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The rate of convergence of sparse grid quadrature on products of spheres

Weighted tensor product spaces on spheres

Polynomials on the unit sphere

Sphere S2 := {x ∈ R3 |
∑3
k=1 x

2
k = 1} .

Pµ : spherical polynomials of degree at most µ .

H` : spherical harmonics of degree ` , dimension 2`+ 1 .

Pµ =
⊕µ
`=0 H` has spherical harmonic basis

{Y`,k | ` ∈ 0 . . . µ, k ∈ 1 . . . 2`+ 1}.
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Weighted tensor product spaces on spheres

Reproducing kernel Hilbert space H on M

A Reproducing Kernel Hilbert Space (RKHS) H of real functions
on a manifold M is a Hilbert space with inner product 〈, 〉 and a
kernel

K : M ×M → R,

such that for all x ∈M , if kx is defined by

kx(y) := K(x, y) for all y ∈M, then

kx ∈ H and 〈kx, f〉 = f(x) for all f ∈ H.
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Weighted tensor product spaces on spheres

KS function space H
(r)
1,γ on a single sphere

For f ∈ L2(S2), f(x) ∼
∑∞
`=0

∑2`+1
k=1 f̂`,kY`,k(x).

For positive weight γ , define the RKHS

H
(r)
1,γ := {f : S2 → R | ‖f‖1,γ <∞},

where ‖f‖1,γ := 〈f, f〉1/2γ and

〈f, g〉1,γ := f̂0,0 ĝ0,0 + γ−1
∞∑
`=1

2`+1∑
k=1

(
`(`+ 1)

)r
f̂`,k ĝ`,k.

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

Reproducing kernel of H
(r)
1,γ

This is

K
(r)
1,γ(x, y) := 1 + γAr(x · y), where for z ∈ [−1, 1],

Ar(z) :=
∞∑
`=1

2`+ 1(
`(`+ 1)

)rP`(z),

where P is a Legendre polynomial.
(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

The weighted tensor product space H
(r)
d,γ

For γ := (γ1, . . . , γd) , on (S2)d define the tensor product space

H
(r)
d,γ :=

⊗d
j=1H

(r)
1,γj

.

Reproducing kernel of H
(r)
d,γ is

Kd,γ(x, y) :=
d∏
j=1

K
(r)
1,γj

(xj, yj)

(Kuo and Sloan, 2005)
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Weighted tensor product spaces on spheres

Equal weight quadrature error on H
(r)
d,γ

Worst case error of equal weight quadrature Qm,d with m points:

e2
m,d(Qm,d) := sup

f∈H(r)
d,γ

((I−Qm,d)f)2

= −1 +
1

m2

m∑
i=1

m∑
h=1

Kd,γ(xi, xh).

Expected squared error satisfies:

E(e2
m,d) =

1

m

(
− 1 +

d∏
j=1

(
1 + γjAr(1)

))

≤
1

m
exp

(
Ar(1)

d∑
j=1

γj
)
.

(Kuo and Sloan, 2005)
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Component-by-component construction

Spherical designs on S2

A spherical design of strength t on S2 is an equal weight
quadrature rule Q with m points (x1, . . . , xm) ,
Qf :=

∑m
k=1 f(xk) , such that, for all p ∈ Pt(S2) ,

Q p =
∫

S2

p(y) dω(y)/|S2|.

The linear programming bounds give t = O(m1/2) .

Spherical designs of strength t are known to exist for m = O(t3)
and conjectured for m = (t+ 1)2 . Spherical t -designs have
recently been found numerically for m ≥ (t+ 1)2/2 + O(1) for
t up to 126.
(Delsarte, Goethals and Seidel, 1977; Hardin and Sloane, 1996; Chen and Womersley, 2006; Womersley, 2008)
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Component-by-component construction

Construction using permutations

The idea of Hesse, Kuo and Sloan, 2007 for quadrature on (S2)d

is to use a spherical design z = (z1, . . . , zm) of strength t for
the first sphere and then successively permute the points of the
design to obtain the coordinates for each subsequent sphere.

The algorithm chooses permutations
Π1, . . . ,Πd : 1 . . .m→ 1 . . .m , giving

xi = (zΠ1(i), . . . , zΠd(i))

to ensure that the resulting squared worst case quadrature error is
better than the average E(e2

m,d) .
(Hesse, Kuo and Sloan, 2007)
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Component-by-component construction

Error estimate for permutation construction

Hesse, Kuo and Sloan proved that if (z1, . . . , zm) is a spherical
t -design with m = O(t2) or if r > 3/2 and m = O(t3) for t
large enough, then

D2
m := e2

m,1|γ1=1
=

1

m2

m∑
i=1

m∑
h=1

Ar(zΠj(i) · zΠj(h))

≤
Ar(1)

m
.

This ensures that for m large enough, M2
m,d , the average

squared worst case error over all permutations, satisfies

M2
m,d ≤ E(e2

m,d) .

(Hesse, Kuo and Sloan, 2007)
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Component-by-component construction

Weighted Korobov spaces on (S1)d

Consider s = 1 . H
(1,r)
1,γ is a RKHS on the unit circle S1 ,

H
(1,r)
d,γ is a RKHS on the d -torus.

This is a weighted Korobov space of periodic functions on
[0, 2π)d .

The Hesse, Kuo and Sloan construction in these spaces gives a rule
with the same 1-dimensional projection properties as a lattice rule:
the points are equally spaced.
(Wasilkowski and Woźniakowski, 1999; Hesse, Kuo and Sloan, 2007)
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Weighted tensor product quadrature

General quadrature weights on H
(2,r)
d,γ

For X := {x1, . . . , xm} , if we define

Qwf :=
m∑
k=1

wkf(xk),

Gi,j := 〈kxi, kxj〉 = Kd,γ(xi, xj),

then the worst case error ew for Qw satisfies

e2
w = ‖1−Qw‖2 = 〈1−Qw, 1−Qw〉

= 1− 2
m∑
k=1

wk + wTGw.
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Weighted tensor product quadrature

Optimal quadrature weights on H
(2,r)
d,γ

Since

e2
w = 1− 2

m∑
k=1

wk + wTGw,

the weights w are optimal when Gw = [1, . . . , 1]T .

In this case,e2
w = 1−

∑m
k=1wk .
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Weighted tensor product quadrature

The Smolyak construction on (S1)d

The Smolyak construction and variants have been well studied on
unweighted and weighted Korobov spaces.

Smolyak construction (unweighted Korobov space case):

For H
(1,r)
1,1 , define Q1,−1 := 0 and define a sequence of equal

weight rules Q1,0, Q1,1, . . . on [0, 2π) , exact for trigonometric
polynomials of degree t0 = 0 < t1 < . . . .

Define ∆q := Q1,q −Q1,q−1 and for H
(1,r)
d,1 , define

Qd,q :=
∑

0≤a1+...+ad≤q
∆a1 ⊗ . . .⊗∆ad.

(Smolyak, 1963; Wasilkowski and Woźniakowski, 1995; Gerstner and Griebel, 1998)
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Weighted tensor product quadrature

The WTP variant of Smolyak on H
(1,r)
d,γ

The WTP algorithm of Wasilkowski and Woźniakowski (1999)
generalizes Smolyak by treating spaces of non-periodic functions,
by allowing optimal weights, and by allowing other choices for the
index sets a .

For H
(1,r)
d,γ , define

Wd,n :=
∑

a∈Pn,d(γ)

∆a1 ⊗ . . .⊗∆ad,

where P1,d(γ) ⊂ P2,d(γ) ⊂ Nd, |Pn,d(γ)| = n .

W and W (1999) suggests to define Pn,d(γ) by including the n
rules ∆a1 ⊗ . . .⊗∆ad with largest norm.
(Wasilkowski and Woźniakowski, 1999)
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Weighted tensor product quadrature

WTP rules using spherical designs

For H
(r)
d,γ we can define a WTP rule based on spherical designs.

Define a sequence of optimal weight rules Q0, Q1, . . . using
unions of spherical designs of increasing strength
t0 = 0 < t1 < . . . and cardinality m0 = 1 < m1 < . . . .

The WTP construction then proceeds similarly to S1 .

One difference between S1 and S2 is that the spherical designs
themselves cannot be nested in general.
(Wasilkowski and Woźniakowski, 1999)
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Weighted tensor product quadrature

Generic WTP algorithm for S2

1. Begin with a sequence of spherical designs X1, X2, . . . XL ,
with increasing cardinality, nondecreasing strength.

2. For each h , form the optimal weight rule Qh from the point
set

⋃h
i=1Xi , and the difference rule ∆h = Qh −Qh−1 .

3. Form products of the difference rules and rank them in
decreasing norm (possibly weighted by the number of
additional points).

4. Form WTP rules by adding product difference rules in rank
order.
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Numerical results

The Hesse, Kuo and Sloan example space

In Hesse, Kuo and Sloan, a numerical example is given with
r = 3 , γj = 0.9j . In other words,

Kd,γ(x, y) :=
d∏
j=1

K
(3)

1,0.9j
(xj, yj) =

d∏
j=1

(
1 + 0.9jA3(xj · yj)

)
,

where

A3(z) =
∞∑
`=1

2`+ 1(
`(`+ 1)

)3P`(z).
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Numerical results

Error of WTP rule for (S2)d, d = 2, 4, 8, 16
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Numerical results

Estimated upper bound of error of WTP rule
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WTP algorithm: Upper bound on cost of given error: d=2k, pγ=0.001, ν=0.4

This upper bound is not tight, but illustrates that many points
may be needed before asymptotic convergence rate kicks in.
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Numerical results

HKS vs WTP: 441, 961 points
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Numerical results

HKS vs WTP: (S2)8, r = 3, g = 0.9, γ = gj
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Numerical results

HKS vs WTP: (S2)8, r = 3, g = 0.5, γ = gj
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Numerical results

HKS vs WTP: (S2)8, r = 3, g = 0.1, γ = gj
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Discussion

Why does WTP (initially) perform poorly?

WTP points are too close together.

I Partly because, for one sphere, nesting is forced.

I Mostly because, for higher d , initially only one sphere at a
time is changed.

HKS points are better separated.
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Discussion

Optimal weight for one quadrature point

(Illustration by Osborn, 2009)
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Discussion

Optimal weights for two quadrature points

(Illustration by Osborn, 2009)
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