Skew, bent and fractious: a confession

Paul Leopardi

Mathematical Sciences Institute, Australian National University. Presented on 3 October 2013 at AustMS 2013, Sydney.

Corrected, 4 October 2013

Acknowledgements

Richard Brent, Padraig Ó Catháin, Judy-anne Osborn.

National Computational Infrastructure.

Australian Mathematical Sciences Institute.

Australian National University.

Result 1: anti-amicability

The graph of *anti-amicability* of the canonical basis matrices of the neutral Clifford algebra $\mathbb{R}_{m,m}$ is *strongly regular* with parameters

$$(\nu, k, \lambda = \mu) = (4^m, 2^{2m-1} - 2^{m-1}, 2^{2m-2} - 2^{m-1}).$$

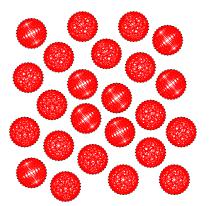
Result 2: anti-amicability

The graph of anti-amicability of the canonical basis matrices of the neutral Clifford algebra $\mathbb{R}_{2,2}$ is *strongly regular* with parameters $(\nu,k,\lambda=\mu)=(16,6,2)$ is the 4×4 *lattice graph* and not the Shrikande graph.

Overview

- What led to this investigation?
- Key concepts.
- Specific construction.
- ► Why is Result 1 true?

Motivation



Anti-amicability of 4×4 Hadamard matrices: 24 components.

A long history and a deep literature

Difference sets.
 Bruck (1955), Hall (1956), Menon (1960, 1962),
 Mann (1965), Turyn (1965), Baumert (1969),
 Dembowski (1969), McFarlane (1973), Dillon (1974),
 Kantor (1975, 1985), Ma (1994), ...

- ► Bent functions.
 Dillon (1974), Rothaus (1976), Dempwolff (2006), ...
- Strongly regular graphs.
 Brouwer, Cohen and Neumaier (1989), Ma (1994),
 Bernasconi and Codenotti (1999),
 Bernasconi, Codenotti and VanderKam (2001) . . .

Difference sets

The k-element set D is a (v,k,λ,n) difference set in an abelian group G of order v if for every non-zero element g in G, the equation $g=d_i-d_j$ has exactly λ solutions (d_i,d_j) with d_i,d_j in D.

The parameter $n := k - \lambda$.

(Dillon 1974).

Hadamard difference sets

A (v, k, λ, n) difference set with v = 4n is called a Hadamard difference set.

Theorem 1

(Menon 1962)

A Hadamard difference set has parameters of the form

$$(v,k,\lambda,n) = (4N^2,2N^2-N,N^2-N,N^2)$$
 or
$$(4N^2,2N^2+N,N^2+N,N^2).$$

(Menon 1962, Dillon 1974).

Bent functions

 H_m , the Sylvester Hadamard matrix of order 2^m , is defined by

$$H_1 := \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix},$$
 $H_m := H_{m-1} \otimes H_1, \quad \text{for } m > 1.$

For a boolean function $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$, define the vector [f] by

$$[f] = [(-1)^{f(0)}, (-1)^{f(1)}, \dots, (-1)^{f(2^m - 1)}]^T,$$

where f(i) uses the binary expansion of i.

Bent functions

The Boolean function $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ is *bent* if its Hadamard transform has constant magnitude.

In other words,

$$|H_m[f]| = C[1, \dots, 1]^T$$
.

for some constant C.

(Dillon 1974)

Bent functions and Hadamard difference sets

Theorem 2

(Dillon 1974, Theorem 6.2.2)

The Boolean function $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ is bent if and only if $D:=f^{-1}(1)$ is a Hadamard difference set.

Theorem 3

(Dillon 1974, Remark 6.2.4)

Bent functions exist on \mathbb{Z}_2^m only when m is even.

(Dillon 1974)

Strongly regular graphs

A simple graph Γ of order v is *strongly regular* with parameters (v, k, λ, μ) if

- ▶ each vertex has degree k,
- ightharpoonup each adjacent pair of vertices has λ common neighbours, and
- ightharpoonup each nonadjacent pair of vertices has μ common neighbours.

(Brouwer, Cohen and Neumaier 1989)

Bent functions and strongly regular graphs

The Cayley graph of a binary function $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ is the undirected graph with adjacency matrix F given by $F_{i,j} = f(g_i - g_j)$, for some ordering (g_1, g_2, \ldots) of \mathbb{Z}_2^m .

Theorem 4

(Bernasconi and Codenotti 1999, Lemma 12) The Cayley graph of a bent function on \mathbb{Z}_2^m is a strongly regular graph with $\lambda = \mu$.

Theorem 5

(Bernasconi, Codenotti and VanderKam 2001, Theorem 3) Bent functions are the only binary functions on \mathbb{Z}_2^m whose Cayley graph is a strongly regular graph with $\lambda=\mu$.

The groups $\mathbb{G}_{1,1}$ and \mathbb{Z}_2^2

The 2×2 orthogonal matrices

$$\mathbf{e}_1 := \left[egin{array}{cc} \cdot & - \\ 1 & \cdot \end{array}
ight], \quad \mathbf{e}_2 := \left[egin{array}{cc} \cdot & 1 \\ 1 & \cdot \end{array}
ight]$$

generate the group $\mathbb{G}_{1,1}$ of order 8, an extension of \mathbb{Z}_2 by \mathbb{Z}_2^2 , with $\mathbb{Z}_2 \simeq \{I, -I\}$, and cosets

$$0 \leftrightarrow 00 \leftrightarrow \{\pm I\},$$

$$1 \leftrightarrow 00 \leftrightarrow \{\pm e_1\},$$

$$2 \leftrightarrow 10 \leftrightarrow \{\pm e_2\},$$

$$3 \leftrightarrow 11 \leftrightarrow \{\pm e_1 e_2\}.$$

The groups $\mathbb{G}_{m,m}$ and \mathbb{Z}_2^{2m}

For m>1, the group $\mathbb{G}_{m,m}$ of order 2^{2m+1} consists of matrices of the form $g_1\otimes g_{m-1}$ with g_1 in $\mathbb{G}_{1,1}$ and g_{m-1} in $\mathbb{G}_{m-1,m-1}$.

This group is an extension of $\mathbb{Z}_2 \simeq \{\pm I\}$ by \mathbb{Z}_2^{2m} :

$$0 \leftrightarrow 00 \dots 00 \leftrightarrow \{\pm I\},$$

$$1 \leftrightarrow 00 \dots 01 \leftrightarrow \{\pm I_{(2)}^{\otimes (m-1)} \otimes e_1\},$$

$$2 \leftrightarrow 00 \dots 10 \leftrightarrow \{\pm I_{(2)}^{\otimes (m-1)} \otimes e_2\},$$

$$\dots$$

$$2^{2m} - 1 \leftrightarrow 11 \dots 11 \leftrightarrow \{\pm (e_1 e_2)^{\otimes m}\}.$$

Canonical basis matrices of $\mathbb{R}_{m,m}$

A canonical ordered basis of the matrix representation of the Clifford algebra $\mathbb{R}_{m,m}$ is given by an ordered transversal of $\mathbb{Z}_2 \simeq \{\pm I\}$ in \mathbb{Z}_2^{2m} .

For example, (I, e_1, e_2, e_1e_2) is one such ordered basis.

We define a function $\gamma_m: \mathbb{Z}_{2^{2m}} \to \mathbb{G}_{m,m}$ to choose the corresponding canonical basis matrix for $\mathbb{R}_{m,m}$ for some transversal, and use binary expansion to get a function on \mathbb{Z}_2^{2m} .

For example, $\gamma_1(1) = \gamma_1(01) := e_1$.

The sign function s_1 on \mathbb{Z}_4 and \mathbb{Z}_2^2

We use the function γ_1 to define the sign function s_1 :

$$s_1(i) := \begin{cases} 1 \leftrightarrow \gamma_1(i)^2 = -I \\ 0 \leftrightarrow \gamma_1(i)^2 = I, \end{cases}$$

for all i in \mathbb{Z}_2^2 .

Using our notation, we see that $[s_1] = [1, -1, 1, 1]^T$.

The sign function s_m on $\mathbb{Z}_{2^{2m}}$ and \mathbb{Z}_2^{2m}

We use the function γ_m to define the sign function s_m :

$$s_m(i) := \begin{cases} 1 \leftrightarrow \gamma_m(i)^2 = -I \\ 0 \leftrightarrow \gamma_m(i)^2 = I, \end{cases}$$

for all i in \mathbb{Z}_2^{2m} .

Properties of the sign function s_m

If we define $\odot: \mathbb{Z}_2 \times \mathbb{Z}_2^{2m-2} \to \mathbb{Z}_2^{2m}$ as concatenation of bit vectors, e.g.. $01 \odot 1111 := 011111$, it becomes easy to verify that

$$s_m(i_1 \odot i_{m-1}) = s_1(i_1) + s_{m-1}(i_{m-1})$$

for all i_1 in \mathbb{Z}_2 and i_{m-1} in \mathbb{Z}_2^{2m-2} , and therefore

$$[s_m] = [s_1] \otimes [s_{m-1}].$$

Also, since each $\gamma_m(i)$ is orthogonal, $s_m(i)=1$ if and only if $\gamma_m(i)$ is skew.

Proof of Result 1: s_m is bent

Recall that
$$[s_1] = [1, -1, 1, 1]^T$$
.

We show that s_1 is bent by forming

$$H_2[s_1] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & - & 1 & - \\ 1 & 1 & - & - \\ 1 & - & - & 1 \end{bmatrix} \begin{bmatrix} 1 \\ - \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -2 \\ 2 \end{bmatrix}.$$

Proof of Result 1: s_m is bent

Recall that for
$$m>1,$$
 $H_{2m}=H_2\otimes H_{2m-2}$ and $[s_m]=[s_1]\otimes [s_{m-1}].$

Therefore

$$H_{2m}[s_m] = H_2[s_1] \otimes H_{2m-2}[s_{m-1}] = (H_2[s_1])^{(\otimes m)},$$

which has constant absolute value.

The 4×4 lattice graph

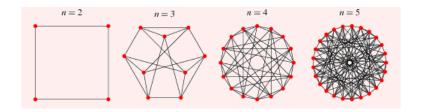


Image from
http://mathworld.wolfram.com/LatticeGraph.html