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Partition of S
2 into 33 regions of equal area
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Outline of talk

• The sphere, partitions, diameter bounds
• Precedents, Stolarsky’s assertion
• The Feige-Schechtman algorithm
• The Recursive Zonal Equal Area algorithm
• Outline of proof of bounds
• Numerical results
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The unit sphere S
d ⊂ R

d+1

Definition 1. The unit sphere S
d ⊂ R

d+1 is

S
d :=

{

x ∈ R
d+1

∣

∣

∣

∣

∣

d+1
∑

k=1

x2
k = 1

}

.

Definition 2. Spherical polar coordinates describe a point p of S
d

using one longitude, p1 ∈ [0, 2π] , and d − 1 colatitudes,
pi ∈ [0, π] , for i ∈ {2, . . . , d} .
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Equal-area partitions of S
d

Definition 3. An equal area partition of S
d is a nonempty finite set

P of Lebesgue measurable subsets of S
d , such that

⋃

R∈P

R = S
d,

and for each R ∈ P ,

σ(R) =
σ(Sd)

|P|
,

where σ is the Lebesgue area measure on S
d .
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Diameter bounded sets of partitions

Definition 4. The diameter of a region R ⊂ R
d+1 is defined by

diam R := sup{e(x, y) | x, y ∈ R},

where e(x, y) is the R
d+1 Euclidean distance

∥

∥x − y
∥

∥ .

Definition 5. A set Ξ of partitions of S
d ⊂ R

d+1 is
diameter-bounded with diameter bound K ∈ R+

if for all P ∈ Ξ , for each R ∈ P ,

diam R 6 K |P|−1/d .
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Precedents

The EQ partition is based on Zhou’s (1995) construction for S
2 as

modified by Ed Saff, and on Ian Sloan’s sketch of a partition of S
3

(2003).

Alexander (1972) uses the existence of a diameter-bounded set of
equal-area partitions of S

2 to analyze the maximum sum of
distances between points. Alexander (1972) suggests a construction
different from Zhou (1995).

Equal-area partitions of S
2 used in the geosciences and astronomy

do not have a proven bound on the diameter of regions.
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Stolarsky’s assertion

Stolarsky (1973) asserts the existence of a diameter-bounded set of
equal-area partitions of S

d for all d , but offers no construction or
existence proof.

Beck and Chen (1987) quotes Stolarsky. Bourgain and
Lindenstrauss (1988) quotes Beck and Chen.

Wagner (1993) implies the existence of an EQ -like construction for
S

d . Bourgain and Lindenstrauss (1993) gives a partial construction.

Feige and Schechtman (2002) gives a construction which proves
Stolarsky’s assertion.
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Spherical caps, zones, and collars

The spherical cap S(p, θ) ∈ S
d is

S(p, θ) :=
{

q ∈ S
d | p · q > cos(θ)

}

.

For d > 1 , a zone can be described by

Z(a, b) :=
{

p ∈ S
d | pd ∈ [a, b]

}

,

where 0 6 a < b 6 π .

Z(0, b) is a North polar cap and Z(a, π) is a South polar cap.

If 0 < a < b < π , Z(a, b) is a collar.
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Area of a spherical cap

For d > 1 , the area of a spherical cap of spherical radius θ is

V(θ) := σ
(

S(p, θ)
)

= ω

∫ θ

0

(sin ξ)d−1dξ,

where ω = σ(Sd−1) .
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Outline of the Feige-Schechtman algorithm

1. Find spherical radius θc of caps

2. Create optimal packing of caps of spherical radius θc

3. Create graph of kissing caps

4. Create directed tree from graph

5. Create Voronoi tessellation

6. Move area from V-cells towards root of tree

7. Split adjusted cells
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2. Create optimal packing of caps
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3. Create graph of kissing caps
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4. Create directed tree from graph
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5. Create Voronoi tessellation
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6. Move area from V-cells towards root
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Outline of proof the F-S bound

• Packing radius is θc = O(N−1/d) .
• V-cells are in caps of spherical radius 2θc .
• Each V-cell has area larger than target area.
• Area is moved from V-cells of kissing packing caps.
• Adjusted cells are in caps of spherical radius 4θc .
• So Euclidean diameter is bounded above by

8θc = O(N−1/d).
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Key properties of the EQ partition of S
d

The recursive zonal equal area partition of S
d into N regions is

denoted as EQ(d, N) .

The set of partitions EQ(d) := {EQ(d, N) | N ∈ N+} .

The EQ partition satisfies:

Theorem 1. For N > 1 , EQ(d, N) is an equal-area partition.

Theorem 2. For d > 1 , EQ(d) is diameter-bounded.
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Outline of the EQ algorithm

if N = 1 then

There is a single region which is the whole sphere;
else if d = 1 then

Divide the circle into N equal segments;
else

Divide the sphere into zones, each the same area as an integer number of regions:
1. Determine the colatitudes of polar caps,
2. Determine an ideal collar angle,
3. Determine an ideal number of collars,
4. Determine the actual number of collars,
5. Create a list of the ideal number of regions in each collar,
6. Create a list of the actual number of regions in each collar,
7. Create a list of colatitudes of each zone;

Partition each spherical collar into regions of equal area,
using the EQ algorithm for dimension d − 1 ;

endif .
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Rounding the number of regions per collar

Similarly to Zhou (1995), given the sequence yi for n collars, with

n
∑

i=1

yi = N − 2,

define the sequences a and m by: a0 := 0 ,
and for i ∈ {1, . . . , n} ,

mi := round(yi + ai−1), ai :=

i
∑

j=1

(yj − mj).

Then mi is the required number of regions in collar i , and
ai ∈ [−1/2, 1/2) and an = 0 .

Partitions of the unit sphere into regions of equal area and small diameter – p. 21/29



Geometry of regions

Each region R in collar i of EQ(d, N) is of the form

R = Rd−1 × [θi, θi+1],

in spherical polar coordinates, where
Rd−1 = [t1, b1] × . . . × [td−1, bd−1] , with t, b ∈ S

d−1 .

We can show that

diam R 6

√

∆2
i + w2

i (diam Rd−1)2,

where ∆i := θi+1 − θi and wi := maxξ∈[θi,θi+1] sin ξ .
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The inductive step

Define

Pi := wi m
−1

d−1

i .

Assuming that EQ(d − 1) has diameter bound κ , we have

diam R 6

√

(

max
i∈{1,...,n}

∆i

)2

+ κ2

(

max
i∈{1,...,n}

Pi

)2

.
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Cap, ∆ , P bounds

We can use properties and estimates of V to show that:
• There is a constant Kc > 0 such that for N > 1 , the

diameter of each polar cap of EQ(d, N) is bounded by
KcN

−1/d .
• For d > 1 , there are constants K∆ > 0, CP > 0 ,

N∆, NP ∈ N such that for EQ(d, N) with
N > max(N∆, NP ) ,

max
i∈{1,...,n}

∆ 6 K∆N−1/d,

max
i∈{1,...,n}

P 6 CP N−1/d.
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Outline of proof of Theorem 2

Assume that N > 2 and d > 1 .
Define NH := max(N∆, NP ) .

Then if d > 1 , if EQ(d − 1) has diameter bound κ , and if
N > NH , we have maxdiam(d, N) 6 KHN−1/d , where

KH := max
(

Kc,
√

K2
∆ + κ2C2

P

)

.

The diameter of any region is bounded by 2.
Therefore for N 6 NH , maxdiam(d, N) 6 KLN−1/d , where

KL := 2N
1/d
H .

EQ(1, N) consists of N equal segments, so EQ(1) has diameter
bound 2π . The result follows by induction.
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Diameter bound constants

d KF S Kd (l. b.) Kd (N → ∞)

2 16.0 8.9 12.8

3 13.4 10.4 25.1

4 12.2 11.5 48.3

5 11.4 12.3 90.7

6 10.9 13.0 166.3

7 10.5 13.6 297.4

8 10.3 14.2 519.7

9 10.0 14.7 888.1

10 9.9 15.1 1486.0

Zhou obtains K2 6 7 for his (1995) algorithm.
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Diameter bounds for S
2
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Diameter bounds for S
3

10
0

10
1

10
2

10
3

10
4

10
5

2

2.5

3

3.5

4

4.5

5

5.5

6
6.5

7
7.5

8

9

10

11

12

N: number of regions

(M
ax

 d
ia

m
et

er
) 

* 
N

1/
3

.



Diameter bounds for S
4
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