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Discrepancy, separation and energy on the unit sphere

Result for Sd ⊂ Rd+1

In 2004, here at Vanderbilt University, Ed Saff asked me a question
about, separation, discrepancy and discrete energy on the unit
sphere Sd . The answer to this question is:

Theorem 1

For a well separated admissible sequence X of Sd spherical
codes, with discrepancy function δ, the normalized Riesz s energy
for 0 < s < d satisfies the inequality

EX` Us = EM Us + O
(
δ(|X`|)1−s/d

)
.

This talk describes a generalization of this result.
(L 2007, L 2013)
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Setting: compact connected Riemannian manifolds

Compact connected Riemannian manifolds

Let M be a smooth, connected d -dimensional Riemannian
manifold, without boundary, with metric g and geodesic distance
dist , such that M is compact in the metric topology of dist .

(Sinclair and Tanaka, 2007, Figure 1)
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Setting: compact connected Riemannian manifolds

Metric and measure, sequences of M -codes

Let λM be the volume measure on M given by the volume
element corresponding to g and therefore to dist .

Since M is compact, it has finite volume.

Let σM := λM/λM(M), so σM(M) = 1.

Consider an infinite sequence X := (X1, X2, . . .) of M -codes,
each a finite subset of M.

A sequence (X1, X2, . . .) whose cardinalities (|X1| , |X2| , . . .)
diverge to +∞ is called pre-admissible.
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Setting: compact connected Riemannian manifolds

Normalized ball discrepancy

For any probability measure µ on M ,
the normalized ball discrepancy is

D(µ) := sup
x∈M, 0<r6diam(M)

∣∣µ(Bx(r)
)
− σM

(
Bx(r)

)∣∣ ,
where diam(M) is the diameter of M and Bx(r) is the
geodesic ball of radius r about the point x .
An M -code X with cardinality |X| has probability measure

σX(S) := |S ∩X| / |X| ,

and therefore normalized ball discrepancy

D(X) := sup
y∈M, r>0

∣∣|By(r) ∩X| / |X| − σM

(
By(r)

)∣∣ .
(Blümlinger 1990, Damelin and Grabner 2003)
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Setting: compact connected Riemannian manifolds

Asymptotic equidistribution

A sequence X := (X1, X2, . . .), of M -codes is asymptotically
equidistributed if D(X`) < δ(|X`|), where δ is a positive
decreasing function δ : N→ (0,∞) with δ(N)→ 0 as
N →∞ .

It is easy to see that δ(|X|) > 1/ |X| .

Consider each Bx(r) with x ∈ X , and the limit as r → 0 .

(Blümlinger 1990, Damelin and Grabner 2003)
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Setting: compact connected Riemannian manifolds

Separation of points, admissible sequences

An admissible sequence of M -codes is an asymptotically
equidistributed pre-admissible sequence with discrepancy function
δ that also has a lower bound on the minimum separation:

dist(x, y) > ∆(N`) for all x, y ∈ X`,

where ∆ : N→ (0,∞) is a positive decreasing function with
∆(N)→ 0 as N →∞ .

(Tammes 1930, Rankin 1955, Flatto and Newman 1977)



Discrepancy, separation and energy

Setting: compact connected Riemannian manifolds

Well separated sequences of codes

The order of the lower bound ∆(N) for the separation of the
sequence with the largest separation for each N is Ω(N−1/d) .

Therefore, for all sequences of M -codes,
∆(|X`|) = O(|X`|−1/d).

A sequence of M -codes is called well separated if there exists a
separation constant γ > 0 such that we can set
∆(N) = γN−1/d .

(Tammes 1930, Rankin 1955, Flatto and Newman 1977)
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Setting: compact connected Riemannian manifolds

Normalized Riesz s energy

The normalized normalized Riesz s energy of an M code is
EX Us , where Us(r) := r−s and EX is the normalized
discrete energy functional

EX u :=
1

|X|2
∑
x∈X

∑
y∈X
y 6=x

u (dist(x, y)) .

for u : (0,∞)→ R.

The corresponding normalized continuous energy functional is

EM u :=

∫
M

∫
M
u (dist(x, y)) dσM(y) dσM(x).

(Riesz 1938, Smith 1956, Landkof 1972, Wagner 1990, Damelin et al. 2009, Hare and Roginskaya 2003)
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The main result

Convergence of the energy of M codes

The generalization of the result on the unit sphere Sd is:

Theorem 2

Let M be a compact connected d -dimensional Riemannian
manifold. If 0 < s < d then, for a well separated admissible
sequence X of M -codes,∣∣(EX` −EM

)
U
∣∣ = O

(
δ(|X`|)(1−s/d)/(d+2−s/d)

)
,

where δ(|X`|) is the upper bound on the geodesic ball
discrepancy of X` used to satisfy the admissibility condition.
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A sketch of the proof

Proof (sketch)

The proof proceeds along the lines of the proof for the sphere,
except for two issues.

1. The volume of a geodesic ball does not behave in exactly the
same way as the volume of a spherical cap.

2. The normalized mean potential function

ΦM(x) :=

∫
M
Us (dist(x, y)) dσM(y)

varies with x , unlike the case of the sphere.

Both issues are overcome using estimates from Blümlinger (1990).
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A sketch of the proof

Blümlinger’s first estimate

Blümlinger (1990) gives us the estimate:

Lemma 3

Let M be a compact connected d -dimensional Riemannian
manifold without boundary. Then∣∣∣∣∣λM

(
Bx(r)

)
Vd(r)

− 1

∣∣∣∣∣ = O(r2)

uniformly in M , where Vd(r) is the volume of the Euclidean ball
of radius r in Rd .

That is, the unnormalized volume of a small enough geodesic ball
in M is similar to the volume of a ball of the same radius in Rd .
(Blümlinger 1990)
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A sketch of the proof

Blümlinger’s second estimate

Blümlinger (1990) also yields the following estimate.

Theorem 4

For f ∈ C(M), and a measure ν on M where
ν(M) = λM(M),

|ν(f)− λM(f)| 6 T1(r) + T2(r) + T3(r),

where

T1(r) := ‖f − fr‖∞ λM(M),

T2(r) := 2 ‖f‖∞ λM(M) sup
x∈M

∣∣∣∣∣λM

(
B(x, r)

)
Vd(r)

− 1

∣∣∣∣∣ ,
T3(r) :=

‖f‖∞
Vd(r)

∫
M

∣∣ν(B(x, r)
)
− λM(B(x, r)

)∣∣ dλM(x).
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A sketch of the proof

Some notation

For integrable f : M → R , the mean of f on M is

IMf :=

∫
M
f(y) dσM(y).

For a function f : M → R that is finite on the M -code X ,
the mean of f on X is

IXf :=

∫
M
f(y) dσX(y) =

1

|X|
∑
y∈X

f(y).
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A sketch of the proof

Some notation

For an M -code X , a point x ∈M and a measurable subset
S ⊂M, the punctured normalized counting measure of S
with respect to X , excluding x is

σ
[x]
X (S) := |S ∩X \ {x}| / |X| ,

and for a function f : M → R that is finite on X \ {x},
the corresponding punctured mean is

I [x]X f :=

∫
M
f(y) dσ

[x]
X (y) =

1

|X|
∑
y∈X
y 6=x

f(y).
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A sketch of the proof

Some notation

For a point x ∈M, define the function Ux : M \ {x} → R as

Ux(y) := dist(x, y)−s.

The mean Riesz s -potential at x with respect to M is then

ΦM(x) = IMUx,

and the normalized energy of the Riesz s -potential on M is

EM U = IMΦM =

∫
M

∫
M

dist(x, y)−s dσM(y) dσM(x).
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A sketch of the proof

Some notation

For an M -code X , the mean Riesz s -potential at x with
respect to X but excluding x is

ΦX(x) := I [x]X Ux,

the normalized energy of the Riesz s -potential on X is

EX U = IXΦX =
1

|X|2
∑
x∈X

∑
y∈X
y 6=x

dist(x, y)−s,

and the mean on X of the mean Riesz s -potential is

IXΦM =
1

|X|
∑
x∈X

∫
M

dist(x, y)−s dσM(y).
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A sketch of the proof

Proof (sketch, continued)

First, split the energy difference
(

EX −EM

)
U into two parts:(

EX −EM

)
U = IXΦX − IMΦM

= (IXΦX − IXΦM) + (IXΦM − IMΦM)

= IX(ΦX − ΦM) + (IX − IM)ΦM .

Next, estimate each part.

Lemma 3 yields the estimate

|IX(ΦX − ΦM)| = O(δ1−s/d).
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A sketch of the proof

Proof (sketch, continued)

We apply Theorem 4 with f := ΦM and ν := λ(M)σX .

It turns out that for r sufficiently small,

T1(r) = O(r(d−s)/(d+1)).

Lemma 3 yields T2(r) = O(r2).
The bound

∣∣ν(B(x, r)
)
− λM(B(x, r)

)∣∣ 6 δ λ(M) yields

T3(r) = O(δ r−d).

Setting r = δ(d+1)/(d2+2d−s) then results in the estimate

|(IX − IM)ΦM | = O
(
δ(d−s)/(d2+2d−s)

)
.
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Further questions

Questions

1. Is the convergence rate given in Theorem 2 best possible?

2. For a compact connected Riemannian manifold M , for what
function spaces FM does a Koksma-Hlawka type inequality

|(IX − IM)f | 6 D(X) V (f)

hold for all f ∈ FM , where D(X) is the geodesic ball
discrepancy? What is the appropriate functional V ?

3. For which compact connected Riemannian manifolds M does
the space FM contain the mean potential function ΦM ?

4. For which compact connected Riemannian manifolds M is
there an efficient construction for a well-separated admissible
sequence X ?


	Discrepancy, separation and energy on the unit sphere
	Setting: compact connected Riemannian manifolds
	The main result
	A sketch of the proof
	Further questions

