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Weighted tensor product spaces on spheres

Polynomials on the unit sphere

Sphere S2 := {x ∈ R3 |
∑3
k=1 x

2
k = 1} .

Pµ : spherical polynomials of degree at most µ .

H` : spherical harmonics of degree ` , dimension 2`+ 1 .

Pµ =
⊕µ
`=0 H` has spherical harmonic basis

{Y`,k | ` ∈ 0 . . . µ, k ∈ 1 . . . 2`+ 1}.
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Weighted tensor product spaces on spheres

Function space H
(r)
1,γ on a single sphere

For f ∈ L2(S2), f(x) ∼
∑∞
`=0

∑2`+1
k=1 f̂`,kY`,k(x).

For positive weight γ , Reproducing Kernel Hilbert Space

H
(r)
1,γ := {f : S2 → R | ‖f‖1,γ <∞},

where ‖f‖1,γ := 〈f, f〉1/2γ and

〈f, g〉1,γ := f̂0,0 ĝ0,0 + γ−1
∞∑
`=1

2`+1∑
k=1

(
`(`+ 1)

)r
f̂`,k ĝ`,k.

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

Reproducing kernel of H
(r)
1,γ

This is

K
(r)
1,γ(x, y) := 1 + γAr(x · y), where for z ∈ [−1, 1],

Ar(z) :=
∞∑
`=1

2`+ 1(
`(`+ 1)

)rP`(z),

where P is a Legendre polynomial.
(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

The weighted tensor product space H
(r)
d,γ

For γ := (γ1, . . . , γd) , on (S2)d define the tensor product space

H
(r)
d,γ :=

⊗d
j=1H

(r)
1,γj

.

Reproducing kernel of H
(r)
d,γ is

Kd,γ(x, y) :=
d∏
j=1

K
(r)
1,γj

(xj, yj) =
d∏
j=1

(
1 + γjAr(xj · yj)

)
.

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

Equal weight quadrature error on H
(r)
d,γ

Worst case error of equal weight quadrature Qm,d with m points:

e2
m,d(Qm,d) = −1 +

1

m2

m∑
i=1

m∑
h=1

Kd,γ(xi, xh)

= −1 +
1

m2

m∑
i=1

m∑
h=1

d∏
j=1

(
1 + γjAr(xi,j · xh,j)

)
,

E(e2
m,d) =

1

m

(
− 1 +

d∏
j=1

(
1 + γjAr(1)

))

≤
1

m
exp

(
Ar(1)

d∑
j=1

γj
)
.

(Kuo and Sloan, 2005)
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Component-by-component construction

Spherical designs on S2

A spherical design of strength t on S2 is an equal weight
quadrature rule Q with m points (x1, . . . , xm) ,
Qf :=

∑m
k=1 f(xk) , such that, for all p ∈ Pt(S2) ,

Q p =
∫

S2

p(y) dω(y)/|S2|.

The linear programming bounds give t = O(m1/2) .

Spherical designs of strength t are known to exist for m = O(t3)
and conjectured for m = (t+ 1)2 . Spherical t -designs have
recently been found numerically for m ≥ (t+ 1)2/2 + O(1) for
t up to 126.
(Delsarte, Goethals and Seidel, 1977; Hardin and Sloane, 1996; Chen and Womersley, 2006; Womersley, 2008)
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Component-by-component construction

Construction using permutations

The idea of Hesse, Kuo and Sloan, 2007 for quadrature on (S2)d

is to use a spherical design z = (z1, . . . , zm) of strength t for
the first sphere and then successively permute the points of the
design to obtain the coordinates for each subsequent sphere.

The algorithm chooses permutations
Π1, . . . ,Πd : 1 . . .m→ 1 . . .m , giving

xi = (zΠ1(i), . . . , zΠd(i))

to ensure that the resulting squared worst case quadrature error is
better than the average E(e2

m,d) .
(Hesse, Kuo and Sloan, 2007)
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Component-by-component construction

Error estimate for permutation construction

Hesse, Kuo and Sloan prove that if (z1, . . . , zm) is a spherical
t -design with m = O(t2) or if r > 3/2 and m = O(t3) for t
large enough, then

D2
m := e2

m,1|γ1=1
=

1

m2

m∑
i=1

m∑
h=1

A2,r(zΠj(i) · zΠj(h))

≤
A2,r(1)

m
.

This ensures that for m large enough, M2
m,d , the average

squared worst case error over all permutations, satisfies

M2
m,d ≤ E(e2

m,d) .

(Hesse, Kuo and Sloan, 2007)
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Weighted tensor product quadrature

Weighted Korobov spaces

Consider s = 1 . H
(1,r)
1,γ is a RKHS on the unit circle S1 ,

H
(1,r)
d,γ is a RKHS on the d -torus.

This is a weighted Korobov space of periodic functions on
[0, 2π)d .

The Hesse, Kuo and Sloan construction in these spaces gives a rule
with the same 1-dimensional projection properties as a lattice rule:
the points are equally spaced.
(Wasilkowski and Woźniakowski, 1999; Hesse, Kuo and Sloan, 2007)
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Weighted tensor product quadrature

The Smolyak construction on S1

The Smolyak construction and variants have been well studied on
unweighted and weighted Korobov spaces.

Smolyak construction (unweighted case):

For H
(1,r)
1,1 , define Q1,−1 := 0 and define a sequence of equal

weight rules Q1,0, Q1,1, . . . on [0, 2π) , exact for trigonometric
polynomials of degree t0 = 0 < t1 < . . . .

Define ∆q := Q1,q −Q1,q−1 and for H
(1,r)
d,1 , define

Qd,q :=
∑

0≤a1+...+ad≤q
∆a1 ⊗ . . .⊗∆ad.

(Smolyak, 1963; Wasilkowski and Woźniakowski, 1995; Gerstner and Griebel, 1998)
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Weighted tensor product quadrature

The WTP variant of Smolyak on H
(1,r)
d,γ

The WTP algorithm of Wasilkowski and Woźniakowski (1999)
generalizes Smolyak by allowing other choices for the index sets a .
(W and W (1999) treats spaces of non-periodic functions, and
allows optimal weights.)

For H
(1,r)
d,γ , define

Wd,n :=
∑

a∈Pn,d(γ)

∆a1 ⊗ . . .⊗∆ad,

where P1,d(γ) ⊂ P2,d(γ) ⊂ Nd, |Pn,d(γ)| = n .

W and W (1999) suggests to define Pn,d(γ) by including the n
rules ∆a1 ⊗ . . .⊗∆ad with largest norm.
(Wasilkowski and Woźniakowski, 1999)
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Weighted tensor product quadrature

WTP rules using spherical designs

For H
(r)
d,γ we can define a WTP rule based on spherical designs.

Define a sequence of optimal weight rules Q0, Q1, . . . using
unions of spherical designs of increasing strength
t0 = 0 < t1 < . . . and cardinality m0 = 1 < m1 < . . . .

The WTP construction then proceeds similarly to S1 .

One difference between S1 and S2 is that the spherical designs
themselves cannot be nested in general.
(Wasilkowski and Woźniakowski, 1999)
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Weighted tensor product quadrature

Generic WTP algorithm for S2

1. Begin with a sequence of spherical designs X1, X2, . . . XL ,
with increasing cardinality, nondecreasing strength.

2. For each h , form the optimal weight rule Qh from the point
set

⋃h
i=1Xi , and the difference rule ∆h = Qh −Qh−1 .

3. Form products of the difference rules and rank them in
decreasing norm (possibly weighted by the number of
additional points).

4. Form WTP rules by adding product difference rules in rank
order.
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Weighted tensor product quadrature

Error of WTP rule for S2
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Weighted tensor product quadrature

Estimated upper bound of error of WTP rule
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Weighted tensor product quadrature

Comparisons for 441, 961 and 2601 points
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Accomplishments and next steps

Accomplishments

I Formulation of WTP algorithm for products of S2 .

I Implementation of WTP algorithm.

I Numerical results for d to 30 and up to 40 000 points.

I Estimate for upper bound of error of WTP rule.
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Accomplishments and next steps

To do

I More error estimates for WTP rules.
Lower bounds on error; initial rate of convergence.

I Improvement of WTP algorithm to obtain better initial rate of
convergence.

I Best rate of increase of strength of spherical designs.
Should it double very step?

I Best index sets.
What is the best way to take weights into account?

I More numerical experiments.
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