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LDiscrepancy, separation and energy on the unit sphere §

Result for S¢ C Rd4+?

In 2004, here at Vanderbilt University, Ed Saff asked me a question
about, separation, discrepancy and discrete energy on the unit
sphere S?. The answer to this question is:

Theorem 1

For a well separated admissible sequence X of S® spherical
codes, with discrepancy function 8, the normalized Riesz s energy
for 0 < s < d satisfies the inequality

Ex, Us = Epr Us + O (6(] Xe|)—%/9).

This talk describes a generalization of this result.

(L 2007, L 2013)
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Compact connected Riemannian manifolds

Let M be a smooth, connected d-dimensional Riemannian
manifold, without boundary, with metric g and geodesic distance

dist, such that M is compact in the metric topology of dist.

(Sinclair and Tanaka, 2007, Figure 1)
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Metric and measure, sequences of M -codes

Let Aps be the volume measure on M given by the volume
element corresponding to g and therefore to dist.

Since M is compact, it has finite volume.
Let onr := A /A (M), so opr (M) = 1.

Consider an infinite sequence X := (X3, X2,...) of M -codes,
each a finite subset of M.

A sequence (X1, X2,...) whose cardinalities (|X1],|X2|,...)
diverge to 400 is called pre-admissible.
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Normalized ball discrepancy

For any probability measure p on M,
the normalized ball discrepancy is

D(p) := sup \1(Bz (1)) — onr(Be(7))]
x€M, 0<r<diamn(M)

where diam(M) is the diameter of M and Bg(r) is the
geodesic ball of radius r about the point x.
An M -code X with cardinality |X| has probability measure

ox(5):=[SNX]|/|X],
and therefore normalized ball discrepancy

D(X) = sup_ [1By(r) N X1/ 1X] ~ onr(By(r)].

(Bliimlinger 1990, Damelin and Grabner 2003)
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Asymptotic equidistribution

A sequence X := (Xq, Xa,...), of M -codes is asymptotically
equidistributed if D(X,) < (| X¢|), where § is a positive
decreasing function  : N — (0, 00) with 6(IN) — 0 as

N — oo.

It is easy to see that (| X|) > 1/|X].

Consider each B (r) with « € X, and the limit as » — 0.

(Blimlinger 1990, Damelin and Grabner 2003)
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Separation of points, admissible sequences

An admissible sequence of M -codes is an asymptotically
equidistributed pre-admissible sequence with discrepancy function
0 that also has a lower bound on the minimum separation:

dist(z,y) > A(Ng) forall z,y € Xy,

where A : N — (0, 00) is a positive decreasing function with
A(N) -0 as N — oo.

(Tammes 1930, Rankin 1955, Flatto and Newman 1977)
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Well separated sequences of codes

The order of the lower bound A(IN) for the separation of the
sequence with the largest separation for each IN is Q(N_l/d).

Therefore, for all sequences of M -codes,
A(1Xe]) = O(1Xe|7H9).

A sequence of M -codes is called well separated if there exists a
separation constant v > 0 such that we can set
A(N) =yN~1/d,

(Tammes 1930, Rankin 1955, Flatto and Newman 1977)
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Normalized Riesz s energy

The normalized normalized Riesz s energy of an M code is
Ex Ug, where Ug(r) := r7° and Ex is the normalized
discrete energy functional

Ex u:= 2 Z Z u (dist(z,y)) .

rzeX yeX
yF#x

for u: (0,00) — R.

The corresponding normalized continuous energy functional is

Eyu = /M /Mu(dist(a:,y)) doy(y) donr(x).

(Riesz 1938, Smith 1956, Landkof 1972, Wagner 1990, Damelin et al. 2009, Hare and Roginskaya 2003)
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Convergence of the energy of M codes

The generalization of the result on the unit sphere S¢ is:

Theorem 2

Let M be a compact connected d-dimensional Riemannian
manifold. If 0 < s < d then, for a well separated admissible
sequence X of M -codes,

[(Ex, — Ear) U| = O (8(|X|)t=/D/(d+2=5/d))

where §(|X¢|) is the upper bound on the geodesic ball
discrepancy of Xy used to satisfy the admissibility condition.
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Proof (sketch)

The proof proceeds along the lines of the proof for the sphere,
except for two issues.

1. The volume of a geodesic ball does not behave in exactly the
same way as the volume of a spherical cap.

2. The normalized mean potential function

By () = /M U, (dist (e, y)) don(y)

varies with @, unlike the case of the sphere.

Both issues are overcome using estimates from Blimlinger (1990).
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Blumlinger’s first estimate

Blimlinger (1990) gives us the estimate:

Lemma 3

Let M be a compact connected d-dimensional Riemannian
manifold without boundary. Then

Va(r) -1

= 0(r?)

uniformly in M , where Vq(r) is the volume of the Euclidean ball
of radius v in R%.

That is, the unnormalized volume of a small enough geodesic ball
in M is similar to the volume of a ball of the same radius in R<.

(Bliimlinger 1990)
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Blimlinger’s second estimate

Blimlinger (1990) also yields the following estimate.

Theorem 4

For f € C(M), and a measure v on M where
v(M) = Am (M),

[v(f) = Am ()] < Ta(r) + Ta(r) + Ts(r),

where

Tl("‘) = ”.f — .f'r'”oo)‘M(M)a

. }\M(B(w,r)) _
To(r) := 2| flloo Ana (M) A v 1/,
T3(r) := Q)f”"" lv(B(z, 7)) — Am(B(z,7))| dAp(x).
a(r) S
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.
Some notation

For integrable f : M — R, the mean of f on M is

Iy f = /M F(y) dom(y).

For a function f : M — R that is finite on the M -code X,
the mean of f on X is

1

m Z I(y)-

yeX

Ixf:= /M F(y)dox(y) =
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Some notation

For an M -code X, a point * € M and a measurable subset
S C M, the punctured normalized counting measure of S
with respect to X, excluding « is

o () == 15N X\ {z}|/|X],

and for a function f : M — R that is finite on X \ {x},
the corresponding punctured mean is

@l p,_ do@ () — L .
r= [ swarfw = > 1w
yZz
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Some notation

For a point * € M, define the function U, : M \ {x} — R as
U.(y) := dist(x,y) " °.
The mean Riesz s-potential at & with respect to M is then
Pr(z) = ZmUs,

and the normalized energy of the Riesz s-potential on M is

EMU=IM<IJM=/ / dist(z,y) *doym(y) donr(x).
MM
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.
Some notation

For an M -code X , the mean Riesz s-potential at « with
respect to X but excluding x is

Px(x) := E?]Um,
the normalized energy of the Riesz s-potential on X is
ExU =ZIx®x = X7 > dist(z,y)”°
reX yeX
yFx
and the mean on X of the mean Riesz s-potential is

Ix®y=— Y. / dist(z,y) ° dom(y).
|X rzeX
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Proof (sketch, continued)

First, split the energy difference (EX — EM) U into two parts:

(Ex —Epn ) U =Ix®x — Iy®Pum
=(Zx®x —Ix®Pm)+ (TxPv — Zv®Por)
— Ix(®x — ®n1) + (Tx — Tar)®ar.

Next, estimate each part.

Lemma 3 yields the estimate

|Zx(®x — ®pr)| = O %/9).



Discrepancy, separation and energy
LA sketch of the proof

Proof (sketch, continued)

We apply Theorem 4 with f := ®5s and v := A(M)ox .
It turns out that for = sufficiently small,
Ty (r) = O(r(d=8)/(d+1)),

Lemma 3 yields T2 (r) = O(r?).
The bound ’I/(B(.’B,’I‘)) — )\M(B(iB,T))‘ < 0 A(M) yields

Ts(r) = O(dr9).
Setting r = §(d+1)/(d*+2d—5) then results in the estimate

(Zx — Ing)®pr| = O (§(@—9)/ (@ +2d=5))
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Questions

1. Is the convergence rate given in Theorem 2 best possible?

2. For a compact connected Riemannian manifold M , for what
function spaces Fjs does a Koksma-Hlawka type inequality

(Zx —Zm)f| < D(X) V(f)

hold for all f € Far, where D(X) is the geodesic ball
discrepancy? What is the appropriate functional V' ?

3. For which compact connected Riemannian manifolds M does
the space Fhy contain the mean potential function ®p;7?

4. For which compact connected Riemannian manifolds M is
there an efficient construction for a well-separated admissible
sequence X 7
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