Partitions of the unit sphere into regions of equal area and small diameter

Paul Leopardi
paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.
For presentation at Macquarie University, Sydney, 2005.

Partition of \mathbb{S}^{2} into 33 regions of equal area

Outline of talk

- The sphere, partitions, diameter bounds
- Precedents, Stolarsky's assertion
- The Feige-Schechtman algorithm
- The Recursive Zonal Equal Area algorithm
- Outline of proof of bounds
- Numerical results

The unit sphere $\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$

Definition 1. The unit sphere $\mathbb{S}^{\boldsymbol{d}} \subset \mathbb{R}^{d+1}$ is

$$
\mathbb{S}^{d}:=\left\{\begin{array}{l|l}
x \in \mathbb{R}^{d+1} & \sum_{k=1}^{d+1} x_{k}^{2}=1
\end{array}\right\}
$$

Definition 2. Spherical polar coordinates describe a point pof $\mathbb{S}^{\boldsymbol{d}}$ using one longitude, $p_{1} \in[0,2 \pi]$, and $d-1$ colatitudes, $p_{i} \in[0, \pi]$, for $i \in\{2, \ldots, d\}$.

Equal-area partitions of \mathbb{S}^{d}

Definition 3. An equal area partition of \mathbb{S}^{d} is a nonempty finite set \mathcal{P} of Lebesgue measurable subsets of \mathbb{S}^{d}, such that

$$
\bigcup_{R \in \mathcal{P}} R=\mathbb{S}^{d}
$$

and for each $\boldsymbol{R} \in \mathcal{P}$,

$$
\sigma(R)=\frac{\sigma\left(\mathbb{S}^{d}\right)}{|\mathcal{P}|}
$$

where $\boldsymbol{\sigma}$ is the Lebesgue area measure on \mathbb{S}^{d}.

Diameter bounded sets of partitions

Definition 4. The diameter of a region $\boldsymbol{R} \subset \mathbb{R}^{\boldsymbol{d + 1}}$ is defined by

$$
\operatorname{diam} R:=\sup \{e(x, y) \mid x, y \in R\}
$$

where $e(x, y)$ is the \mathbb{R}^{d+1} Euclidean distance $\|\underline{x}-\underline{y}\|$.
Definition 5. A set $\boldsymbol{\Xi}$ of partitions of $\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ is diameter-bounded with diameter bound $\boldsymbol{K} \in \mathbb{R}_{+}$ if for all $\mathcal{P} \in \boldsymbol{\Xi}$, for each $\boldsymbol{R} \in \mathcal{P}$,

$$
\operatorname{diam} \boldsymbol{R} \leqslant K|\mathcal{P}|^{-1 / d}
$$

Precedents

The EQ partition is based on Zhou's (1995) construction for \mathbb{S}^{2} as modified by Ed Saff, and on Ian Sloan's sketch of a partition of \mathbb{S}^{3} (2003).

Alexander (1972) uses the existence of a diameter-bounded set of equal-area partitions of \mathbb{S}^{2} to analyze the maximum sum of distances between points. Alexander (1972) suggests a construction different from Zhou (1995).

Equal-area partitions of \mathbb{S}^{2} used in the geosciences and astronomy do not have a proven bound on the diameter of regions.

Stolarsky's assertion

Stolarsky (1973) asserts the existence of a diameter-bounded set of equal-area partitions of $\mathbb{S}^{\boldsymbol{d}}$ for all \boldsymbol{d}, but offers no construction or existence proof.

Beck and Chen (1987) quotes Stolarsky. Bourgain and Lindenstrauss (1988) quotes Beck and Chen.

Wagner (1993) implies the existence of an EQ-like construction for \mathbb{S}^{d}. Bourgain and Lindenstrauss (1993) gives a partial construction.

Feige and Schechtman (2002) gives a construction which proves Stolarsky's assertion.

Spherical caps, zones, and collars

The spherical cap $\boldsymbol{S}(\boldsymbol{p}, \boldsymbol{\theta}) \in \mathbb{S}^{\boldsymbol{d}}$ is

$$
S(p, \theta):=\left\{q \in \mathbb{S}^{d} \mid \underline{p} \cdot \underline{q} \geqslant \cos (\theta)\right\} .
$$

For $d>1$, a zone can be described by

$$
Z(a, b):=\left\{p \in \mathbb{S}^{d} \mid p_{d} \in[a, b]\right\}
$$

where $0 \leqslant \boldsymbol{a}<\boldsymbol{b} \leqslant \boldsymbol{\pi}$.
$Z(0, b)$ is a North polar cap and $Z(a, \pi)$ is a South polar cap.
If $0<a<b<\pi, Z(a, b)$ is a collar.

Area of a spherical cap

For $\boldsymbol{d}>1$, the area of a spherical cap of spherical radius $\boldsymbol{\theta}$ is

$$
\mathcal{V}(\theta):=\sigma(S(p, \theta))=\omega \int_{0}^{\theta}(\sin \xi)^{d-1} d \xi
$$

where $\omega=\sigma\left(\mathbb{S}^{\boldsymbol{d - 1}}\right)$.

Outline of the Feige-Schechtman algorithm

1. Find spherical radius $\boldsymbol{\theta}_{\boldsymbol{c}}$ of caps
2. Create optimal packing of caps of spherical radius $\boldsymbol{\theta}_{\boldsymbol{c}}$
3. Create graph of kissing caps
4. Create directed tree from graph
5. Create Voronoi tessellation
6. Move area from V-cells towards root of tree
7. Split adjusted cells

2. Create optimal packing of caps

3. Create graph of kissing caps

4. Create directed tree from graph

5. Create Voronoi tessellation

6. Move area from V-cells towards root

Outline of proof the F-S bound

- Packing radius is $\theta_{c}=\mathrm{O}\left(N^{-1 / d}\right)$.
- V-cells are in caps of spherical radius $2 \theta_{c}$.
- Each V-cell has area larger than target area.
- Area is moved from V-cells of kissing packing caps.
- Adjusted cells are in caps of spherical radius $4 \boldsymbol{\theta}_{\boldsymbol{c}}$.
- So Euclidean diameter is bounded above by

$$
8 \theta_{c}=\mathrm{O}\left(N^{-1 / d}\right)
$$

Key properties of the EQ partition of \mathbb{S}^{d}

The recursive zonal equal area partition of $\mathbb{S}^{\boldsymbol{d}}$ into \boldsymbol{N} regions is denoted as $\mathrm{EQ}(\boldsymbol{d}, \boldsymbol{N})$.

The set of partitions $\mathrm{EQ}(\boldsymbol{d}):=\left\{\operatorname{EQ}(\boldsymbol{d}, N) \mid N \in \mathbb{N}_{+}\right\}$.
The EQ partition satisfies:
Theorem 1. For $N \geqslant 1, \operatorname{EQ}(d, N)$ is an equal-area partition.

Theorem 2. For $\boldsymbol{d} \geqslant 1, \mathrm{EQ}(\boldsymbol{d})$ is diameter-bounded.

Outline of the EQ algorithm

if $N=1$ then

There is a single region which is the whole sphere;
else if $d=1$ then
Divide the circle into N equal segments; else

Divide the sphere into zones, each the same area as an integer number of regions:

1. Determine the colatitudes of polar caps,
2. Determine an ideal collar angle,
3. Determine an ideal number of collars,
4. Determine the actual number of collars,
5. Create a list of the ideal number of regions in each collar,
6. Create a list of the actual number of regions in each collar,
7. Create a list of colatitudes of each zone;

Partition each spherical collar into regions of equal area,
using the EQ algorithm for dimension $d-1$;
endif .
$E Q(3,99)$ Steps 1 to 2
$E Q(3,99)$ Steps 3 to 5

$E Q(3,99)$ Steps 6 to 7

Rounding the number of regions per collar

Similarly to Zhou (1995), given the sequence $\boldsymbol{y}_{\boldsymbol{i}}$ for \boldsymbol{n} collars, with

$$
\sum_{i=1}^{n} y_{i}=N-2
$$

define the sequences a and m by: $a_{0}:=0$, and for $i \in\{1, \ldots, n\}$,

$$
m_{i}:=\operatorname{round}\left(y_{i}+a_{i-1}\right), \quad a_{i}:=\sum_{j=1}^{i}\left(y_{j}-m_{j}\right)
$$

Then $\boldsymbol{m}_{\boldsymbol{i}}$ is the required number of regions in collar \boldsymbol{i}, and $a_{i} \in[-1 / 2,1 / 2)$ and $a_{n}=0$.

Geometry of regions

Each region R in collar \boldsymbol{i} of $\mathrm{EQ}(\boldsymbol{d}, \boldsymbol{N})$ is of the form

$$
R=R_{d-1} \times\left[\theta_{i}, \theta_{i+1}\right]
$$

in spherical polar coordinates, where
$R_{d-1}=\left[t_{1}, b_{1}\right] \times \ldots \times\left[t_{d-1}, b_{d-1}\right]$, with $t, b \in \mathbb{S}^{d-1}$.
We can show that

$$
\operatorname{diam} R \leqslant \sqrt{\Delta_{i}^{2}+w_{i}^{2}\left(\operatorname{diam} R_{d-1}\right)^{2}}
$$

where $\Delta_{i}:=\theta_{i+1}-\theta_{i}$ and $w_{i}:=\max _{\xi \in\left[\theta_{i}, \theta_{i+1}\right]} \sin \xi$.

The inductive step

Define

$$
P_{i}:=w_{i} m_{i}^{\frac{-1}{d-1}}
$$

Assuming that $\operatorname{EQ}(\boldsymbol{d}-1)$ has diameter bound κ, we have

$$
\operatorname{diam} R \leqslant \sqrt{\left(\max _{i \in\{1, \ldots, n\}} \Delta_{i}\right)^{2}+\kappa^{2}\left(\max _{i \in\{1, \ldots, n\}} P_{i}\right)^{2}} .
$$

Cap, Δ, P bounds

We can use properties and estimates of \mathcal{V} to show that:

- There is a constant $K_{c}>0$ such that for $N>1$, the diameter of each polar cap of $\operatorname{EQ}(\boldsymbol{d}, \boldsymbol{N})$ is bounded by $K_{c} N^{-1 / d}$.
- For $\boldsymbol{d}>1$, there are constants $K_{\Delta}>0, C_{P}>0$, $N_{\Delta}, N_{P} \in \mathbb{N}$ such that for $\operatorname{EQ}(d, N)$ with $N>\max \left(N_{\Delta}, N_{P}\right)$,

$$
\begin{aligned}
& \max _{i \in\{1, \ldots, n\}} \Delta \leqslant K_{\Delta} N^{-1 / d} \\
& \max _{i \in\{1, \ldots, n\}} P \leqslant C_{P} N^{-1 / d}
\end{aligned}
$$

Outline of proof of Theorem 2

Assume that $N>2$ and $d>1$. Define $N_{H}:=\max \left(N_{\Delta}, N_{P}\right)$.

Then if $\boldsymbol{d} \geqslant 1$, if $\operatorname{EQ}(\boldsymbol{d}-1)$ has diameter bound κ, and if $N>N_{H}$, we have maxdiam $(d, N) \leqslant K_{H} N^{-1 / d}$, where $K_{H}:=\max \left(K_{c}, \sqrt{K_{\Delta}^{2}+\kappa^{2} C_{P}^{2}}\right)$.

The diameter of any region is bounded by 2 .
Therefore for $N \leqslant N_{H}, \operatorname{maxdiam}(d, N) \leqslant K_{L} N^{-1 / d}$, where $K_{L}:=2 N_{H}^{1 / d}$.
$\operatorname{EQ}(1, N)$ consists of N equal segments, so $\operatorname{EQ}(1)$ has diameter bound 2π. The result follows by induction.

Diameter bound constants

d	$K_{F S}$	$K_{d}($ l. b. $)$	$K_{d}(N \rightarrow \infty)$
2	16.0	8.9	12.8
3	13.4	10.4	25.1
4	12.2	11.5	48.3
5	11.4	12.3	90.7
6	10.9	13.0	166.3
7	10.5	13.6	297.4
8	10.3	14.2	519.7
9	10.0	14.7	888.1
10	9.9	15.1	1486.0

Zhou obtains $\boldsymbol{K}_{\mathbf{2}} \leqslant \mathbf{7}$ for his (1995) algorithm.

Diameter bounds for \mathbb{S}^{2}

Diameter bounds for \mathbb{S}^{3}

Diameter bounds for \mathbb{S}^{4}

