial degree t0, depending on d, such that

for t > t0, there is a non zero polynomial of degree t which is zero at all codepoints

of the spherical code EQP(d,D(d, t)).

Theorem 4.2.1 is true essentially because for large polynomial degrees the cor-

responding EQ codes are concentrated on too few colatitudes to ensure that the

interpolating is unique. Details are given in the proof below.

For at least d = 2 there is strong numerical evidence for the following conjecture.

Conjecture 4.2.2. For d > 1, t > 0 the set EQP(d,D(d, t)) is not a fundamental

system.

This conjecture might conceivably be approached using methods similar to those

of zu Castell, Láın Fernández and Xu [166, 169] [91, Section 2.4] [92, Section 2].

Proof of Theorem 4.2.1.

We need in general to show that there is a non zero polynomial of degree t which

is zero at all codepoints of the spherical code EQP(d,D(d, t)). This is easy to do if

the number of zones n + 2 is less than t + 1, since in this case we can construct

a polynomial in the single variable xd+1 with zeros at the n + 2 colatitudes of the

codepoints of EQP(d,D(d, t)). We must therefore show that there exists a strength t0

such that for t > t0 the partition EQ(d,D(d, t)) has n < t− 1.

We therefore examine EQ(d,N ) for N = D(d, t). Using (2.6.6) we have

N = D(d, t) =
2t+ d

d!
(t+ 1)d−1 6 2(t+ d− 1)d

d!
. (4.2.1)
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We now assume that N > N0

(
1
2

)
and use the definition (2.3.35) and the estimates

(3.5.50) and (3.5.51) which together imply that

nd 6 πd

δd
I

=
πd

ωd
N =

πd

ωd
D(d, t)

6 πd Γ
(

d+1
2

)

2 π
d+1
2

2(t+ d− 1)d

Γ(d+ 1)
6 πd

π
d+1
2

Γ
(

d+1
2

)

Γ(d+ 1)
(t+ d− 1)d. (4.2.2)

We now apply the estimate (2.2.13) to obtain

nd 6
(π

4

) d−1
2

(t+ d− 1)d.

If we let

Cd :=
(π

4

) d−1
2d

, (4.2.3)

then for N > N0

(
1
2

)
and

t >
(d− 1) Cd + 1

1− Cd

we have n 6 t− 1. 2

4.3 Minimum distance between codepoints

By the minimum distance between codepoints of EQP(d,N ) we mean the minimum

Euclidean distance, defined as follows.

Definition 4.3.1.

mindist(d,N ) := mindist EQP(d,N ) = min
a,b∈EQP(d,N ),a6=b

‖a− b‖ . (4.3.1)

The codepoints of an EQ point set are well separated in the following natural

sense.
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Theorem 4.3.2. For each d > 1 there is a constant K
′′
d such that for all N > 2,

EQP(d,N ) has no two codepoints with Euclidean distance less than K
′′
d N− 1

d . In

other words,

mindist(d,N ) > K
′′
d N− 1

d . (4.3.2)

The proof of Theorem 4.3.2 first shows that the minimum spherical distance

between codepoints must be at least twice the minimum spherical distance between

any codepoint and the boundary of the region which contains the codepoint. This

implies that the minimum Euclidean distance between codepoints must be at least

twice the sine of the minimum spherical distance between any codepoint and the

boundary of the region which contains the codepoint. It is therefore useful to define

the following quantity.

Definition 4.3.3.

minsin(d,N ) := min
R∈EQ(d,N )

sin s(�R, ∂R). (4.3.3)

The proof of Theorem 4.3.2 continues by using the following result.

Lemma 4.3.4. For each d > 1 there is a constant K
′
d such that for all N > 2,

the minimum of the sine of the spherical distance between any codepoint and the

boundary of the region which contains the codepoint is at least K
′
d N− 1

d . In other

words,

minsin(d,N ) > K
′
d N− 1

d . (4.3.4)

Proof of Theorem 4.3.2.

We consider the general case where d > 1 and N > 1.

Consider any two regions A,B of EQ(d,N ) and their corresponding codepoints

a := �A and b := �B. The minimal geodesic arc from a to b must pass through ∂A,

the boundary of A, may possibly pass through other regions and must then pass
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through ∂B, the boundary of B. The spherical distance s(a,b) must therefore be at

least the twice the minimum of s(a, ∂A) and s(b, ∂B).

Since our argument works for any two codepoints, the minimum spherical dis-

tance between codepoints must be at least twice the minimum spherical distance

between any codepoint and the boundary of the region which contains the code-

point. In other words,

min
a,b∈EQP(d,N ),a6=b

s(a,b) > 2 min
R∈EQP(d,N )

s(�R, ∂R).

We therefore have

mindist(d,N ) = min
a,b∈EQP(d,N ),a 6=b

Υ
(
s(a,b)

)
= min

a,b∈EQP(d,N ),a 6=b
2 sin

s(a,b)
2

= 2 sin
mina,b∈EQP(d,N ),a 6=b s(a,b)

2

> 2 sin min
R∈EQP(d,N )

s(�R, ∂R) = 2 min
R∈EQP(d,N )

sin s(�R, ∂R)

= 2 minsin(d,N ).

Using Lemma 4.3.4, we see that there is a constant K
′
d such that for all N > 2,

we have

mindist(d,N ) > 2 minsin(d,N ) > 2 K
′
d N− 1

d .

2

4.3.1 Sketch of proof of Lemma 4.3.4

The proof of Lemma 4.3.4 proceeds by induction, with the unit circle as a special

case. In the case of the unit circle, the codepoints are equally spaced and we show

that the distance between each codepoint and the corresponding boundary has the

right order.

For d > 1 we show that there is a trivial lower bound of the right order for small

N , since the no codepoint lies on the boundary of a region.
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We now consider the general case where d > 1 and N > 1. We make the inductive

assumption that there is a constant K
′
d−1 such that for all m > 1,

minsin(d− 1,m) > K
′
d−1 m

1
1−d . (4.3.5)

If a given region R is a polar cap then the codepoint �R is a pole and s(�R, ∂R),

the spherical distance between �R and the boundary of R, is ϑc, the spherical radius

of the polar cap. We show that sinϑc is of the correct order.

If R is not a polar cap then it is a region contained in a collar, say collar i. In

this case the point of ∂R closest to the codepoint �R is either a point of the top and

bottom boundary ∂lR or a point of the side boundary ∂↔R.

We show that s(�R, ∂lR) is half the collar angle δi. We also show that when

sin s(�R, ∂↔R) < sin s(�R, ∂lR) we have

sin s(�R, ∂R) = sin
ϑi + ϑi+1

2
sin s(�Π R, ∂Π R).

Using our inductive assumption we deduce that

sin s(�R, ∂R) > min
(

sin
δi
2
,K

′
d−1 sin

ϑi + ϑi+1

2
m

1
1−d

i .

)
.

We now assume that N > N0 with N0 sufficiently large that we have at least five

collars. We then use the definitions and estimates which were used in the proof

of the lemmas supporting Theorem 3.1.3 to show that sin s(�R, ∂R) is of the correct

order.

4.3.2 Analysis of the case d > 1 and N > 2

We now analyze minsin(d,N ) in the case d > 1 and N > 2 in order to develop a number

of geometrical lemmas which will be used in the proof of Lemma 4.3.4.

Since N > 2 we have at least one collar. In this case, a region is a polar cap, is

the only region in a collar, or is one of many in a collar.
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If the codepoint �R is a pole contained in a polar cap R, then s(�R, ∂R) = ϑc, the

spherical radius of the polar cap. Otherwise the codepoint is in a region contained

in a collar.

We now assume that we have a codepoint �R which is the centre point of a

region R contained in collar i. Denote the top and bottom boundary of R as ∂lR.

Denote the side boundary of R as ∂↔R.

If R is the only region in a collar, then s(�R, ∂R) is s(�R, ∂lR), the distance between

�R and ∂lR, the top and bottom boundaries of R.

If R is one of many in a collar then s(�R, ∂R) is the minimum of s(�R, ∂lR) and

s(�R, ∂↔R), the distance between �R and the side boundary of R.

We now consider s(�R, ∂lR).

Lemma 4.3.5. Let R be a region in collar i of EQ(d,N ). Then the distance from

the codepoint �R to the top and bottom boundary ∂lR is

s(�R, ∂lR) =
δi
2
. (4.3.6)

The analysis of s(�R, ∂↔R) is more complicated, but it gives us the basis of an

inductive proof of Lemma 4.3.4.

Lemma 4.3.6. For a region R in collar i of EQ(d,N ) such that mi > 2, either

s(�R, ∂R) = s(�R, ∂lR) < s(�R, ∂↔R) or s(�R, ∂R) = s(�R, ∂↔R) 6 s(�R, ∂lR) and

sin s(�R, ∂R) = sin
ϑi + ϑi+1

2
sin s(�Π R, ∂Π R). (4.3.7)

Using the inductive assumption that for R ∈ EQ(d− 1,mi) we have

sin s(�R, ∂R) > K
′
d−1m

1
1−d

i ,

we conclude that

sin s(�R, ∂R) > min
(

sin
δi
2
,K

′
d−1 sin

ϑi + ϑi+1

2
m

1
1−d

i

)
.
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We now define

ψi := sin
ϑi + ϑi+1

2
m

1
1−d

i . (4.3.8)

We therefore have

minsin(d,N ) > min
(

sinϑc,
N

min
i=1

sin
δi
2
,K

′
d−1

N
min
i=1

ψi

)
. (4.3.9)

We now assume that N > N0 with N0 sufficiently large that we have at least five

collars. We can therefore use the definitions and estimates of the previous chapter.

We use the feasible domains D,D+,Dt and Dm+ defined by (3.5.10), (3.5.42), (3.5.38)

and (3.5.44) respectively, and the functions Y, T ,B,M and ∆, defined by (3.5.20) to

(3.5.24) respectively.

We also define

Ψ(τ, β, ϑ) := sin
T (τ, ϑ) + B(β, ϑ)

2
M(τ, β, ϑ)

1
1−d , (4.3.10)

where T ,B and M are defined by (3.5.21), (3.5.22) and (3.5.24) respectively.

The sequence ψ and the function Ψ are related to each other in the same way as

the sequence δ and the function ∆. In other words, we have the following relation-

ship.

Lemma 4.3.7. For i ∈ {1, . . . , n} we have

Ψ(−ai−1, ai, ϑF,i) = ψi. (4.3.11)

The function Ψ also has the same symmetry as the function ∆.

Lemma 4.3.8. The function Ψ satisfies

Ψ(τ, β, π − ϑ) = Ψ(β, τ, ϑ− δF ). (4.3.12)
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As a consequence of (3.5.31), (4.3.9) and (4.3.11) we have

minsin(d,N ) > min
(

sinϑc,min
D

sin
∆
2
,K

′
d−1 min

D
Ψ

)
, (4.3.13)

and by Lemmas 3.5.9 and 4.3.8 we therefore have

minsin(d,N ) > min
(

sinϑc,min
D+

sin
∆
2
,K

′
d−1 min

D+
Ψ

)
. (4.3.14)

To complete the proof of Lemma 4.3.4 we must show that each of the expressions

in (4.3.14) has a lower bound of the correct order.

Lemma 4.3.9. For d > 1, there is a positive constant N
′
c ∈ N and a monotonic

increasing positive real function K
′
c such that for each partition EQ(d,N ) with N >

x > N
′
c,

sinϑc > K
′
c(x)N− 1

d .

Lemma 4.3.10. For d > 1, there is a positive constant N
′
∆ ∈ N and a monotonic

increasing positive real function K
′
∆ such that for each partition EQ(d,N ) with N >

x > N
′
∆,

min
D+

sin
∆
2

> K
′
∆(x)N− 1

d .

Lemma 4.3.11. For d > 1, there is a positive constant NΨ ∈ N and a monotonic

increasing positive real function C
′
Ψ such that for each partition EQ(d,N ) with N >

x > NΨ,

min
D+

Ψ > C
′
Ψ(x)N− 1

d .

4.3.3 Numerical results

Figures 4.2, 4.3 and 4.4 show the minimum distance coefficient for EQP(d,N ) for N

from 2 to 20000 for d = 2, 3, 4 respectively. The minimum distance coefficient is here
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defined to be mindist(d,N )N 1
d , where mindist(d,N ) is defined by Definition 4.3.1.
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Figure 4.2: Minimum distance coefficient of EQP(2,N ) (semi-log scale)
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Figure 4.3: Minimum distance coefficient of EQP(3,N ) (semi-log scale)



4.4. Packing density 165

10
0

10
1

10
2

10
3

10
4

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

N = number of points

M
in

di
st

*N
1/

4

Figure 4.4: Minimum distance coefficient of EQP(4,N ) (semi-log scale)

4.4 Packing density

Hamkins, in his PhD thesis [65], and Hamkins and Zeger, in a series of papers,

describe “asymptotically optimal” spherical codes. According to [65, p. 64], [66]

their wrapped spherical codes for Sd are in general, asymptotically optimal in terms

of packing density, if the densest packing in Rd is used in the wrapping algorithm.

Their laminated codes [67], have in some cases a higher packing density than the

corresponding wrapped spherical codes [65, p. 80].

The packing density of the EQ points is in general lower than that of the

Hamkins-Zeger wrapped spherical codes. Table 4.1 compares the maximum number

of points of the Hamkins-Zeger spherical codes and EQP for selected values of d and

minimum distance. Compare this with Tables 3.2 and 3.3 of [65, p. 47].

For S2, taking the rotation of Section 4.1.2 into account, the codepoints of

EQP(2,N ) near the equator approximate a non-uniform hexagonal lattice as N →∞.

Without this rotation, the codepoints near the equator approximate a square lattice

of distance
√
ωd/N as N →∞.
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d 2 2 3
Minimum distance 0.1 0.01 0.1
Coxeter upper bound 1450 145 103 29 364
Laminated code 1294 124 422 16 976
Wrapped code 1070 130 682 17 198
EQP 1100 110 366 13 591

Table 4.1: Maximum number of points for given minimum distance for Hamkins-
Zeger spherical codes and EQP.

In general, for d > 2 we should not expect EQP(d,N ) to yield a better packing

density than the density of the simple cubic lattice for Rd. This density is simply

the ratio of the volume of the unit ball Bd to the volume of the enclosing cube, 2d,

that is

density
(
EQP(d,N )

) ≈ µ
(
Bd

)

2d
=

πd/2

2d Γ(d/2 + 1)
. (4.4.1)
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Figure 4.5: Packing density of EQP(2,N ) (semi-log scale)
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Figure 4.6: Packing density of EQP(3,N ) (semi-log scale)
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Figure 4.7: Packing density of EQP(4,N ) (semi-log scale)
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Figures 4.5, 4.6 and 4.7 show the packing density of EQP(d,N ) for N from 2 to

20000 for d = 2, 3, 4 respectively. In each of these figures the red horizontal line is the

the density of the simple cubic lattice for Rd, as per (4.4.1).
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Figure 4.8: Wyner ratios for EQP(2), EQP(3), EQP(4) (semi-log scale)
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We now examine the packing density of EQP(d,N ) using the Wyner ratio as per

Definition 2.7.6. Figure 4.8 shows the Wyner ratio of EQP(d,N ) for N from 2 to

20000 for d = 2 in blue, d = 3 in red and d = 4 in green. Each shows a Wyner ratio

greater than 1, but d = 2 is better than d = 3 which is better than d = 4.

Figure 4.9 shows the Wyner ratio of EQP(d,N ) for N from 2 to 1000 for d = 5 in

blue, d = 6 in red and d = 7 in green. For d = 5 the Wyner ratio is generally better

than 1, but not so for d = 6 and especially not for d = 7. For d = 7 the Wyner ratio

is generally worse than 1, for N > 20. This indicates that EQP(d,N ) yields a poor

packing for d > 5.

4.4.1 Nesting and layering

The construction of the EQ codes can be modified to produce nested codes, by

subdividing each region of an EQ partition into 3nd regions, where n is the nesting

depth. We elaborate this idea here. This is an informal discussion containing no

proofs.

The main idea here is to divide each collar into 3n collars of equal area. To

simplify the discussion, we only consider n = 1 here. For n > 1 we can apply the

same method recursively. We first divide collar i of EQ(d,N ) into 3 collars of equal

area. At this point each of these 3 collars is still subdivided into mi regions. We

then recursively apply the subdivision to EQ(d−1,mi) to subdivide each of the collars

into 3d−1 mi regions. We need to use a different algorithm for the spherical caps,

where we must subdivide the cap into a smaller cap having 3−d of the original area,

and two new collars.

The nested code is obtained by placing codepoints at the centres of each region,

except where the region contains an original codepoint, which is retained.

One difficulty with this method of subdivision is that the definition of the centre

of a region given in Section 4.1.1 simply divides a collar by halving the colatitude.

Since DV(ϑ) is proportional to sind−1 θ this results in the half of the collar lying

towards the equator having more area than the half lying towards the poles, with

the problem getting worse as d increases. There is therefore a value of d such that
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our simple subdivision scheme no longer works, in the sense that when we subdivide

a collar into 3 new collars, the colatitude of the original codepoints will no longer

lie in the centre collar of the 3 new collars, but instead will lie in the new collar

which is closest to the pole.

The remedy to this difficulty is to revise the definition of the centre point of

a region so that each collar is divided into two by area rather than by colatitude.

With this new definition of centre point, the subdivision process will retain the

original codepoints as the centre points of N of the 3d N new regions.

4.4.2 Methods to increase density

The EQ partition of S2 has its regions offset in a natural way to maximize minimum

distance between the corresponding EQ codepoints. For Sd with d > 2 there is no

such natural offset, but it is possible that a variation of the EQ algorithm could

produce a larger minimum distance.

To elaborate, we have already seen in Section 4.1.2 a scheme to maximize the

minimum distance between codepoints by rotating successive collars. For d > 3, if

the EQ partition contains more than one collar then each collar contains a codepoint

of the EQ code corresponding to the North Pole of Sd−1, and the minimum distance

between codepoints of collar i and collar i + 1 is δi+δi+1
2 . Any SO(d) rotation which

does not fix the North Pole could be used to move the “North Pole” of collar i+ 1

away from the “North Pole” of collar i, but this causes two further problems.

First, unlike the S2 case, it is not clear which rotation will maximize the minimum

distance between codepoints of successive collars. Second, a general SO(d) rotation

will not take a RISC region to a RISC region: each pseudovertex will in general have

its colatitudes perturbed in a different way. For d = 3, the Matlab implementation

EQSP 1.10 “solves” the first problem by ignoring it. It rotates collar i + 1 by an

SO(3) rotation which takes the North Pole of S2 to a point where the boundary of

the North polar cap of collar i meets the boundary between two adjacent regions

in the top collar of the EQ partition of collar i. EQSP 1.10 solves the second

problem by recording the rotation used for each collar. To describe a region of
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its modified version of EQ(3,N ) requires the coordinates of two pseudovertices in

standard position as well as a 3×3 matrix describing the rotation of the collar. This

method is clumsy and was not attempted for d > 3.

There is an alternative to rotating the collars, but it involves a modified partition

algorithm. The standard EQ algorithm forces the creation of a cap at both the

North and South poles. The modified “unicap” EQ algorithm forces a cap only at

one pole, dividing the remainder of the sphere as per the collars of the standard EQ

algorithm. In some cases, this may still result in a cap at the opposite pole, but in

most cases in low dimensions, it will result in the opposite pole not having a cap.

Also, the unicap EQ partition may result in a lager maximum diameter than the

standard EQ algorithm, or the corresponding unicap EQ codes may have a smaller

minimum distance than the standard EQ codes.

The idea of the modified EQ partition is to use the unicap EQ partition for the

collars, with the polar caps alternating between the North and South poles. This

may result in a larger minimum distance between codepoints of the corresponding

modified EQ code. This idea has not yet been tried.

4.4.3 Combined nesting and rotation

In the case of the S2 partitions, the nesting scheme of Section 4.4.1 lends itself to

improvement by SO(2) rotations of the new collars.

Consider the case where each collar is split into three new collars. For a single

original collar, consider the three new collars and number them 3i (the upper collar),

3i + 1 (the middle collar) and 3i + 2 (the lower collar). Since we want to preserve

the original codepoints, we can’t rotate the middle collar, but we can rotate the

upper and lower collars by half the difference in longitude between codepoints of the

middle collar. This is an optimal arrangement of codepoints of the 3 new collars,

but it disturbs the relationship between collar 3i and collar 3i − 1 (the lower collar

of the adjacent group of three collars). The solution would be to treat collars 3i− 2

and 3i+ 1 as fixed and to jointly optimize the rotations of collars 3i− 1 and 3i. This

has not yet been tried.
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4.5 Spherical coding and decoding algorithms

The EQ partitions and EQ codes can be used to define a scheme for spherical

coding and decoding and a related scheme for Gaussian source coding, similar to

those described by Hamkins and Zeger [66, 68].

Refer to Figure 4.10 while reading the description of the spherical coding and

decoding scheme.

Figure 4.10: EQ code EQP(2, 33), Voronoi cells, and EQ(2, 33)

Figure 4.10 illustrates the code EQP(2, 33) in red, with the Voronoi cells shown in

yellow and the boundaries of the partition EQ(2, 33) shown in blue. This shows that

the Voronoi cells of an EQ code are not the sames as the regions of the corresponding

EQ partition.

Preparation for spherical coding and decoding.

The preparation phase sets up two mappings.

1. Map a region number to a codepoint.
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2. Map the pseudo-vertex coordinates of a region, expressed as the pair of d-

tuples (τ, υ) to a region number.

This mapping uses a d−1 level tree structure, using spherical polar coordinates.

• Level 1 of the tree corresponds to the zones of the EQ partition of Sd

This corresponds the major colatitude, dimension d.

• For k ∈ {2, . . . , d − 2}, level k of the tree corresponds to the zones of the

EQ partition of Sd−k+1.

This corresponds the colatitude of dimension d− k + 1.

• The leaves at level d−1 correspond to the zones of an EQ partition of S2.

This corresponds to the colatitude of dimension 2.

There is sufficient information at the leaves to calculate the longitude.

Spherical channel coding.

1. Map the codepoint number to codepoint coordinates.

2. Transmit the codepoint coordinates.

Spherical channel decoding - the Quasi-Nearest Codepoint algorithm.

Channel decoding takes the received coordinates and tries to determine the nearest

codepoint. Since the regions are in general not the Voronoi cells of the corresponding

codepoints, if we just take the received point, look up the region and then look

up the corresponding codepoint, we cannot be sure that we have found the nearest

codepoint to the received point. We instead use a slightly more elaborate algorithm,

here called the “Quasi-Nearest Codepoint” algorithm:

1. Look up the received coordinates x to obtain the region R.

This is done by:

(a) Cartesian to spherical coordinate conversion:

ξ := (ξ1, . . . , ξd) = ¯−1 x.

(b) For dimension i from d down to 2:

Binary chop using colatitude ξi to obtain the zone number.
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(c) For dimension 1:

Use the longitude ξ1 to calculate the region number.

2. Obtain the codepoint a := �R.

3. Get the distance to the codepoint, s0 := s(x,a).

4. If the distance is less than the packing radius then we are done. Set the final

codepoint f := a and quit.

5. Otherwise the nearest codepoint may be the codepoint a of neighbouring

region.

• The neighbouring region cannot be one that differs only by longitude.

The boundary between two regions which differ only by longitude consists

of points which are equidistant from the two corresponding codepoints.

We therefore concentrate on the regions which differ by colatitude.

• Order the d − 1 colatitudes of ξ by increasing distance to the nearest

corresponding boundary colatitude.

• We have colatitudes ξji , for i from 1 to d−1, where j is some permutation

of {2, . . . , d}. Call the corresponding nearest boundary colatitudes ∂ji .

6. Keep the distance s0 and codepoint a as the candidate distance r and candidate

codepoint c.

7. For each index i from 1 to d− 1:

(a) Reflect the colatitude ξji into the corresponding boundary ∂ji to obtain

ξ′ with ξ′ji
:= 2 ∂ji − ξji and ξ′k := ξk for all other coordinates k.

We have a new point xi = ¯ ξ′ in a region Ri which is a neighbour of the

original region.

(b) Find the codepoint ai = �Ri of the new region.

(c) Find the distance si = s(x,ai) from the received point to the new code-

point.

(d) If the new distance si is less than the packing radius we are done. Set

the final codepoint f := a and quit.



4.5. Spherical coding and decoding algorithms 175

(e) Otherwise if the new distance si is less than distance r from the received

point x to the candidate codepoint c, then keep the new distance and

the new codepoint as candidate distance and codepoint. In other words,

set r = si, c = ai.

8. Set the final codepoint f := c and quit.

If s(x, f) is less than the packing radius, then we are certain that f is the closest

codepoint to x.

In other cases, we have a conjecture, which is very plausible for S2 but is spec-

ulative for Sd for d > 2.

Conjecture 4.5.1. For d > 2, the Quasi Nearest Codepoint algorithm is a maximum

likelihood decoding algorithm for EQP(d).

Remarks.

We use spherical distances in the Quasi Nearest Codepoint algorithm,

but could just as easily have used Euclidean distances.

The searches used at each level of the Quasi Nearest Codepoint algo-

rithm use binary chop, which is logarithmic in time with respect to the

size of the search space. Since at each level we do a fixed number of

searches depending on the dimension, it should be fairly easy to show

that the Quasi Nearest Codepoint algorithm is logarithmic in time with

respect to the number of codepoints. The space requirements of the

Preparation step are a little harder to compute, but seem to be closer

to linear with respect to the number of codepoints. For S2 the space

required is proportional to the number of zones and is thus proportional

to the square root of the number of codepoints.

In [68], Hamkins and Zeger describe Gaussian source coding and spher-

ical quantization.

The spherical quantization scheme of Huber and Matschkal is superfi-

cially similar to the Quasi Nearest Codepoint algorithm, but there are

some significant differences. The Huber-Matschkal algorithm partitions
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the sphere into regions which are only of similar area rather than almost

exactly equal area. More precisely, looking at steps (13), (14) and (20)

in [105], the regions which are created by these steps are not necessar-

ily equal in area other than for the trivial case of S1. The spherical

quantization algorithm described in [105] differs in two other significant

ways from the Quasi Nearest Codepoint algorithm. Firstly, it is more

space-efficient than the Quasi Nearest Codepoint algorithm because it

does not use a codebook. Secondly, it does not try to find the nearest

codepoint to a given point on the sphere, but rather merely maps the

point to the region which contains it.

In [156], Utkovski and Utkovski also describe a spherical quantizer for

Gaussian sources.

4.6 Proofs of Lemmas

Proof of Lemma 4.3.4.

The proof of Lemma 4.3.4 proceeds by induction, with the unit circle as a special

case.

In the case of the unit circle, the N codepoints are equally spaced with each

in the centre of its corresponding region, which is an arc of length 2π
N . Thus the

distance between each codepoint and a boundary of the corresponding region is

s(�R, ∂R) =
π

N .

We therefore have

minsin(d,N ) = sin
π

N > 2
N (4.6.1)

for N > 2.
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For d > 1 we make the inductive assumption that there is a constant K
′
d−1 such

that for all m > 1,

minsin(d− 1,m) > K
′
d−1 m

1
1−d . (4.6.2)

For d > 1 there is a trivial lower bound of the right order for small N , since the

no codepoint lies on the boundary of a region. If N 6 N0, then we need only consider

a finite number of partitions, each of which contain a finite number of regions. We

set

K
′
L :=

N0

min
N=2

minsin(d,N ) N 1
d .

Then for N ∈ {2, . . . , N0}, we have

minsin(d,N ) > K
′
LN− 1

d .

We now consider the general case where d > 1 and N > 2. The analysis of this

case above results in (4.3.14) which states that

minsin(d,N ) > min
(

sinϑc,min
D+

sin
∆
2
,K

′
d−1 min

D+
Ψ

)
.

Lemmas 4.3.9, 4.3.10 and 4.3.11 show that each of the expressions in (4.3.14)

has a lower bound of the correct order. 2

Proof of Lemma 4.3.5.

The top and bottom boundaries of the region R lie on the parallels of colatitude

ϑi and ϑi+1 respectively. Consider the top boundary ∂↑R. The parallel at ϑi on which

∂↑R lies is a small circle of spherical radius ϑi with centre the North Pole.

Now consider the codepoint a. The meridian :(a) meets the top boundary ∂↑R

at the point a↑, with s(a,a↑) = δi

2 . The small sphere ∂S(a, δi

2 ) meets the parallel
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at colatitude ϑi at exactly one point, which is a↑. To see this, use stereographic

projection to Rd. A similar argument applies to the bottom boundary ∂↓R. 2

Proof of Lemma 4.3.6.

Let a := �R. By construction we have a /∈ ∂R, so a /∈ ∂↔R, the closure of the side

boundary of R.

Let Q be the set of points of ∂↔R closest to a. More precisely,

Q := {q ∈ ∂↔R | s(a,q) 6 s(a,p) for all p ∈ ∂↔R}. (4.6.3)

The set Q is not empty because ∂↔R is closed.

Let Φ := s(a, ∂↔R) and define the spherical cap C := S(a,Φ) ∈ Sd. We must have

s(a,q) = Φ for every point q ∈ Q, so that C ∩Q = Q.

Let b ∈ Q and consider the meridian :b and the great circle B := :b ∪ −:b.

Express a and b in spherical polar coordinates as

a = Υ(α1, . . . , αd),

b = Υ(β1, . . . , βd),

respectively. The constructions of EQ(d,N ) and EQP(d,N ) and the fact that mi > 2

imply that a and b differ in longitude by at most π
2 (mod 2π). More precisely, we

must have

|α1 − β1| ∈
(
0,
π

2

]
(mod 2π).

Now recall that the longitude of any point of :b is β1 and the longitude of any

point of −:b is π + β1( mod 2π). Therefore a /∈ :b and a /∈ −:b. Since a is not one

of the poles, we have a /∈ B.

Since a /∈ B, the point a and the great circle B define a great 2-sphere corre-

sponding to G(b,a) of Lemma 2.3.7. The great 2-sphere G(b,a) is split by B into
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two spherical caps each of spherical radius π
2 . Let e be the centre of one of the two

caps. Then the other centre is −e.

We now have two cases.

1. The point a is one of e or −e. In this case s(a, c) = π
2 for every point c ∈ B.

Since s(a, ∂lR) < π
2 , we must have

s(a, ∂R) = s(a, ∂lR) < Φ. (4.6.4)

2. There is a unique great circle D which contains a, e and −e. The great circles

B and D intersect at right angles at two antipodal points, which we call d and

−d. We have s(a,d) + s(a,−d) = π. We cannot have s(a,d) = s(a,−d) because we

have excluded case 1. Therefore let d be the closer of these two points to a.

By Lemma 2.3.6 d is the unique point of B which is closest to a.

Express the point d using spherical polar coordinates as d = Υ(δ1, . . . , δd). We

now have two subcases.

(a) The point d lies on the open arc −:b. This implies that d 6= b and

d /∈ ∂↔R. We have δ1 = π + β1 and so

|α1 − δ1| > π

2
(mod 2π).

Therefore d lies outside of R. The shortest geodesic arc from a to d must

pass through ∂lR since if it passed through some point q ∈ ∂↔R we would

have s(a, ∂↔R) < s(a,d) < s(a,b), which contradicts the definition of the

point b. Therefore (4.6.4) must hold.

(b) The point d lies on the closed arc :b. We have :b∩R ⊂ ∂↔R. This again

splits into two subcases:

i. The point d lies outside R. By the same argument as case 2a we see

that (4.6.4) must hold.

ii. We have d = b. In this case s(a,b) = Φ = s(a, B) and the point b is

the unique point of B ⊃ :b which is closest to a.
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By the same arguments as above, for all points q ∈ Q, either (4.6.4) holds or

Φ 6 s(a, ∂lR) and C ∩:q = q. Therefore either (4.6.4) holds or

s(a, ∂R) = Φ 6 s(a, ∂lR) (4.6.5)

and

C ∩: ∂↔R = C ∩:Q = Q. (4.6.6)

From this point of the proof onward, we exclude the cases where (4.6.4) holds.

The cap C intersects B only at the point b. Since B contains the poles and b is

not a pole, C does not contain either pole.

Now consider the equatorial image of the cap C. By Lemma 2.3.10 we have

ΠC = Sd−1(Πa, φ),

where

sinφ :=
sinΦ
sinα1

. (4.6.7)

We also have

ΠQ = Π(C ∩: ∂↔R) = ΠC ∩Π ∂↔R = ΠC ∩ ∂Π R,

where the last equation is a consequence of Lemma 2.3.13.

Since Q is not empty, ΠQ is not empty, and so s(Πa, ∂Π R) is at most φ. But

any spherical cap C ′ = S(a,Φ′) with Φ′ < Φ does not intersect : ∂↔R at all, and so

s(Πa, ∂Π R) = φ. 2
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Proof of Lemma 4.3.7.

The result is an immediate consequence of Lemma 3.5.6, since we have

Ψ(−ai−1, ai, ϑF,i) = sin
T (−ai−1, ϑF,i) + B(ai, ϑ)

2
M(−ai−1, ai, ϑF,i)

1
1−d

= sin
ϑi + ϑi+1

2
m

1
1−d

i = ψi.

2

Proof of Lemma 4.3.8.

We use Lemmas 3.5.8 and 3.5.9, which yield

Ψ(τ, β, π − ϑ) = sin
T (τ, π − ϑ) + B(β, π − ϑ)

2
M(τ, β, π − ϑ)

1
1−d

= sin
(
π − B(τ, ϑ− δF ) + T (β, ϑ− δF )

2

)
M(β, τ, ϑ− δF )

1
1−d

= sin
T (β, ϑ− δF ) + B(τ, ϑ− δF )

2
M(β, τ, ϑ− δF )

1
1−d = Ψ(β, τ, ϑ− δF ).

2

Proof of Lemma 4.3.9.

For N > x > N0(1/2), where N0 is defined by (3.5.8), using the estimate (3.5.49)

we have

sinϑc > Jc(x)
(

d

ωd−1

) 1
d

δI = K
′
c(x)N− 1

d ,

where

K
′
c(x) := Jc(x)

(
d ωd

ωd−1

) 1
d

, (4.6.8)

with Jc defined by (3.5.45). 2

Proof of Lemma 4.3.10.

Throughout this proof, we assume that N > x where x > N0(5), where N0 is

defined by (3.5.8), and x satisfies (3.5.62). We therefore have n > 5.
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We have (τ, β, ϑ) ∈ D+ = Dt ∪ Dm+.

For the top collar, (τ, β, ϑ) ∈ Dt, (3.5.38) gives τ = 0, β ∈ [−1/2, 1/2], ϑ = ϑc. Using

Lemma 2.3.16 we have

V (B(β, ϑc)) = V(ϑc + δF ) + βVR > V(ϑc + δF )− VR

2
.

Since n > 5, we have ϑc +(1−η)δF ∈ [ϑc, π−ϑc−ηδF ], and we can use (3.5.67) to obtain

V (B(β, ϑc)) > V(ϑc + δF )− VR

2
> V(

ϑc + (1− η)δF
)
.

Therefore, using Lemma 2.3.16 again, we have

B(β, ϑc) > ϑc + (1− η) δF . (4.6.9)

Therefore (3.5.21) and (3.5.24) yield

∆(τ, β, ϑ) = ∆(0, β, ϑc) = B(β, ϑc)− T (0, ϑc) = B(β, ϑc)− ϑc > (1− η)δF . (4.6.10)

For (τ, β, ϑ) ∈ Dm+ (3.5.44) gives τ ∈ [−1/2, 1/2], β ∈ [−1/2, 1/2], ϑ ∈ [ϑF,2, π/2− δF /2].

Since n > 5, we have ϑ + (1 − η) δF ∈ [ϑc, π − ϑc − ηδF ]. Using Lemma 2.3.16, (3.5.22)

and (3.5.67) we now have

V(B(β, ϑ)
)

= V(ϑ+ δF ) + βVR > V(ϑ+ δF )− VR

2
> V(

ϑ+ (1− η)δF
)
.

Using Lemma 2.3.16 again, we therefore have

B(β, ϑ) > ϑ+ (1− η)δF . (4.6.11)
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Since n > 5, we have ϑ ∈ [ϑc, π − ϑc − ηδF ]. Using Lemma 2.3.16, (3.5.21) and

(3.5.67) we also have

V( T (τ, ϑ)
)

= V(ϑ) + τVR 6 V(ϑ) +
VR

2
< V(ϑ+ ηδF ),

so that

ϑ+ ηδF > T (τ, ϑ). (4.6.12)

Combining (4.6.11) and (4.6.12), and using (3.5.24) we therefore have

∆(τ, β, ϑ) = B(β, ϑ)− T (τ, ϑ) > (1− 2η)δF . (4.6.13)

Combining (4.6.10) and (4.6.13) we have

sin
∆(τ, β, ϑ)

2
> sin

(1− 2η)δF
2

.

Define

J(x) := sinc
(
ρH(x)

2

(ωd

x

) 1
d

)
,

with ρH(x) defined by (3.5.11).

The estimate (3.5.52) now yields

∆(τ, β, ϑ) > K ′
∆(x)N− 1

d ,

where

K ′
∆(x) := J(x)(1− 2η) ρL(x) ω

1
d

d , (4.6.14)

with ρL(x) defined by (3.5.11).
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We also have

K ′
∆(x) ↗ K ′

∆(∞) := (1− 2η) ω
1
d

d (4.6.15)

as x→∞, since ρL(x) ↗ 1 as x→∞, by (3.5.12). 2

Proof of Lemma 4.3.11.

Throughout this proof, we assume that N > x where x > N0(5), where N0 is

defined by (3.5.8), and x satisfies (3.5.62). We therefore have n > 5. These assump-

tions are at least as strong as those used in the proofs of Lemma 3.5.25 and Lemma

4.3.10, so we use parts of those proofs here as well.

We have (τ, β, ϑ) ∈ D+ = Dt ∪ Dm+.

For the top collar, (τ, β, ϑ) ∈ Dt, (3.5.38) gives τ = 0, β ∈ [−1/2, 1/2], ϑ = ϑc.

Therefore

T (τ, ϑ) + B(β, ϑ)
2

=
ϑc + B(β, ϑc)

2
.

From (4.6.11) we have B(β, ϑc) > ϑc + (1− η)δF . Therefore

T (τ, ϑ) + B(β, ϑ)
2

> ϑc +
1− η

2
δF > ϑc.

Using (3.5.20) we therefore have

Ψ(τ, β, ϑ) = Ψ(0, β, ϑc) = sin
ϑc + B(β, ϑc)

2
M(0, β, ϑc)

1
1−d

> sinϑc M(0, β, ϑc)
1

1−d = sinϑc

(Y(ϑc) + β
) 1

1−d

> sinϑc

(
Y(ϑc) +

1
2

) 1
1−d

.

This implies that

Ψ(τ, β, ϑ)d−1 > sind−1 ϑc

Y(ϑc) + 1
2

. (4.6.16)
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Using (2.3.41), (3.2.1), (3.2.3), (3.5.2), (3.5.20) and (3.11.23) and we have

Y(ϑc) =
V(ϑc + δF )− V(ϑc)

VR
6 δF
VR

DV(ϑc + δF ) =
ρ

δd−1
I

sind−1(ϑc + δF ). (4.6.17)

We therefore define

λ :=
δd−1
I

ρ
, (4.6.18)

so that (4.6.16) and (4.6.17) yield

Ψ(τ, β, ϑ)d−1 > λ
2 sind−1 ϑc

2 sind−1(ϑc + δF ) + λ
. (4.6.19)

From (3.2.3) and (3.5.10) we have the estimate

λ ∈ [
ρH(x)−1, ρL(x)−1

]
δd−1
I =

[
ρH(x)−1, ρL(x)−1

]
ω

d−1
d

d N 1−d
d , (4.6.20)

where ρL and ρH are defined by (3.5.11).

We now use (4.6.19) and the estimates (3.5.49), (3.5.57) and (4.6.20) to obtain

Ψ(τ, β, ϑ)d−1 > ρH(x)−1ω
d−1

d

d

2 Jc(x)d−1
(

d
ωd−1

) d−1
d

2
((

d
ωd−1

) 1
d

Jc(x)
1−d

d + ρH(x)
)d−1

+ ρL(x)−1

N 1−d
d .

For (τ, β, ϑ) in Dt we therefore have

Ψ(τ, β, ϑ) > C
′
Ψ,t(x) N− 1

d , (4.6.21)

where

C
′
Ψ,t(x) := ρH(x)

1
1−dω

1
d

d

2
1

d−1 Jc(x)
(

d
ωd−1

) 1
d

(
2

((
d

ωd−1

) 1
d

Jc(x)
1−d

d + ρH(x)
)d−1

+ ρL(x)−1

) 1
d−1

.

For (τ, β, ϑ) ∈ Dm+ (3.5.44) gives τ, β ∈ [−1/2, 1/2], ϑ ∈ [
ϑF,2,

π
2 − δF

2

]
.
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From (4.6.11) we have B(β, ϑ) > ϑ + (1 − η)δF . From (3.11.6) we have T (τ, ϑ) >

ϑ− ηδF . Therefore

T (τ, ϑ) + B(β, ϑ)
2

> ϑ+
1− 2η

2
δF > ϑ.

Using (3.5.20) we therefore have

Ψ(τ, β, ϑ) = sin
T (τ, ϑ) + B(β, ϑ)

2
M(τ, β, ϑ)

1
1−d

> sinϑ M(τ, β, ϑ)
1

1−d = sinϑ
(Y(ϑ) + τ + β

) 1
1−d

> sinϑ (Y(ϑ) + 1)
1

1−d .

This implies that

Ψ(τ, β, ϑ)d−1 > sind−1 ϑ

Y(ϑ) + 1
. (4.6.22)

Using (2.3.41), (3.2.1), (3.2.3), (3.5.2), (3.5.20) and (3.11.23) and we have

Y(ϑ) =
V(ϑ+ δF )− V(ϑ)

VR
,6 δF

VR
DV(ϑ+ δF ) =

ρ

δd−1
I

sind−1(ϑ+ δF ). (4.6.23)

From (4.6.18) and (4.6.22) we therefore have

Ψ(τ, β, ϑ)d−1 > λ sind−1 ϑ

sind−1(ϑ+ δF ) + λ
=: f(ϑ). (4.6.24)

We now find a lower bound for f(ϑ) by first showing that f(ϑ) is monotonic

increasing in ϑ, then estimating f(ϑ) at the low end of the domain.
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We have

∂f(ϑ)
∂ϑ

=
∂

∂ϑ

λ sind−1 ϑ

sind−1(ϑ+ δF ) + λ

=
∂

∂ϑλ sind−1 ϑ

sind−1(ϑ+ δF ) + λ
+ λ sind−1 ϑ

∂

∂ϑ

(
sind−1(ϑ+ δF ) + λ

)−1

=
(d− 1) λ sind−2 ϑ cosϑ

sind−1(ϑ+ δF ) + λ
− sind−1 ϑ

(d− 1) λ sind−2(ϑ+ δF ) cosϑ(
sind−1(ϑ+ δF ) + λ

)2

=
(d− 1) λ sind−2 ϑ cosϑ(

sind−1(ϑ+ δF ) + λ
)2

(
sind−2(ϑ+ δF )

(
sin(ϑ+ δF )− sinϑ

)
+ λ

)

= 2
(d− 1) λ sind−2 ϑ cosϑ(

sind−1(ϑ+ δF ) + λ
)2

(
sind−2(ϑ+ δF ) sin

δF
2

cos
(
ϑ+

δF
2

)
+ λ

)

> 0 for ϑ ∈
(

0,
π

2
− δF

2

)
,

where the last equality results from Lemma 2.2.1. Therefore from (4.6.24) we have

Ψ(τ, β, ϑ)d−1 > f(ϑ) > f(ϑF,2) =
λ sind−1 ϑF,2

sind−1(ϑF,3) + λ
. (4.6.25)

We now use (4.6.25) and the estimates (3.5.57) and (4.6.20) to obtain

Ψ(τ, β, ϑ)d−1 > ρH(x)−1ω
d−1

d

d

JF,2(x)d−1

((
d

ωd−1

) 1
d

+ ρL(x)
)d−1

((
d

ωd−1

) 1
d

Jc(x)
1−d

d + 2ρH(x)
)d−1

+ ρL(x)−1

N 1−d
d .

For (τ, β, ϑ) in Dm+ we therefore have

Ψ(τ, β, ϑ) > C
′
Ψ,m+(x) N− 1

d ,

where

C
′
Ψ,m+(x) := ρH(x)

1
1−dω

1
d

d

JF,2(x)
((

d
ωd−1

) 1
d

+ ρL(x)
)

(((
d

ωd−1

) 1
d

Jc(x)
1−d

d + 2ρH(x)
)d−1

+ ρL(x)−1

) 1
d−1

. (4.6.26)

We now set C
′
Ψ(x) := min(C

′
Ψ,t(x), C

′
Ψ,m+(x)). 2





Chapter 5

Separation, discrepancy and energy

“. . .The analytical and geometrical difficulties of the problem of the

distribution of the corpuscles when they are arranged in shells are much

greater then when they are arranged on rings and I have not yet succeeded

in getting a general solution. . . . ”

– Thomson, [155, p. 255].

In this chapter we examine when and how, for a given Riesz potential, the well

separation and weak-star convergence of a sequence of spherical codes implies that

the corresponding sequence of energies converges to the energy double integral. This

problem was posed by Saff during the author’s visit to Vanderbilt University.

5.1 Energy, weak-star convergence and separation

Later in this chapter we will prove the following theorem.

Theorem 5.1.1. Let X be a sequence of Sd codes which is well separated as per

Definition 2.7.2 and weak-star convergent as per Definition 2.11.3. Then for s ∈

(0, d), the normalized Riesz s energy of the codes in the sequence converges to the

normalized spherical double integral of the energy, that is

E`(X )Us → I Us as `→∞,

where E` and I are defined by (2.11.6) and (2.11.5) respectively.

189
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Examples.

The following types of sequences of spherical codes satisfy the criteria of Theo-

rem 5.1.1 and are therefore sequences where for s ∈ (0, d) the s energy converges to

the energy double integral.

1. Minimum energy sequences.

For s′ ∈ (d− 1, d) let Ωs′ = (Ωs′,1,Ωs′,2, . . .) be the sequence of Sd codes such that

|Ωs′,N | = N and such that |Ωs′,N | has the minimum s′ energy for Sd any code

with N codepoints.

It is known that Ωs′ is both weak-star convergent [93, Chapter 2, 12, pp. 160–

162] [39, Theorem 3, p. 236] [69, Theorem 1.1 p. 176] and well separated [89,

Theorem 8, p. 179]. Therefore, for s ∈ (0, d), Theorem 5.1.1 implies that

E`(Ωs′)Us → I Us.

2. Well-separated sequences of spherical designs [73].

See Section 5.3.

3. Well-separated, diameter-bounded equal area sequences [3, 147, 120, 167, 88].

See Section 5.4.

5.2 Energy, spherical cap discrepancy and separation

The rate of convergence to zero of the normalized spherical cap discrepancy of a well

separated sequence of spherical codes imposes a bound on the rate of convergence

of the Riesz s energy. This rate is given by the following theorem.

Theorem 5.2.1. Let X = (X`, ` ∈ N) be a sequence of Sd codes which is well separated

as per Definition 2.7.2 with normalized spherical cap discrepancy converging as

disc(X`) = O(`−a), where disc(X`) is defined by Definition 2.11.5 and a > 0. Then

for s ∈ (0, d), there is an upper bound for the Riesz s potential which converges to

the energy double integral I Us at the rate of at least O
(
`(

s
d−1)a

)
.
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In other words, if there exist C∆,C2 such that each X` = {x`,1, . . . ,x`,N`
} ∈ X

satisfies

‖x`,i − x`,j‖ > ∆` := C∆ N− 1
d

` , (5.2.1)

disc(X`) 6 C2 `
−a (5.2.2)

then for the potential Us we have

E`(X )Us 6 I Us + O
(
`(

s
d−1)a

)
. (5.2.3)

5.3 Coulomb energy of spherical designs on S2

Recall from Section 2.9.2 that a spherical t-design is an equal weighted quadrature

rule on the unit sphere which is exact for all polynomials of degree up to t. In [73]

it was proved that for a well separated sequence of spherical designs on S2 such that

each t-design has (t+ 1)2 points, the Coulomb energy has the same first term and a

second term of the same order as the minimum Coulomb energy for S2 codes.

This problem was posed by Sloan. The proof in [73] was the joint work of Hesse

and the author.

Here we compare this result with the result obtained by combining Theorem

5.2.1 with the bounds on the spherical cap discrepancy of spherical designs obtained

by Grabner and Tichy. [64].

First we restate the main results from [73] with notation adjusted to match this

thesis.

Theorem 5.3.1. Let X be a sequence of spherical designs in S2 which is well sep-

arated with spherical separation constant C∆ as per Definition 2.7.2. Then the

normalized Coulomb energy Et(X )U1 of each spherical design Xt ∈ X of cardinality

N and strength t is bounded above by

Et(X )U1 6 1 + C(C∆) (t+ 1)−
3
2 N 1

4 − 1
2

1
t+ 3

2

− 1
2

(t+ 1)(t+ 2)
t+ 3

2

N−1. (5.3.1)
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The constant C(C∆) > 0 depends on the separation constant C∆, but is independent of

N and t.

Theorem 5.3.2. Let X be a sequence of spherical designs on S2, such that for some

positive constants µ and C∆, if Xt ∈ X has cardinality N > 2 and strength t, then

N 6 µ(t + 1)2 and the minimum spherical distance between points of X is bounded

below by C∆√N . Then the normalized Coulomb energy of each Xt ∈ X is bounded above

by

Et(X )U1 6 1 + C(C∆,µ) N− 1
2 , (5.3.2)

where C(C∆,µ) > 0 is independent of N .

Here we recall the well known result that I U1 = 1. This is also an immediate

consequence of Corollaries 2.11.9 and 2.11.10.

As we have mentioned in Section 2.10, it is not yet known whether an infinite

sequence of spherical designs exists which satisfies the premise of Theorem 5.3.2. If

such a sequence X exists, Theorem 5.3.2 implies that its Coulomb energy converges

to the corresponding energy integral at the rate of O(t−1), that is

Et(X )U1 6 1 + O(t−1).

From [63, Theorem 1] [64, (2.1)] we know that there is a constant CG such that

for any spherical t-design Xt on S2, we have

discXt 6 CG

t+ 1
.

Applying Theorem 5.2.1 to a well separated sequence X of spherical designs on

S2 such that Xt has strength t, we therefore obtain

Et(X )U1 6 1 + O(t−
1
2 ).
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This is a slower rate of convergence than predicted by Theorem 5.3.2, but the

result does not depend on the premise of Theorem 5.3.2.

If we use Theorem 5.3.1 with the sequence of spherical designs on S2 with the

lowest known cardinality, that of [86, Theorem 2.3], which has cardinality of O(t3),

we obtain

Et(X )U1 6 1 + O(t−
3
4 ).

This assumes that the sequence of [86, Theorem 2.3] is well separated. From the

construction given in [86, Section 5], this assumption seems reasonable. Thus The-

orem 5.3.1 gives a faster rate of convergence for this sequence than is predicted by

Theorem 5.2.1.

If instead of the Coulomb energy, we use the Riesz s energy for s ∈ (0, 2), then

for a well separated sequence X of spherical designs on S2 such that Xt has strength

t, Theorem 5.2.1 yields

Et(X )Us 6 I Us + O
(
t

s
2−1

)
. (5.3.3)

Hesse [72] has recently generalized the results of [73] to cover this case. The

result [72, Theorem 2] implies that for a sequence X of spherical designs which

satisfies the premise of Theorem 5.3.2, the Riesz s for s ∈ (0, 2) is bounded as

Et(X )Us 6 I Us + O
(
ts−2

)
. (5.3.4)

Again, this result is better than the corresponding result (5.3.3).

5.4 Riesz energy of the EQ codes

Given Theorem 5.1.1, if we can show that EQP(d), the sequence of EQ codes on

Sd, is weak-star convergent, then we can show that the normalized Riesz energy

converges to the corresponding energy double integral, since from Theorem 4.3.2

we know that EQP(d) is well separated. If we can bound the rate of convergence to



194 Chapter 5. Separation, discrepancy and energy

zero of the spherical cap discrepancy of the codes of EQP(d), then Theorem 5.2.1

gives us a rate of convergence for the Riesz energy.

5.4.1 Weak-star convergence and spherical cap discrepancy of the EQ codes

The discrepancy theory of Beck and Chen, especially the proofs of [6, Theorem

24A, p. 181], [6, Theorem 24D, p. 182] given at [6, pp. 237–239], hint that we

might expect EQP(d) to be weak-star convergent, with the normalized spherical cap

discrepancy of EQP(d,N ) possibly bounded above by CN− 1
2− 1

d (logN )
1
2 .

Unfortunately, Beck and Chen’s Theorem 24D is a non-constructive existence

result, and its proof is probabilistic. This is certainly not sufficient to prove that

EQP(d) is weak-star convergent, let alone give a rate of convergence of normalized

spherical cap discrepancy.

In this section we give a direct proof that EQP(d) is weak-star convergent, by

estimating the rate of convergence to zero of the normalized spherical cap discrep-

ancy.

It is also possible to prove that EQP(d) is weak-star convergent by showing that

for each polynomial p ∈ P(Sd) that the sequence of quadratures

∫

Sd

p(x)d ∗σ`(x)

converges to the integral

∫

Sd

p(x)d ∗σ(x).

This is because each polynomial is Lipschitz and because the maximum diameter

of the regions of each partition EQP(d,N ) is of order N− 1
d . Weak-star convergence

follows by appealing to [93, Theorem 0.4, p. 7] and the Stone-Weierstrass theorem

as in the case of the proof of Lemma 2.11.6.

Rather than proving weak-star convergence this way, we show that the spherical

cap discrepancy of the sequence EQP(d) converges to zero, and we may then use

Lemma 2.11.6 to prove weak-star convergence.
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Theorem 5.4.1. The spherical code EQP(d,N ) has spherical cap discrepancy

disc(d,N ) 6 O(N− 1
d ).

More precisely,

1. For d = 1 we have disc(1,N ) = N−1, and any line in R2 passes through at most

two regions of EQ(1,N ).

2. For d > 1, there is a constant Cd such that any hyperplane in Rd+1 passes

through at most CdN d−1
d regions of EQ(d,N ) and therefore

disc(d,N ) 6 CdN− 1
d . (5.4.1)

As a consequence of Theorems 4.3.2, 5.2.1 and 5.4.1, for the potential Us on the

code EQP(d,N ) we have the energy estimate

EN
(
EQP(d)

)
Us 6 I Us + O

(
N s−d

d2

)
. (5.4.2)

5.4.2 Bounds on the s energy of the EQ S2 codes

For S2, for 0 < s < 2, it is possible to show that there is an upper bound for the Riesz

s energy of the EQ S2 codes which converges to the energy integral at a faster rate

than that predicted by the combination of Theorems 5.2.1 and 5.4.1, which (5.4.2)

gives as O
(
N s−2

4

)
. This is the subject of the next theorem.

Theorem 5.4.2. Let Z be a sequence of equal area partitions of S2 as per Definition

2.4.1 such that |ZN | = N for each partition ZN in the sequence and such that Z is

diameter bounded as per Definition 2.4.3. Specifically, for each R ∈ ZN , we require

diam(R) 6 ®N :=
C®√N . (5.4.3)

Let X be a well separated sequence of S2 codes with separation constant C∆ such

that for each XN in the sequence, |XN | = N and such that each codepoint of XN is
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contained in a distinct region of the partition ZN . Specifically, for each x,y ∈ XN

such that x 6= y, we require

‖x− y‖ > ∆N :=
C∆√N . (5.4.4)

Then for s ∈ (0, 2), the Riesz s energy EN (X )Us as per (2.11.6) satisfies the upper

bound

EN (X )Us 6





21−s

2−s + 21−s C®
1−s N− 1

2 + O
(N s

2−1
)

(s < 1),

1 + C®
8 N− 1

2 log(N ) + O
(
N− 1

2

)
(s = 1),

21−s

2−s + O
(N s

2−1
)

(s > 1).

As an immediate consequence of Corollaries 2.11.9 and 2.11.10 we have

I Us =
21−s

2− s
.

5.4.3 Numerical results for d− 1 energy of the EQ codes

The author ran the EQSP Matlab function eq point set to create the codes

EQP(d,N ) for d from 2 to 4 and N from 2 to 20 000, and then ran the function

point set energy dist to determine the Riesz d− 1 energy of these codes.

The results are plotted in this section. The normalized energy is plotted as

Figure 5.1, with the energy for EQP(2) as blue crosses, EQP(3) as red crosses, EQP(4)

as green crosses.

From (5.4.2) we should expect the normalized energy to converge to the normal-

ized energy integral. From Corollaries 2.11.9 and 2.11.10 we see that this integral

evaluates to 1. In Figure 5.1 not only does the normalized energy appear to con-

verge to 1 in all three cases, it is always less than 1, and the difference appears to

be systematic.

In Figure 5.2 we examine this difference more closely. Again, we have EQP(2) as

blue crosses, EQP(3) as red crosses, EQP(4) as green crosses.
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Figure 5.1: Normalized energy of EQP(d,N ) (log-log scale)

By plotting the difference on a log-log scale we have revealed that in each of the

three cases the difference is approximately of the form aN b for some a, b. We now

guess that the asymptotic expansion of the normalized d − 1 energy for EQP(d,N )

has the same form as the upper bound given in [88, Theorem 1, (1.6), p. 524] for

the minimum d− 1 energy for Sd codes with N , when suitably normalized. That is,

we guess that

E
(
EQP(d,N )

)
Ud−1 ' 1− CdN− 1

d

for some positive constant Cd. To test this assumption, we see that we should

examine the value of the energy coefficient ecd defined by

ecd(N ) :=
(

1− E
(
EQP(d,N )

)
Ud−1

)
N 1

d . (5.4.5)
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Figure 5.2: 1 minus normalized energy of EQP(d,N ) (log-log scale)

Remarks. Please note that ecd(N ) is the same as -2∗eq energy coeff(d,N)

as per the EQSP Matlab code version 1.10.

Figures 5.3, 5.4 and 5.5 show ecd(N ) for N from 2 to 20 000, for d from 2 to 4

respectively.

On examining E
(
EQP(d,N )

)
Ud−1 more carefully, we see that for N ∈ {2, . . . , 20000}

we have

E
(
EQP(2,N )

)
U1 = 1− 1.1025N− 1

2 + 0.18N− 3
2 ± 0.082N−1, (5.4.6)

E
(
EQP(3,N )

)
U2 = 1− 1.231N− 1

3 + 0.04N− 2
3 − 0.38N−1 ± 0.26N− 5

6 , (5.4.7)

E
(
EQP(4,N )

)
U3 = 1− 1.355N− 1

4 + 0.3N− 1
2 ± 0.83N− 3

4 . (5.4.8)

Remarks. This is an empirical observation only, based on the output

of the EQSP Maple code, version 1.10. It is unknown whether this
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Figure 5.3: Energy coefficient of EQP(2,N ) (semi-log scale)
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Figure 5.4: Energy coefficient of EQP(3,N ) (semi-log scale)
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Figure 5.5: Energy coefficient of EQP(4,N ) (semi-log scale)

observation holds for N > 20000. Also, there is no theoretical justification

for the higher order terms, including the ± term.

The best known theoretical upper bound for the minimum energy for

the Coulomb potential U1 on S2 is currently the one implied by [120,

Theorems 2.2 and 2.3, pp. 649–650], which is

E2(N ) U1 := min
X⊂S2,|X|=N

E(X) U1 6 1− 1
7
N− 1

2 . (5.4.9)

The bound given at [134, p. 8] is a misprint. The constant is out by a

factor of 2.

A conjecture of Kuijlaars and Saff [88, Conjecture 2, p. 528] implies

that E2(N )U1 has a conjectured asymptotic expansion of

E2(N ) U1 = 1 + 6

(√
3

8π

) 1
2

ζ

(
1
2

)
L−3

(
1
2

)
N− 1

2 + o(N− 1
2 ). (5.4.10)
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The constant for the second term is negative and is approximately

1.106102567. . .

5.5 Proofs

5.5.1 Energy, weak-star convergence and separation

Proof of Theorem 5.1.1.

Cutoff potential.

Fix s ∈ (0, d). Since s is fixed, it is convenient to define the abbreviation

U(r) := Us(r) = r−s, (5.5.1)

Now fix a weak-star convergent and well separated sequence X , with separation

constant C∆ as per Definition 2.7.2. That is, for x,y ∈ X`,

‖x− y‖ > ∆` := C∆N− 1
d

` . (5.5.2)

We now define the cutoff potential U` by

U`(r) :=





∆−s
` (0 < r 6 ∆`)

U(r) = r−s (r > ∆`).

By the triangle inequality, for any `,m ∈ N,

|E`(X )U− I U| 6 a` + b`,m + c`,m + d`,m + em,

where

a` := |E` U− E` U`| , b`,m := |E` U` − E` Um| , c`,m := |E` Um − I` Um| ,

d`,m := |I` Um − I Um| , em := |I Um − I U| .
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Here and in the following argument, we have dropped the dependence of E` and I`

on X , since we have fixed X .

The proof proceeds by showing that each of these terms converges.

Since X is weak-star convergent, the function L defined by (2.11.2) is well defined.

We will need this function in what follows.

Convergence of a`.

Since (U − U`)(r) = 0 for r > ∆`, the separation condition guarantees that a` = 0

for any `. In detail,

a` = |E`(U− U`)| =
∫

Sd

∫

Sd

(U− U`)(‖x− y‖) d ∗σ`[x](y) d ∗σ`(x)

=
∫

Sd

( ∫

‖x−y‖6∆`

(U− U`)(‖x− y‖) d ∗σ`[x](y)

+
∫

‖x−y‖>∆`

(U− U`)(‖x− y‖) d ∗σ`[x](y)
)
d
∗
σ`(x)

=
∫

Sd

(∫

‖x−y‖6∆`

(U(‖x− y‖)−∆`) d
∗
σ`[x](y) +

∫

‖x−y‖>∆`

0 d ∗σ`[x](y)

)
d
∗
σ`(x)

=
1
N 2

`

N∑̀

k=1

N∑̀

j=1

x`,j 6=x`,k

‖x`,k−x`,j‖6∆`

(
U(‖x`,k − x`,j‖)−∆`

)
= 0.

Convergence of b`,m.

For Nm > N`, we can show that b`,m = 0 by the same argument as for a`. Therefore

we assume Nm < N`.

Recall that

b`,m = |E`(U` − Um)| =

∣∣∣∣∣∣∣∣

1
N`

N∑̀

k=1

1
N`

N∑̀

j=1

j 6=k

(U` − Um)(‖x`,k − x`,j‖)

∣∣∣∣∣∣∣∣
. (5.5.3)

Fix any k in {1, . . . ,N`} and define

E`,k u :=
∫

Sd

u(‖x`,k − y‖) d ∗σ`[x`,k](y) =
1
N`

N∑̀

j=1

j 6=k

u(‖x`,k − x`,j‖)
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for any potential u : (0, 2] → R.

The sum within (5.5.3) can therefore be expressed as

E`(U` − Um) =
1
N`

N∑̀

k=1

E`,k(U` − Um). (5.5.4)

We now use the punctured measure ∗
σ`[x`,k] to define the normalized counting

function g`,k by

g`,k(R) := ∗
σ`[x`,k] S

(
x`,k,Υ-1(R)

)
=

∣∣X` ∩ S(x`,k,Υ-1(R))
∣∣− 1

N`
. (5.5.5)

We can use g`,k to express E`,k u as

E`,k u =
1
N`

N∑̀

j=1

j 6=k

u (‖x`,k − x`,j‖) =
∫ 2

0

u(r) dg`,k(r) =
∫ 2

∆`

u(r) dg`,k(r), (5.5.6)

where the last equation is a result of the separation condition (5.5.2).

We therefore have

E`,k(U` − Um) =
∫ 2

∆`

U`(r)− Um(r) dg`,k(r)

=





0 (Nm > N`)

∫ ∆m

∆`
r−s −∆−s

m dg`,k(r). (Nm < N`)

Set f(r) := r−s −∆−s
m . Note that f(r) > 0 for r ∈ [∆`,∆m]. We therefore have

E`,k(U` − Um) =
∫ ∆m

∆`

f(r) dg`,k(r). (5.5.7)
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We recognize (5.5.7) as a Riemann–Stieltjes integral, and since f is a differen-

tiable radial function, we can re-express (5.5.7) as

E`,k(U` − Um) = [f(r)g`,k(r)]∆m

∆`
−

∫ ∆m

∆`

Df(r)g`,k(r) dr

= f(∆m)g`,k(∆m)− f(∆`)g`,k(∆`) +
∫ ∆m

∆`

−Df(r)g`,k(r) dr

=
∫ ∆m

∆`

−Df(r)g`,k(r) dr for N` > Nm,

since f(∆m) = 0 and since the separation condition (5.5.2) gives g`,k(∆`) = 0.

Define Θ` := Υ-1(∆`) = 2 sin−1(∆`/2). The separation condition (5.5.2) implies that

we can place each node x`,j of X` in a spherical cap S
(
x`,j ,

Θ`

2

)
with no two caps

overlapping. By (2.7.14) we therefore have

g`,k(R) 6 4d CH,d

CL,d(1)

(
R

∆`

)d

N−1
` =

4
C∆

d CH,d

CL,d(1)
Rd =: h(R). (5.5.8)

Now, for r ∈ [∆`,∆m] we note that −Df(r) = sr−s−1 > 0, so

0 6
∫ ∆m

∆`

−Df(r)g`,k(r) dr 6
∫ ∆m

∆`

−Df(r)h(r) dr.

Thus

|E`,k(U` − Um)| 6
∫ ∆m

∆`

−Df(r)h(r) dr = A

∫ ∆m

∆`

rd−s−1 dr,

where

A :=
4

C∆

d CH,d

CL,d(1)
s.
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We therefore have

|E`,k(U` − Um)| 6 A

∫ ∆m

∆`

rd−s−1 dr =
A

d− s
(∆d−s

m −∆d−s
` )

6 A

d− s
Cd−s

∆ (N
s
d−1

m −N
s
d−1

` ) 6 A

d− s
Cd−s

∆ N
s
d−1

m .

Since s
d − 1 < 0, if m > L(Nb) we therefore have

|E`,k(U` − Um)| 6 A

d− s
Cd−s

∆ N
s
d−1

b .

We have therefore shown that |E`,k(U` − Um)| < ε
4 for m > L(Nb) where Nb is the

smallest positive integer such that A
d−s Cd−s

∆ N
s
d−1

b < ε
4 .

Since this bound is independent of our codepoint index k, we must also have

b`,m < ε
4 , for m > L(Nb).

Convergence of c`,m.

The term c`,m is just the diagonal of the double sum. That is,

c`,m =
1
N`

2

N∑̀

k=1

Um(‖x`,k − x`,k‖)

=
Um(0)
N`

=
∆−s

m

N`
= C−s

∆ Nm
s
dN`

−1

<
ε

4
if ` > L (

Nc(m)
)
,

where

Nc(m) := 4C−s
∆ Nm

s
d ε−1 + 1.

Convergence of d`,m.

For any m, the weak-star convergence of X ensures that

d`,m → 0 as `→∞,
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since weak convergence of ∗
σ` → ∗

σ implies weak convergence of ∗
σ` × ∗

σ` → ∗
σ × ∗

σ,

because Sd is separable [9, Theorem 3.2], [11, Theorem 2.8]. So we have d`,m < ε
4 if

` > L (
Nd(m)

)
, where Nd(m) depends on ε,m and X.

Convergence of em.

We show below that em < ε
4 if m > L(Ne), where Ne is defined using ε, d, s and C∆.

em = |I(Um − U)| =
∣∣∣∣∣
∫ 2

0

(Um − U)(r) rd−1

(
1− r2

4

) d
2−1

dr

∣∣∣∣∣

=
∫ ∆m

0

(
U(r)− Um(r)

)
rd−1

(
1− r2

4

) d
2−1

dr

=
∫ ∆m

0

(r−s −∆−s
m ) rd−1

(
1− r2

4

) d
2−1

dr

= J (∆m) U−∆−s
m

∗VE(∆m)

6 J (∆m) U 6 Cd,H
∆d−s

m

d− s
6 Cd−s

∆

Cd−s
∆

d− s
Nm

s
d−1.

Note that s
d − 1 < 0, since s < d. Now set

Ne :=
(

4
ε

Cd,H

d− s

) d
d−s

Cd
∆

Then for m > L(Ne), em < ε
4 .

Reassembly.

So we have |E` U− I U| < ε if ` > L (
max

(
Nc(M), Nd(M)

))
, where M := L (

max(Nb, Ne)
)
.

In other words, |E` U− I U| → 0 as `→∞. 2

5.5.2 Energy, spherical cap discrepancy and separation

Proof of Theorem 5.2.1.

Fix s ∈ (0, d) and fix a sequence X having the required properties.

As in the proof of Theorem 5.1.1, we use the abbreviations E` := E`(X ) and

U := Us.

We calculate the energy E` using a sum of Riemann-Stieltjes integrals, one for

each of the N` nodes. We use the punctured normalized counting function g`,k(r)



5.5. Proofs 207

defined by (5.5.5). Then

E` U =
N∑̀

k=1

E`,k U

where for any potential u : (0, 2] → R, we have as per (5.5.6),

E`,k u :=
∫ 2

0

u(r) dg`,k(r) =
∫ 2

∆`

u(r) dg`,k(r).

If u is differentiable on (∆`, 2] we then have

E`,k u = [u(r)g`,k(r)]2∆`
−

∫ 2

∆`

Du(r) g`,k(r) dr = u(2) (1−N−1
` )−

∫ 2

∆`

Du(r) g`,k(r) dr.

Since U(r) = r−s, we have DU(r) = −sr−s−1, and so

E`,k U = 2−s(1−N−1
` ) + s

∫ 2

∆`

r−s−1 g`,k(r) dr. (5.5.9)

We use the standard packing argument of Lemma 2.7.8 to show that there is

some C3 > 1 such that

g`,k(r) 6 C3 r
d, (5.5.10)

where

C3 :=
CH,d

CL,d(1)

(
4

C∆

)d

.

From the normalized spherical cap discrepancy and Lemma 2.3.21 we also know

that

g`,k(r) 6
∗VE(r) + disc(X`) 6

∗VE(r) + C2 `
−a 6 C4 r

d + C2 `
−a, (5.5.11)
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where

C4 :=
CH,d

d
. (5.5.12)

We now find the point re where these two upper bounds are equal. We have

C3 r
d
e = C4 r

d
e + C2 `

−a,

so (C3 − C4) rd
e = C2 `

−a, and therefore we define

re := C5 `
− a

d , (5.5.13)

where

C5 :=
(

C2

C3 − C4

) 1
d

. (5.5.14)

We now have

g`,k(r) 6 h(r) :=





0, r ∈ [0,∆`]

C3 r
d, r ∈ (∆`, re)

∗VE(r) + C2 `
−a, r ∈ [re, 2].

(5.5.15)

On substitution back into (5.5.9) we obtain

E`,k = 2−s(1−N−1
` ) + s

∫ re

∆`

r−s−1 g`,k(r) dr + s

∫ 2

re

r−s−1 g`,k(r) dr

6 2−s(1−N−1
` ) + s C3

∫ re

∆`

rd−s−1 dr

+ s

∫ 2

re

r−s−1
∗VE(r) dr + s C2`

−a

∫ 2

re

r−s−1 dr.

= 2−s(1−N−1
` ) +

s

d− s
C3(rd−s

e −∆d−s
` )

+ s

∫ 2

re

r−s−1
∗VE(r) dr + C2 `

−a (r−s
e − 2−s).
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We see that this upper bound is independent of our codepoint index k and

therefore we have

E` U 6 2−s(1−N−1
` ) +

s

d− s
C3(rd−s

e −∆d−s
` )

+ s

∫ 2

re

r−s−1
∗VE(r) dr + C2 `

−a (r−s
e − 2−s). (5.5.16)

Using (2.11.8), we have

I U =
∫ 2

0

U(r) D
∗VE(r) dr = U(2)−

∫ 2

0

DU(r)
∗VE(r) dr = 2−s + s

∫ 2

0

r−s−1
∗VE(r) dr.

Using (5.5.13) therefore have

E` U− I U 6 s

d− s
C3(rd−s

e −∆d−s
` ) + C2 `

−a r−s
e

− s

∫ re

0

r−s−1
∗VE(r) dr − 2−s

(N−1
` + C2 `

−a
)

6 s

d− s
C3 r

d−s
e + C2 `

−a r−s
e

=
s

d− s
C3 (C5 `

− a
d )d−s + C2 `

−a (C5 `
− a

d )−s = O
(
`(

s
d−1)a

)
.

2

Remarks.

The technique used to prove Theorem 5.2.1 might be able to be adapted

for use with any smooth compact manifold, if the potential is a func-

tion of geodesic distance in the manifold itself as opposed to Euclidean

distance in the embedding space, and the normalized spherical cap dis-

crepancy is defined using balls defined via geodesic distance.

For the proof to work properly, it would probably be necessary for the

manifold to satisfy the equivalent of the standard packing argument,

this time for small geodesic balls inside larger geodesic balls.

As yet, this idea is untried.
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5.5.3 Riesz energy of the EQ codes

Proof of Theorem 5.4.1.

Consider d = 1. The regions of EQ(1,N ) are N equal sectors of S1. The normalized

spherical cap discrepancy disc(2,N ) is N−1 rather than 2N−1 because each codepoint

of EQP(1,N ) lies in the centre of each region. We prove this in detail in the next

paragraph.

Any line in R2 intersects S1 in at most two points. Each line L of R2 which

intersects S1 at two points splits S1 into two caps, each of which is a closed arc of

S1. The smaller cap, which we will call S, has normalized S1 area (ie. normalized

arc length)

∗
σ(S) 6 1

2
.

We consider the cap S and its boundary ∂S = L ∩ S1. The boundary ∂S consists of

two points which lie in either one or two regions of EQ(1,N ). If both points of ∂S

lie in one region then ∗
σ(S) 6 N−1. If the points of ∂S are in two separate regions,

then call these regions R1 and R2 and call the corresponding codepoints x1 and x2

respectively. For each Ri, either the codepoint xi is contained in S and the area

Ai := ∗
σ(S ∩ Ri) is at least 1

2N or xi /∈ S and Ai <
1

2N . In either case the normalized

discrepancy of the cap S is at most N−1.

In the case of Sd for d > 1, we also consider a cap S with boundary ∂S such that

∗
σ(S) 6 1

2 . In the cases where ∂S intersects either the North or the South pole, we

can and do perturb S so that both poles are excluded, without affecting the upper

bound. Thus we consider two main cases, either S contains only one pole, which

we take to be the North pole, or S does not contain either pole.

1. In the case where S contains only the North pole, the equatorial image ΠS =

Π ∂S is the whole equator Sd−1. Now consider ∂S as it crosses the zones of

EQ(d,N ). As per the algorithm in Section 3.2, we number the zones from

North to South as 0 to n + 1. For each zone Zi consider the equatorial image
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Π(Zi ∩ ∂S). Each non-empty image is an annulus in Sd−1, except for two which

are spherical caps. In any case, when we consider the normalized Sd−1 area of

the images we obtain

n+1∑

i=0

∗
σd−1

(
Π(Zi ∩ ∂S)

)
= 1. (5.5.17)

(In this proof, the notation ∗
σd−1 denotes the normalized area measure on Sd−1.)

2. In the case where S contains neither pole, the equatorial image ΠS = Π ∂S has

normalized area bounded by

∗
σd−1(Π ∂S) 6 1

2
.

For each zone Zi of EQ(d,N ), each equatorial image Π(Zi ∩ ∂S) is empty, is an

annulus, or may be a spherical cap. Each meridian of Sd which intersects S is

tangential to ∂S or intersects ∂S twice. Thus when we consider the equatorial

images of the intersections of ∂S with each zone Zi we obtain

n+1∑

i=0

∗
σd−1

(
Π(Zi ∩ ∂S)

)
6 2 ∗

σd−1(Π ∂S) 6 1. (5.5.18)

Therefore

n+1∑

i=0

∗
σd−1

(
Π(Zi ∩ ∂S)

)
6 1. (5.5.19)

holds in either case.

We now analyze both cases together. Let N(S, i) be the number of regions of

zone Zi which intersect ∂S. We see that N(S, i) equals the number of regions of the

partition EQ(d− 1,mi) which intersect the equatorial image Zi ∩ ∂S, where mi is the

number of regions in zone Zi.

Since the equatorial image Zi ∩ ∂S is in general an annulus, which is the dif-

ference between two spherical caps, we can use the inductive assumption that the
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normalized spherical cap discrepancy of EQ(d− 1,mi) is bounded above by

disc(d− 1,mi) 6 Cd−1m
1

1−d

i .

This yields

N(S, i) 6 mi

(
∗
σd−1

(
Π(Zi ∩ ∂S)

)
+ 2disc(d− 1,mi)

)

6 mi
∗
σd−1

(
Π(Zi ∩ ∂S)

)
+ 2Cd−1m

d−2
d−1
i . (5.5.20)

Let N(S) be the number of regions of EQ(d,N ) which intersect ∂S. The bounds

(5.5.19) and (5.5.20) and the estimate (3.5.74) imply that

N(S) :=
n+1∑

i=0

N(S, i) 6
n+1∑

i=0

mi
∗
σd−1

(
Π(Zi ∩ ∂S)

)
+ 2Cd−1

n+1∑

i=0

m
d−2
d−1
i

6 mª
n+1∑

i=0

∗
σd−1

(
Π(Zi ∩ ∂S)

)
+ 2Cd−1(n + 2)m

d−2
d−1
ª 6 mª + 2Cd−1(n + 2)m

d−2
d−1
ª

= Cª,d N
d−1

d + 2Cd−1(n + 2)C
d−2
d−1
ª,d N d−2

d .

We now use the estimate (3.5.51) for N > N0(1/2) and (3.2.3) to obtain

n 6 π ω
− 1

d

d N 1
d

and therefore

N(S) 6 Cª,d N
d−1

d + 2Cd−1(πω
− 1

d

d N 1
d + 2)C

d−2
d−1
ª,d N d−2

d

=
(
Cª,d + 2Cd−1 πω

− 1
d

d C
d−2
d−1
ª,d

)N d−1
d

+ 4Cd−1C
d−2
d−1
ª,d N d−2

d

6
(
Cª,d + 2Cd−1 πω

− 1
d

d C
d−2
d−1
ª,d + 4Cd−1C

d−2
d−1
ª,d

)N d−1
d .
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For the finite number of cases where N < N0(1/2) we note that N(S) 6 N and so

N(S) 6 N 6 N0(1/2)
1
d N d−1

d .

2

Proof of Theorem 5.4.2.

Fix s ∈ (0, 2) and use the abbreviation U := Us. We use the abbreviation

EN := EN
(
EQP(2)

)
.

We also fix N > 1 and our notation drops any explicit dependence on N where this

causes no ambiguity. For example, use xk to mean xN ,k ∈ EQP(d,N ). We also assume

xk ∈ Rk for k from 1 to N .

From Definition 2.11.7 we have

EN U =
1
N

N∑

i=1

1
N

N∑

j=1,j 6=i

‖xi − xj‖−s

=
1
N

N∑

i=1

N∑

j=1,j 6=i

∫

Rj

‖xi − xj‖−s
d
∗
σ(y),

because

∫

Rj

d
∗
σ(y) = ∗

σ(Rj) =
1
N .

Since diam(Rj) 6 ®N , if y ∈ Rj then ‖xi − xj‖ > ‖xi − y‖ − ®N . Therefore, taking

(5.4.4) into account, define

uN (r) :=





∆−s
N (r 6 ®N + ∆N ),

(r −®N )−s (r > ®N + ∆N ).

(5.5.21)
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Then

EN U =
1
N

N∑

i=1

N∑

j=1,j 6=i

∫

Rj

‖xi − xj‖−s
d
∗
σ(y) (5.5.22)

6 1
N

N∑

i=1

N∑

j=1,j 6=i

∫

Rj

uN (‖xi − y‖) d ∗σ(y)

=
1
N

N∑

i=1

N∑

j=1

∫

Rj

uN (‖xi − y‖) d ∗σ(y)− 1
N

N∑

i=1

∫

Ri

uN (‖xi − y‖) d ∗σ(y)

=
1
N

N∑

i=1

∫

S2
uN (‖xi − y‖) d ∗σ(y)− 1

N
N∑

i=1

∫

Ri

∆−s
N d

∗
σi(y)

=
1
N

N∑

i=1

J (xi; 2) uN − 1
N ∆−s

N

= J (2) uN − C−s
∆ N s

2−1, (5.5.23)

where in the last two steps we have used Lemma 2.11.8.

Again using Lemma 2.11.8 we have

J (2) uN =
2π
4π

∫ 2

0

ruN (r) dr

=
1
2

∫ ∆N+®N

0

ruN (r) dr +
1
2

∫ 2

∆N+®N
ruN (r) dr

=
1
2

∫ ∆N+®N

0

r∆−s
N dr +

1
2

∫ 2

∆N+®N
r (r −®N )−s

dr

=
1
4

(∆N +®N )2 ∆−s
N +

1
2

∫ 2

∆N+®N
r (r −®N )−s

dr.
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We now substitute t := r −®N to obtain

J (2) uN =
1
4

(∆N +®N )2 ∆−s
N +

1
2

∫ 2−®N

∆N
(t+®N )t−s dt

=
1
4

(∆N +®N )2 ∆−s
N +

1
2

∫ 2−®N

∆N
t1−s dt+

®N
2

∫ 2−®N

∆N
t−s dt

6 1
4

(∆N +®N )2 ∆−s
N +

1
2

∫ 2

∆N
t1−s dt+

®N
2

∫ 2

∆N
t−s dt

=
1
4

(∆N +®N )2 ∆−s
N +

1
2

1
2− s

(
22−s −∆N 2−s

)
+
®N
2

∫ 2

∆N
t−s dt

=
1
4

(∆N +®N )2 ∆−s
N +

21−s

2− s
− 1

2
∆N 2−s

2− s
+
®N
2

∫ 2

∆N
t−s dt

=
1
4

(C∆ + C®)2 C−s
∆ N s

2−1 +
21−s

2− s
− 1

2
C2−s

∆

2− s
N s

2−1 +
C®
2
N− 1

2

∫ 2

∆N
t−s dt

=
21−s

2− s
+

(
1
4

(C∆ + C®)2 C−s
∆ − 1

2
C2−s

∆

2− s

)
N s

2−1 +
C®
2
N− 1

2

∫ 2

∆N
t−s dt

=
21−s

2− s
+

C−s
∆

2

(
1
2

(C∆ + C®)2 − C2
∆

2− s

)
N s

2−1 +
C®
2
N− 1

2

∫ 2

∆N
t−s dt. (5.5.24)

The integral in the last term of (5.5.24) now splits into two cases.

If s 6= 1 then

∫ 2

∆N
t−s dt =

1
1− s

(
21−s −∆1−s

N
)

=
1

1− s

(
21−s − C1−s

∆ N s
2− 1

2

)
.

Therefore, from (5.5.24)

J (2) uN 6 21−s

2− s
+

C−s
∆

2

(
1
2

(C∆ + C®)2 − C2
∆

2− s

)
N s

2−1 +
2−sC®
1− s

N− 1
2 − C®

2
C1−s

∆

1− s
N s

2−1

=
21−s

2− s
+

2−sC®
1− s

N− 1
2 +

C−s
∆

2

(
1
2

(C∆ + C®)2 − C2
∆

2− s
− C∆ C®

1− s

)
N s

2−1,

and therefore, from (5.5.23)

EN U 6 21−s

2− s
+

2−sC®
1− s

N− 1
2 +

C−s
∆

2

(
1
2

(C∆ + C®)2 − C2
∆

2− s
− C∆ C®

1− s
− 2

)
N s

2−1. (5.5.25)
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If s < 1, then the second term of (5.5.25) is positive and since in this case

N− 1
2 > N s

2−1, we have

EN 6 21−s

2− s
+

2−s C®
1− s

N− 1
2 + O

(N s
2−1

)
. (5.5.26)

If s > 1, then N s
2−1 > N− 1

2 and the more complicated third term of (5.5.25)

dominates the second term, yielding

EN U 6 21−s

2− s
+ O

(N s
2−1

)
. (5.5.27)

If s = 1 then

∫ 2

∆N
t−s dt = log(2)− log(∆N ) = log(2)− log

(
C∆N− 1

2

)
= log

(
2

C∆

)
+

1
2

log(N ).

Therefore, from (5.5.24)

J (2) uN 6 21−s

2− s
+

C−s
∆

2

(
1
2

(C∆ + C®)2 − C2
∆

2− s

)
N s

2−1 +
C®
2
N− 1

2

(
log

(
2

C∆

)
+

1
2

log(N )
)

= 1 +
C−1

∆

2

(
1
2

(C∆ + C®)2 − C2
∆

)
N− 1

2 +
C®
2
N− 1

2

(
log

(
2

C∆

)
+

1
2

log(N )
)

= 1 +
C®
4
N− 1

2 log(N ) +
1

2 C∆

(
1
2

(C∆ + C®)2 − C2
∆ + C∆ C® log

(
2

C∆

))
N− 1

2 .

and therefore, from (5.5.23)

EN U 6 1 +
C®
4
N− 1

2 log(N ) +
1

2 C∆

(
1
2

(C∆ + C®)2 − C2
∆ + C∆ C® log

(
2

C∆

)
− 2

)
N− 1

2

(5.5.28)

6 1 +
C®
4
N− 1

2 log(N ) + O
(
N− 1

2

)
.

2
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[17] K. Böröczky, Packing of spheres in spaces of constant curvature, Acta

Mathematica Academiae Scientiarum Hungaricae, 32 (1978), pp. 243–261.

[18] , Finite Packing and Covering, no. 3–4 in Cambridge Tracts in Mathematics,

Cambridge University Press, Cambridge, October 2004.

[19] S. Boumova, Applications of polynomials to spherical codes and designs, PhD

thesis, Eindhoven University of Technology, 2002.

[20] J. Bourgain and J. Lindenstrauss, Distribution of points on spheres and

approximation by zonotopes, Israel Journal of Mathematics, 64 (1988), pp. 25–32.

[21] P. Boyvalenkov, D. Danev, and S. P. Boumova, Upper bounds on the

minimum distance of spherical codes, IEEE Transactions on Information Theory,

42 (1996), pp. 1576–1581.



REFERENCES 219

[22] D. A. Brannan, M. F. Esplen, and J. J. Gray, Geometry, Cambridge

University Press, Cambridge, 1999.

[23] J. S. Brauchart, Punkvertverteilungen extremaler diskreter Energien auf
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