A partition of the unit sphere $\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$ into regions of equal measure and small diameter

Paul Leopardi
paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.
For presentation at Vanderbilt University, Nashville, November 2004.

RZ Partition of \mathbf{S}^{2}
into 33 regions of equal area, showing the center point of each region.

The sphere \mathbb{S}^{d}

Definition 1. For dimension \boldsymbol{d}, the unit sphere \mathbb{S}^{d} embedded in $\mathbb{R}^{\boldsymbol{d}+1}$ is defined as

$$
\mathbb{S}^{d}:=\left\{\begin{array}{l|l}
x \in \mathbb{R}^{d+1} & \sum_{k=1}^{d+1} x_{k}^{2}=1
\end{array}\right\}
$$

Definition 2. Spherical polar coordinates describe a point pof \mathbb{S}^{d} using one longitude, $\boldsymbol{p}_{\mathbf{1}} \in[0,2 \pi]$, and $\boldsymbol{d}-\mathbf{1}$ colatitudes, $p_{i} \in[0, \pi]$, for $i \in\{2, \ldots, d\}$.

Equal-measure partitions

Definition 3. Let \boldsymbol{S} be a measurable set and $\boldsymbol{\mu}$ a measure with $0<\mu(S)<\infty$.

An equal-measure partition of \boldsymbol{S} for $\boldsymbol{\mu}$ is a nonempty finite set \boldsymbol{P} of measurable subsets of \boldsymbol{S}, such that for each $\boldsymbol{Q}, \boldsymbol{R} \in \boldsymbol{P}$ with $\boldsymbol{Q} \neq \boldsymbol{R}$,

$$
\mu(Q)=\mu(R)=\mu(S) /|P|
$$

and

$$
\mu(Q \cap R)=0
$$

Diameter bounded sets of partitions

Definition 4. The diameter of a region $\boldsymbol{R} \subset \mathbb{R}^{\boldsymbol{d + 1}}$ is defined by

$$
\operatorname{diam} R:=\sup \{e(x, y) \mid x, y \in R\}
$$

where $\boldsymbol{e}(\boldsymbol{x}, \boldsymbol{y})$ is the $\mathbb{R}^{\boldsymbol{d + 1}}$ Euclidean distance $\|\underline{\boldsymbol{x}}-\underline{\boldsymbol{y}}\|$.
Definition 5. A set Z of partitions of $S \in \mathbb{R}^{d+1}$ is said to have diameter bound $\boldsymbol{K} \in \mathbb{R}_{+}$if for all $\boldsymbol{P} \in \boldsymbol{Z}$, for each $\boldsymbol{R} \in \boldsymbol{P}$, for $N:=|\boldsymbol{P}|$,

$$
\operatorname{diam} R \leqslant K N^{-1 / d}
$$

\boldsymbol{Z} is said to be diameter bounded if there exists $\boldsymbol{K} \in \mathbb{R}_{+}$such that \boldsymbol{Z} has diameter bound \boldsymbol{K}.

Key properties of the $\mathbf{R Z}$ partition of \mathbb{S}^{d}

The recursive zonal $(R Z)$ partition of \mathbb{S}^{d} into N regions is denoted as $\boldsymbol{R Z}(\boldsymbol{d}, N)$.
The set of partitions $R Z(d):=\left\{R Z(d, N) \mid N \in \mathbb{N}_{+}\right\}$. The RZ partition satisfies the following theorems.

Theorem 1. For dimension $\boldsymbol{d} \geqslant \mathbf{1}$, let $\boldsymbol{\sigma}$ be the usual surface measure on \mathbb{S}^{d} inherited from the Lebesgue measure on \mathbb{R} via the usual embedding of \mathbb{S}^{d} in \mathbb{R}^{d+1}. Then for $\boldsymbol{N} \geqslant \mathbf{1}, \boldsymbol{R} \boldsymbol{Z}(\boldsymbol{d}, \boldsymbol{N})$ is an equal-measure partition for $\boldsymbol{\sigma}$.

Theorem 2. For $\boldsymbol{d} \leqslant \mathbf{8}, \boldsymbol{R Z}(\boldsymbol{d})$ is diameter-bounded in the sense of Definition 5 .

Precedents

The RZ partition is based on Zhou's (1995) construction for \mathbb{S}^{2} as modified by Ed Saff, and on Ian Sloan's sketch of a partition of $\mathbb{S}^{\mathbf{3}}$ (2003).

Alexander (1972) uses the existence of a diameter-bounded set of equal-area partitions of \mathbb{S}^{2} to analyse the maximum sum of distances between points. Alexander (1972) suggests a construction different from Zhou (1995).

Equal-area partitions of \mathbb{S}^{2} used in the geosciences and astronomy do not have a proven bound on the diameter of regions.

Stolarsky's "Conjecture"

Stolasky (1973) asserts the existence of a diameter-bounded set of equal-measure partitions of \mathbb{S}^{d} for all \boldsymbol{d}, but offers no construction or existence proof.

Beck and Chen (1987) quotes Stolarsky. Bourgain and Lindenstrauss (1988) quotes Beck and Chen.

Wagner (1993) implies the existence of an RZ-like construction for \mathbb{S}^{d}. Bourgain and Lindenstrauss (1993) gives a partial construction.

Spherical zones, caps and collars

For $\boldsymbol{d}>1$, a zone can be described by

$$
Z(a, b):=\left\{p \in \mathbb{S}^{d} \mid p_{d} \in[a, b]\right\}
$$

where $0 \leqslant \boldsymbol{a}<\boldsymbol{b} \leqslant \boldsymbol{\pi}$.
$Z(0, b)$ is a North polar cap and $Z(a, \pi)$ is a South polar cap. If $0<\boldsymbol{a}<\boldsymbol{b}<\boldsymbol{\pi}, \boldsymbol{Z}(\boldsymbol{a}, \boldsymbol{b})$ is a collar.

For $\boldsymbol{d}>\mathbf{1}$, the measure of a spherical cap of spherical radius $\boldsymbol{\theta}$ is

$$
V(\theta):=\sigma(Z(0, \theta))=\omega \int_{0}^{\theta}(\sin \xi)^{d-1} d \xi
$$

where $\omega=\sigma\left(\mathbb{S}^{d-1}\right)$.

Outline of the RZ algorithm

The RZ algorithm is recursive in dimension \boldsymbol{d}. Algorithm for $\boldsymbol{R Z}(d, N)$:
if $N=1$ then
There is a single region which is the whole sphere;
else if $d=1$ then
Divide the circle into N equal segments;
else
Divide the sphere into zones,
each the same measure as an integer number of regions:
North and South polar spherical caps and a number of spherical collars;
Partition each spherical collar into regions of equal measure, using the RZ algorithm for dimension $\boldsymbol{d}-\mathbf{1}$;
endif.
$R Z(3,99)$ Steps 1 to 2

RZ $(3,99)$ Steps 6 to 7

RZ $(3,99)$ Steps 3 to 5

Rounding the number of regions per collar

Similarly to Zhou (1995), given the sequence $\boldsymbol{y}_{\boldsymbol{i}}$ for \boldsymbol{n} collars, with

$$
\sum_{i=1}^{n} y_{i}=N-2
$$

define the sequences \boldsymbol{a} and \boldsymbol{m} by:
$a_{0}:=0$, and for $i \in\{1, \ldots, n\}$,

$$
m_{i}:=\operatorname{round}\left(y_{i}+a_{i-1}\right), \quad a_{i}:=\sum_{j=1}^{i}\left(y_{j}-m_{j}\right)
$$

Then $\boldsymbol{m}_{\boldsymbol{i}}$ is the required number of regions in collar \boldsymbol{i}, and we can show that $a_{i} \in[-1 / 2,1 / 2)$ and $a_{n}=0$.

Geometry of regions

Each region \boldsymbol{R} in collar \boldsymbol{i} of $\boldsymbol{R} \boldsymbol{Z}(\boldsymbol{d}, \boldsymbol{N})$ is of the form

$$
R=R_{d-1} \times\left[\theta_{i}, \theta_{i+1}\right]
$$

in spherical polar coordinates, where
$R_{d-1}=\left[t_{1}, b_{1}\right] \times \ldots \times\left[t_{d-1}, b_{d-1}\right]$, with $t, b \in \mathbb{S}^{d-1}$.
We can show that

$$
\operatorname{diam} R \leqslant \sqrt{\Delta_{i}^{2}+w_{i}^{2}\left(\operatorname{diam} R_{d-1}\right)^{2}}
$$

where $\Delta_{i}:=\theta_{i+1}-\theta_{i}$ and $w_{i}:=\max _{\xi \in\left[\theta_{i}, \theta_{i+1}\right]} \sin \xi$.

The inductive step

Assuming that $R Z(d-1)$ has diameter bound κ, define

$$
P_{i}:=w_{i} \kappa m_{i}^{\frac{-1}{d-1}} .
$$

Then we can show that

$$
\operatorname{diam} R \leqslant \sqrt{\left(\max _{i \in\{1, \ldots, n\}} \Delta_{i}\right)^{2}+\left(\max _{i \in\{1, \ldots, n\}} P_{i}\right)^{2}} .
$$

Continuous analogs

Define $\Theta:=V^{-1}$,

$$
\begin{aligned}
Y(\theta) & :=\frac{V\left(\theta+\Delta_{F}\right)-V(\theta)}{V_{R}}, \\
T(\tau, \theta) & :=\Theta\left(V(\theta)-\tau V_{R}\right) \\
B(\beta, \theta) & :=\Theta\left(V\left(\theta+\Delta_{F}\right)+\beta V_{R}\right), \\
M(\tau, \beta, \theta) & :=Y(\theta)+\tau+\beta \\
\Delta(\tau, \beta, \theta) & :=B(\beta, \theta)-T(\tau, \theta), \\
W(\tau, \beta, \theta) & :=\max _{\xi \in[T(\tau, \theta), B(\beta, \theta)]} \sin \xi \\
P(\tau, \beta, \theta) & :=\kappa W(\tau, \beta, \theta) M(\tau, \beta, \theta)^{\frac{-1}{d-1}} .
\end{aligned}
$$

$R Z(3,99)$ Steps 1 to 2

RZ $(3,99)$ Steps 6 to 7

RZ $(3,99)$ Steps 3 to 5

Properties of continuous analogs

For each collar $i \in\{1, \ldots, n\}$, if we define $\boldsymbol{\theta}_{\boldsymbol{F}, i}:=\boldsymbol{\theta}_{\boldsymbol{c}}+(i-1) \Delta_{\boldsymbol{F}}$, then we can show that

$$
\begin{aligned}
Y\left(\theta_{F, i}\right) & =y_{i}, \\
T\left(-a_{i-1}, \theta_{F, i}\right) & =\theta_{i} \\
B\left(a_{i}, \theta_{F, i}\right) & =\theta_{i+1} \\
M\left(-a_{i-1}, a_{i}, \theta_{F, i}\right) & =m_{i} \\
\Delta\left(-a_{i-1}, a_{i}, \theta_{F, i}\right) & =\Delta_{i} \\
W\left(-a_{i-1}, a_{i}, \theta_{F, i}\right) & =w_{i} \\
P\left(-a_{i-1}, a_{i}, \theta_{F, i}\right) & =P_{i}
\end{aligned}
$$

Feasible domains

Define the feasible domain $\mathbb{D}:=\mathbb{D}_{t} \cup \mathbb{D}_{m} \cup \mathbb{D}_{b}$, where

$$
\begin{aligned}
\mathbb{D}_{t} & :=\left\{\left(0, \beta, \theta_{c}\right) \mid \beta \in[-1 / 2,1 / 2]\right\}, \\
\mathbb{D}_{m} & :=\{(\tau, \beta, \theta) \mid \tau \in[-1 / 2,1 / 2], \beta \in[-1 / 2,1 / 2], \\
\theta & \left.\in\left[\theta_{F, 2}, \pi-\theta_{c}-2 \Delta_{F}\right]\right\} \\
\mathbb{D}_{b} & :=\left\{\left(\tau, 0, \pi-\theta_{c}-\Delta_{F}\right) \mid \tau \in[-1 / 2,1 / 2]\right\} .
\end{aligned}
$$

Assuming that $\boldsymbol{R Z}(\boldsymbol{d}-1)$ has diameter bound κ, then for $N>2$, for R in collar i of $R(d, N)$, we can show

$$
\operatorname{diam} R \leqslant \sqrt{\left(\max _{\mathbb{D}} \Delta\right)^{2}+\left(\max _{\mathbb{D}} P\right)^{2}}
$$

Properties and estimates of V

- V is smooth on $[0, \pi]$ and is monotonic increasing in $(0, \pi)$.
- $\boldsymbol{D V}$ is positive and monotonic increasing in $(0, \pi / 2)$.
- $\boldsymbol{D V}(\boldsymbol{\theta})=\boldsymbol{D V}(\pi-\theta)$.
- For $\boldsymbol{\theta}, \boldsymbol{h} \geqslant 0$ and $\theta+h \in[0, \pi / 2]$,

$$
V(\theta+h)-V(\theta) \in[h D V(\theta), h D V(\theta+h)]
$$

- For $\boldsymbol{\theta} \in(0, \pi / 2), \boldsymbol{V}(\boldsymbol{\theta}) \in\left[\boldsymbol{L}_{\boldsymbol{V}} \boldsymbol{\theta}^{d}, \boldsymbol{H}_{V} \boldsymbol{\theta}^{d}\right]$, where

$$
L_{V}:=\frac{\omega}{d}\left(\frac{2}{\pi}\right)^{d-1} \quad \text { and } \quad H_{V}:=\frac{\omega}{d}
$$

Cap, Δ, P bounds

We can use properties and estimates of \boldsymbol{V} to show that:

- There is a constant $\boldsymbol{K}_{\boldsymbol{c}}>\mathbf{0}$ such that for $\boldsymbol{N}>\mathbf{1}$, the diameter of each polar cap of $\boldsymbol{R Z}(\boldsymbol{d}, \boldsymbol{N})$ is bounded by $K_{c} N^{-1 / d}$.
- For $1<d \leqslant 8$, if $\boldsymbol{R Z}(d-1)$ is diameter bounded, then there are constants $K_{\Delta}>\mathbf{0}, \boldsymbol{K}_{P}>\mathbf{0}, \boldsymbol{N}_{\Delta}, N_{P} \in \mathbb{N}$ such that for $R Z(d, N)$ with $N>\max \left(N_{\Delta}, N_{P}\right)$,

$$
\begin{aligned}
& \max _{\mathbb{D}} \Delta \leqslant K_{\Delta} N^{-1 / d} \\
& \max _{\mathbb{D}} P \leqslant K_{P} N^{-1 / d}
\end{aligned}
$$

Outline of proof of Theorem 2

Assume that $N>2$ and $d>1$. Define $N_{H}:=\max \left(N_{\Delta}, N_{P}\right)$.

Then if $\boldsymbol{d} \leqslant 8$, if $\boldsymbol{R} \boldsymbol{Z}(\boldsymbol{d}-1)$ has diameter bound κ, and if $N>N_{H}$, we have maxdiam $(d, N) \leqslant K_{H} N^{-1 / d}$, where $K_{H}:=\max \left(K_{c}, \sqrt{K_{\Delta}^{2}+K_{P}^{2}}\right)$.

The diameter of any region is bounded by 2 .
Therefore for $N \leqslant N_{H}, \operatorname{maxdiam}(d, N) \leqslant K_{L} N^{-1 / d}$, where $K_{L}:=2 N_{H}^{1 / d}$.
$R Z(\mathbf{1}, N)$ consists of N equal segments, so $R Z(\mathbf{1})$ has diameter bound 2π. The result follows by induction.

Numerical results - constants

d	K_{d}
2	18.4
3	59.9
4	205
5	724
6	2.63×10^{3}
7	9.76×10^{3}
8	3.57×10^{4}

Zhou obtains $\boldsymbol{K}_{\mathbf{2}} \leqslant \mathbf{7}$ for his (1995) algorithm.

Bounds on maximum diameter coefficient for RZ partition of $\mathbf{S}^{\mathbf{2}}, \mathbf{2 0 0 4 - 0 9 - 2 2}$

Bounds on maximum diameter coefficient for RZ partition of $\mathbf{S}^{\mathbf{3}}, \mathbf{2 0 0 4 - 0 9 - 2 2}$

Stereographic projection of \mathbb{S}^{3} to \mathbb{R}^{3}

In Cartesian coordinates, the stereographic projection $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \cup \infty$ is

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & \mapsto\left(x_{1}, x_{2}, x_{3}\right) /\left(1-x_{4}\right), \quad \text { if } \quad x_{4} \neq 1 \\
\left(x_{1}, x_{2}, x_{3}, 1\right) & \mapsto \infty
\end{aligned}
$$

When restricted to $\mathbb{S}^{\mathbf{3}}$,

- The north pole projects to ∞.
- The south polar cap projects to a ball.
- Collars project to differences between balls.
- Spheres project to generalized spheres.

Illustration of $R Z$ partition of \mathbb{S}^{3}

