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The sphere

�

Definition 1. For dimension

�

, the unit sphere

� �

embedded in� �� �

is defined as

� ��� � � 	 � �� �

�
�
�
�

�� �

�� �
� � � � � �

Definition 2. Spherical polar coordinates describe a point � of

� �

using one longitude, � � 	 ����� ��� �
, and

� � �

colatitudes,

��� 	 ����� � �

, for

� 	 � �� � � �� �  
.
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Equal-measure partitions

Definition 3. Let

�

be a measurable set and � a measure with� � � � � � � � �

An equal-measure partition of

�

for � is a nonempty finite set

�

of
measurable subsets of

�

, such that for each � � 	 �

with� � �

,

� � � � � � � � � � � � �	
 �


and

� � � � � � � �
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Diameter bounded sets of partitions

Definition 4. The diameter of a region

��� � �� �

is defined by

� ��� � �� � �� 	 ��
 � �� � �
 �� � 	 �  �

where 
 � �� � �

is the

� �� �

Euclidean distance

� � � � � .

Definition 5. A set

�

of partitions of
� 	 � �� �

is said to have
diameter bound

	 �� if for all
� 	 �

, for each

� 	 �

, for

� �
 �


,

� ��� � �� � � � �
�

�

is said to be diameter bounded if there exists

	 �� such that�

has diameter bound .
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Key properties of the RZ partition of

�
The recursive zonal (RZ) partition of

� �

into regions is denoted
as

� � � �� �

.
The set of partitions

� � � � � � � � � � � �� �
 	 ��  

.
The RZ partition satisfies the following theorems.

Theorem 1. For dimension

� � �

, let � be the usual surface
measure on

� �

inherited from the Lebesgue measure on

�

via the
usual embedding of

� �

in

� �� �

.
Then for

� �

,

� � � �� �
is an equal-measure partition for � .

Theorem 2. For

�� �

,
� � � � �

is diameter-bounded in the sense
of Definition 5.
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Precedents

The RZ partition is based on Zhou’s (1995) construction for

� �

as
modified by Ed Saff, and on Ian Sloan’s sketch of a partition of

� �

(2003).

Alexander (1972) uses the existence of a diameter-bounded set of
equal-area partitions of

� �

to analyse the maximum sum of
distances between points. Alexander (1972) suggests a construction
different from Zhou (1995).

Equal-area partitions of

� �

used in the geosciences and astronomy
do not have a proven bound on the diameter of regions.
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Stolarsky’s “Conjecture”

Stolasky (1973) asserts the existence of a diameter-bounded set of
equal-measure partitions of

� �

for all

�

, but offers no construction
or existence proof.

Beck and Chen (1987) quotes Stolarsky. Bourgain and
Lindenstrauss (1988) quotes Beck and Chen.

Wagner (1993) implies the existence of an RZ-like construction for� �

. Bourgain and Lindenstrauss (1993) gives a partial construction.
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Spherical zones, caps and collars

For

� � �

, a zone can be described by

� ��� � � � � � � � 	 � �
 � � 	 �� � � � �
�

where

� � � � � � � .

� � ��� � �

is a North polar cap and

� ��� � � �
is a South polar cap.

If

� � � � � � � ,

� ��� � � �

is a collar.

For

� � �

, the measure of a spherical cap of spherical radius

�

is

� � � � � � �
� � � ��� � � 	 � 


�
�

� � �� � � � � � � ��

where 
 � � � � � � � �

.
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Outline of the RZ algorithm

The RZ algorithm is recursive in dimension

�

.
Algorithm for

� � � �� �

:

�� � � � ��� 

There is a single region which is the whole sphere;

� � � � �� � � � � ��� 

Divide the circle into equal segments;

� � � �

Divide the sphere into zones,
each the same measure as an integer number of regions:

North and South polar spherical caps
and a number of spherical collars;

Partition each spherical collar into regions of equal measure,
using the RZ algorithm for dimension

� � �

;

�  � ��

.
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Rounding the number of regions per collar

Similarly to Zhou (1995), given the sequence � � for � collars, with

�
�  �

�� � � ��
define the sequences � and � by:� �� � � , and for

� 	 � �� � � �� �  
,

� � � � � ��  � � �� � � � � � �� � � � �
�

� �
� � � � � � � �

Then � � is the required number of regions in collar

�

, and we can
show that � � 	 � � �	 �� �	 � �

and � � � � .
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Geometry of regions

Each region

�

in collar

�

of

� � � �� �

is of the form

� � � � � � � � � �� �� � � ��
in spherical polar coordinates, where

� � � � � ��� �� � � � � � � � � ��� � � �� � � � � � , with

�� � 	 � � � � .

We can show that

� ��� � �� � �� � � �� � � ��� � � � � � � ��

where

� � � � �� � � � �� and � � � � �� ���� 	 ��
� ��
� � � � �� �

.
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The inductive step

Assuming that

� � � � � � �

has diameter bound � , define

�� � � � � � �
� � �� �� �

Then we can show that

� ��� � �� �� ��� � ��� � � � � �
� �

�
� �� ��� � ��� � � � � �

��
�

�
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Continuous analogs

Define

�� � � � � ,

� � � � � �
� � � � ��� � � � � � �

��� �

� ��� � � � � � � � � � � � � � ��� 	
�

	 �
 � � � � � � � � � � � ��� � � 
 ��� 	
�

��� � 
 � � � � � � � � � � � � 
 �

� ��� � 
 � � � � � 	 �
 � � � � � ��� � � ��

��� � 
 � � � � � �� �

� � 	� �� � � �� � �� � � � � � �� ��

� ��� � 
 � � � � � � ��� � 
 � � � ��� � 
 � � � � ��� � �
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Properties of continuous analogs

For each collar

� 	 � �� � � �� �  

, if we define�� � � � � ��
�

� � � � � � ��� , then we can show that

� � �� � � � � ���

� � � � � � �� �� � � � � ���

	 ��� �� �� � � � � �� � ��

� � � � � �� � �� �� � � � � � ��

� � � � � � �� � �� �� � � � � � ��

� � � � � �� � �� �� � � � � � ��

� � � � � � �� � �� �� � � � � �� �
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Feasible domains

Define the feasible domain

�� � ��� � ��� � ��� , where

�� � � � � � � 
 � �
�

�
 
 	 � � �	 �� �	 � �  ��� � � � ��� � 
 � � �
 � 	 � � �	 �� �	 � �� 
 	 � � �	 �� �	 � ��

� 	 � �� � �� � � �
� � � ��� �  ���� � � � ��� � ��� � � �

� � ��� �
 � 	 � � �	 �� �	 � �  �

Assuming that

� � � � � � �

has diameter bound � , then for� �

, for

�

in collar

�

of
� � � �� �

, we can show

� ��� � �� �� �	 � �
� �� � 	 �

�
�
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Properties and estimates of

� �

is smooth on

����� � �

and is monotonic increasing in

� ��� � �

.

� �

is positive and monotonic increasing in
� � � � 	 � �

.

� � � � � � � � � � � �

.

�

For

�� � � �

and

� � � 	 ����� � 	 � �
,

� � � � � � � � � � � 	 � � � � � �� � � � � � � � � �

�

For

� 	 � ��� � 	 � �

,

� � � � 	 ��� � � �� � � � �

, where

� � � �



�

�
�

� � �

and � � �



� �
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Cap, , bounds

We can use properties and estimates of

�

to show that:

�

There is a constant �

� �

such that for
� �

, the
diameter of each polar cap of

� � � �� �

is bounded by

�

� � � �

.

�

For

� � �� �

, if

� � � � � � �

is diameter bounded, then
there are constants � � � � � � �

, �� � 	 �

such
that for

� � � �� �

with
� �� � �

�� �
�

,

�� � 	 � �

� � � � �
�

�� �	 � �

�

� � � �
�
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Outline of proof of Theorem 2

Assume that

� �

and

� � �

.
Define �� � �� � �

�� �
�

.

Then if

�� �

, if

� � � � � � �

has diameter bound � , and if� � , we have �� � � ��� � � �� � � � � � � �

, where

�� � �� � �� �
�

� �
� .

The diameter of any region is bounded by 2.
Therefore for

� � , �� � � ��� � � �� � � � � � � �

, where

� � � � � � �
� �

� � � �� �

consists of equal segments, so

� � � � �

has
diameter bound

��� . The result follows by induction.
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Numerical results - constants

� �

� � � � �

� �� � �

� � � �

� � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

Zhou obtains � � �
for his (1995) algorithm.
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Stereographic projection of

�

to

�

In Cartesian coordinates, the stereographic projection� � � � � � is

� � �� � �� � �� � � ��� � � �� � �� � �
�	 � � � � � �� if � � � � ��

� � �� � �� � �� � ��� � �

When restricted to

� �

,

�

The north pole projects to � .

�

The south polar cap projects to a ball.

�

Collars project to differences between balls.

�

Spheres project to generalized spheres.
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Illustration of RZ partition of

�
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