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Background and motivation

Polynomials on the unit sphere

Sphere S2 := {x ∈ R3 |
∑3
k=1 x

2
k = 1} .

Pt(S2) : spherical polynomials of degree at most t .

H∗s : homogeneous spherical harmonics of degree s , dimension
Ns = 2s+ 1 .

Pt(S2) =
⊕t
`=0 H∗s has spherical harmonic basis

{Ys,k | s ∈ 0 . . . t, k ∈ 1 . . . Ns},

and dimension mt :=
∑t
s=0Ns = (t+ 1)2 .

(Reimer 1990)
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Background and motivation

Spherical polynomials as a RKHS

Pt(S2) is a reproducing kernel Hilbert space with inner product

〈p, q〉 :=
∫

S2

p(y)q(y)dω(y),

with ω the surface measure on S2 .
The reproducing kernel of Pt(S2) is

gt(x, y) =
t∑

s=0

Ns∑
k=1

Ys,k(x)Ys,k(y) =
t+ 1

4π
P (1,0)(x · y),

where P (α,β) is the usual notation for a Jacobi polynomial.
(Reimer and Sündermann 1985; Reimer 1990; Womersley and Sloan 2001)
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Background and motivation

Spherical polynomials as a RKHS (2)

Thus for gx(y) := gt(x, y) we have

gx ∈ Pt(S2) and 〈gx, p〉 = p(x)

for all p ∈ Pt(S2) and all x ∈ S2 .

Thus

〈gx, gy〉 = gt(x, y)

for all x, y ∈ S2 .
(Reimer and Sündermann 1985; Reimer 1990; Womersley and Sloan 2001)
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Background and motivation

Polynomial interpolation

Let X := (x1, . . . , xmt) ∈ (S2)mt and define Lagrange
interpolation polynomials (`1, . . . , `mt) ∈ (Pt(S2))mt such that
`i(xj) = δi,j .

X is unisolvent wrt. polynomial interpolation on Pt(S2) ,
ie. X is a fundamental system, if and only if {`1, . . . , `mt} is
linearly independent.
(Reimer and Sündermann 1985; Reimer 1990; Womersley and Sloan 2001)
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Background and motivation

Gram matrix and polynomial interpolation

Given X = (x1, . . . , xmt) , let gi := gxi and define the Gram
matrix G = G(X) such that Gi,j := 〈gi, gj〉 = gt(xi, xj) .

Define ∆ = ∆(X) := detG(X) .
Then it can be shown that

`2i (y) =
∆(x1, . . . , xi−1, y, xi+1, . . . , xmt)

∆(x1, . . . , xmt)
.

(Reimer and Sündermann 1985; Reimer 1990; Womersley and Sloan 2001)
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Background and motivation

Extremal fundamental systems

Given X = (x1, . . . , xmt) , define the interpolation operator
Λ(X) : C(S2)→ Pt(S2) by

Λ(X)f(y) :=
mt∑
i=1

f(xi)`i(y).

The uniform norm of Λ(X) is thus ‖Λ‖∞ ≤
∑mt
i=1 ‖`i‖∞ .

For the extremal fundamental system X̂ which maximizes
∆(X) , we therefore have ‖Λ‖∞ (X̂) ≤ mt .
(Reimer and Sündermann 1985; Reimer 1990; Womersley and Sloan 2001; Sloan and Womersley 2004)
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Background and motivation

Interpolatory quadrature

Given X = (x1, . . . , xmt) , define the quadrature functional
Q(X) : C(S2)→ R by

Q(X)f :=
∫

S2

(
Λ(X)f

)
(y)dω(y) =

mt∑
i=1

wif(xi),

so

wi =
∫

S2

`i(y)dω(y),

We have Gw = e , where e is the all ones vector, and∑mt
i=1wi = 4π .

(Reimer 1994; Sloan and Womersley 2004)
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Random Gram matrices and related distributions

Random Gram matrices

We take X to be a random mt -tuple of points independently
uniformly distributed on S2 and examine various distributions
related to the random Gram matrix G(X) :
∆(X) , eigenvalues, quadrature weights.

Related work on random Gram matrices include: applications to
combinatorics of folding and colouring (Di Francesco 1999), statistical
mechanics (Hoyle and Rattray 2004), and wireless communication (Hachem, Loubaton

and Najim 2005), studies of the Laguerre, Gram and Bernoulli ensembles
(Roualt 2007), and studies based on kernels related to machine learning
(Shawe-Taylor, Williams, Cristianini and Kandola 2002; Zhang, Kwok and Yeung 2006).
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Random Gram matrices and related distributions

Random Gram determinant

Mean:

E(∆(X)) =
mt!

(4π)mt
.

(Reimer 1997)

Upper bound:

∆(X) ≤
(
mt

4π

)mt

.

(Equality only for t = 1 .)
(Reimer 1997; Sloan and Womersley 2004)
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Random Gram matrices and related distributions

Random Gram eigenvalues

For given X , traceG(X) = m2
t/4π , so mean λ = mt/4π .

Since G(X) is positive semidefinite, minλmin = 0 .
(Reimer and Sündermann 1985; Reimer 1997; Sloan and Womersley 2004)
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Random Gram matrices and related distributions

Random interpolatory quadrature weights

Since
∑mt
i=1wi = 4π , mean w = 4π/mt .

(Reimer 1994; Sloan and Womersley 2004)

Also, if wmin ≥ 0 then wmax ≤ 16π/mt

(Leopardi 2007 based on Reimer 2000)
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Indicative “results”

Indicative “results”

Using the Matlab code of Womersley, with Octave, including its
standard pseudorandom number generator, 100 000
pseudo-Monte Carlo trials were conducted for each of degrees 1, 2,
3, 4 and 5.

Plots are histograms using 100 bins for:

1. log ∆ ;

2. log ∆−E(log ∆)
σ(log ∆)

.

(Sloan and Womersley 2004)
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Indicative “results”

log ∆
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Indicative “results”

“Normalized” log ∆
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Indicative “results”

Some asymptotics

Given P̃ (1,0)(z) := P (1,0)(z)/P (1,0)(1) , we have

lim
t→∞

P̃
(1,0)
t

(
cos

θ

t

)
=

2

θ
J1(θ),

where J1 is the Bessel function of order 1.

How does this asymptotic result influence the asymptotics of
∆(X) and other statistics related to G(X)?
(Szego 1975; Andrews, Askey and Roy 1999; Reimer 2000; Gautschi and Leopardi 2007)
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Related conjectures

Related conjectures

I For all t , for the extremal fundamental system X̂ , all
weights are positive.
(Reimer 1994; Sloan and Womersley 2004)

I For all t , there exists an equal weight interpolatory quadrature
rule (ie. a spherical t -design of size mt = (t+ 1)2 .)
(Korevaar and Meyers 1993; Hardin and Sloane 1996; Chen and Womersley 2006; Hesse and Leopardi

2007)

I The convergence of P̃
(1,0)
t is monotonically increasing for

cos θ greater than the largest zero of P
(1,0)
1 .

(Gautschi and Leopardi 2007)
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