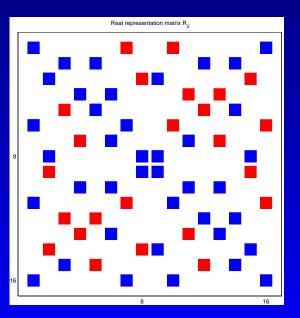
A quick introduction to Clifford algebras

Paul Leopardi

paul.leopardi@unsw.edu.au

Presented at School of Mathematics, University of New South Wales, 2003-06-05.



Quadratic forms

(Lounesto 1997)

For vector space \mathbb{V} over field \mathbb{F} , characteristic $\neq 2$:

• Map $f : \mathbb{V} \to \mathbb{F}$, with

$$f(\lambda x) = \lambda^2 f(x), \forall \lambda \in \mathbb{F}, x \in \mathbb{V}$$

• f(x) = b(x, x), where

 $b: \mathbb{V} \times \mathbb{V} \to \mathbb{F}$, given by $b(x, y) := \frac{1}{2} \left(f(x + y) - f(x) - f(y) \right)$

is a symmetric bilinear form

Quadratic spaces, Clifford maps

(Porteous 1995; Lounesto 1997)

- A *quadratic space* is the pair (\mathbb{V}, f) , where f is a quadratic form on \mathbb{V}
- A *Clifford map* is a vector space homomorphism

 $\varphi:\mathbb{V}\to\mathbb{A}$

where \mathbb{A} is an associative algebra, and

 $(\varphi v)^2 = f(v) \qquad \forall v \in \mathbb{V}$

Universal Clifford algebras

(Lounesto 1997)

The *universal Clifford algebra* Cl(f) for the quadratic space (\mathbb{V}, f) is the algebra generated by the image of the Clifford map φ_f such that Cl(f) is the universal initial object such that \forall suitable algebras \mathbb{A} with Clifford map $\varphi_{\mathbb{A}} \exists a$ homomorphism

$$P_{\mathbb{A}}: Cl(f) \to \mathbb{A}$$
$$\varphi_{\mathbb{A}} = P_{\mathbb{A}} \circ \varphi_f$$

Real Clifford algebras $\mathbb{R}_{p,q}$

(Porteous 1995)

• The real quadratic space $\mathbb{R}^{p,q}$ is \mathbb{R}^{p+q} with

$$\phi(x) := -\sum_{k=-q}^{-1} x_k^2 + \sum_{k=1}^{p} x_k^2$$

- For each p, q ∈ N, the real universal Clifford algebra for ℝ^{p,q} is called ℝ_{p,q}.
- $\mathbb{R}_{p,q}$ is isomorphic to some matrix algebra over one of: $\mathbb{R}, \mathbb{R} \oplus \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{H} \oplus \mathbb{H}$
- For example, $\mathbb{R}_{1,1} \cong \mathbb{R}(2)$

Notation for integer sets

• For $S \subseteq \mathbb{Z}$, define

• For $m \leq n \in \mathbb{Z}$, define

 $\varsigma(m,n) := \{m, m+1, \dots, n-1, n\} \setminus \{0\}$

Frames for Clifford algebras

(Hestenes and Sobczyck 1984; Wene 1992; Ashdown)

- A *frame* is an ordered basis $(\gamma_{-q}, \ldots, \gamma_p)$ for $\mathbb{R}^{p,q}$ which puts a quadratic form into the canonical form ϕ .
- For $p, q \in \mathbb{N}$, embed the frame for $\mathbb{R}^{p,q}$ into $\mathbb{R}_{p,q}$ via the maps

$$\gamma : \varsigma(-q,p) \to \mathbb{R}^{p,q}$$

 $\varphi : \mathbb{R}^{p,q} \to \mathbb{R}_{p,q}$
 $(\varphi \gamma_k)^2 = \phi \gamma_k = \operatorname{sgn} k.$

Real frame groups

(Braden 1985; Lam and Smith 1989) For $p, q \in \mathbb{N}$, define the real *frame group* $\mathbb{G}_{p,q}$ via the map

$$g:\varsigma(-q,p)\to\mathbb{G}_{p,q}$$

with generators and relations

$$egin{aligned} \mu,g_k \mid \mu g_k &= g_k \mu, \ \mu^2 &= 1, \ & (g_k)^2 &= egin{cases} \mu, & ext{if} \ k &< 0, \ 1, & ext{if} \ k &> 0 \ & g_k g_m &= \mu g_m g_k \ orall k
eq m \end{aligned}$$

Canonical products

(Bergdolt 1996; Lounesto 1997; Dorst 2001)

- The real frame group $\mathbb{G}_{p,q}$ has order 2^{p+q+1}
- Each member w can be expressed as the canonically ordered product

$$egin{aligned} &w = \mu^a \prod_{k \in T} g_k \ &= \mu^a \prod_{k = -q, \ k
eq 0}^p g_k^{b_k} \end{aligned}$$

where $T \subseteq \varsigma(-q, p), a, b_k \in \{0, 1\}$

Clifford algebra of frame group

(Braden 1985; Lam and Smith 1989; Lounesto 1997; Dorst 2001)
For p,q ∈ N embed G_{p,q} into R_{p,q} via the map

 $\alpha : \mathbb{G}_{p,q} \to \mathbb{R}_{p,q}$ $\alpha 1 := 1, \qquad \alpha \mu := -1$ $\alpha g_k := \varphi \gamma_k, \quad \alpha(gh) := (\alpha g)(\alpha h).$

Define basis elements via the map

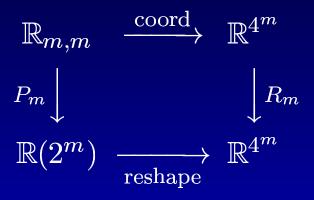
$$\mathbf{e}: \mathbb{P}\varsigma(-q,p) \to \mathbb{R}_{p,q}, \qquad \mathbf{e}_T := \alpha \prod_{k \in T} g_k,$$

Each $a \in \mathbb{R}_{p,q}$ can be expressed as

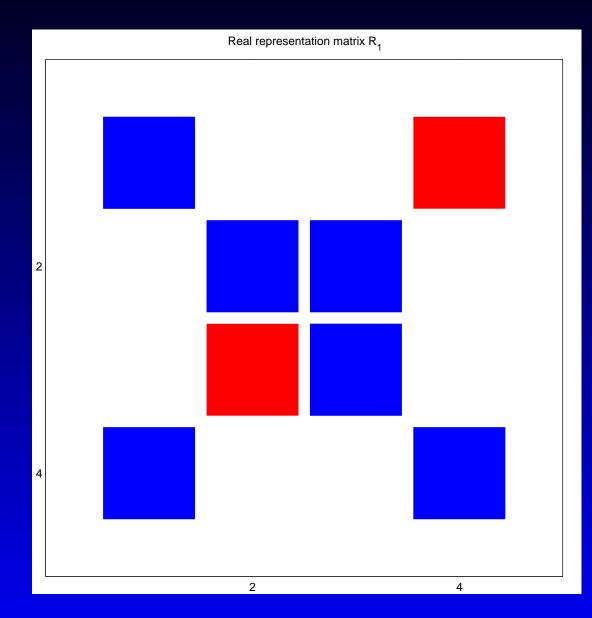
$$a = \sum_{T \subseteq \varsigma(-q,p)} a_T \mathbf{e}_T$$

Neutral matrix representations

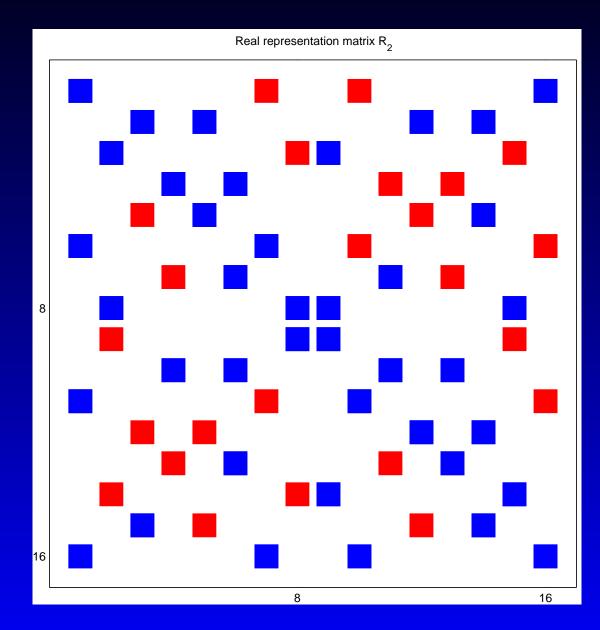
(Cartan and Study 1908; Porteous 1969; Lounesto 1997) The *representation map* P_m and *representation matrix* R_m make the following diagram commute:



Real representation matrix R_1



Real representation matrix R_2



References 1

References

[Ablamowicz 1996]	R. Ablamowicz, P. Lounesto, J. M. Parra (eds), <i>Clifford algebras with numeric and symbolic computations</i> , Birkhäuser, 1996.
[Ashdown]	M. Ashdown, GA Package for Maple V,
	<pre>http://www.mrao.cam.ac.uk/~clifford /software/GA/GAhelp5.html</pre>
[Bergdolt 1996]	G. Bergdolt, "Orthonormal basis sets in Clifford algebras", in [Ablamowicz 1996].
[Braden 1985]	H. W. Braden, "N-dimensional spinors: Their properties in terms of fi nite groups", <i>J. Math. Phys.</i> 26 (4), April 1985. American Institute of Physics.
[Cartan]	Elie Cartan, P. Montel, et al. (eds), <i>Oeveres Complètes</i> , Gauthier–Villars, 1953.
[Cartan & Study 1908]	Elie Cartan, Eduard Study, "Nombres Complexes", <i>Encyclopaedia</i> <i>Sciences Mathématique</i> , édition française, 15, 1908, d'après l'article allemand de Eduard Study, pp329–468. Reproduced as pp107–246 of [Cartan].

References 2	
References	
[Dorst 2001]	Leo Dorst, "Honing geometric algebra for its use in the computer sciences", pp127–152 of [Sommer 2001].
[Hestenes & Sobczyk 1984]	David Hestenes, Garret Sobczyk, <i>Clifford algebra to geometric calculus : a unified language for mathematics and physics</i> , D. Reidel, 1984.
[Lam & Smith 1989]	T. Y. Lam, Tara L. Smith, "On the Clifford-Littlewood-Eckmann groups: a new look at periodicity mod 8", <i>Rocky Mountains Journal of Mathematics</i> , vol 19, no 3, Summer 1989.
[Lounesto 1997]	P. Lounesto, <i>Clifford algebras and spinors</i> , 2nd edition, Cambridge University Press, 2001. 1st edition, 1997.
[Micali 1992]	A. Micali, R. Boudet, J. Helmstetter, (eds), <i>Clifford algebras and</i> <i>their applications in mathematical physics : proceedings of second</i> <i>workshop held at Montpellier, France, 1989</i> , Kluwer Academic Publishers, 1992.
[Porteous 1969]	I. Porteous, Topological geometry, Van Nostrand Reinhold, 1969.

References 3

REFERENCES

- [Porteous 1995] I. Porteous, *Clifford algebras and the classical groups*, Cambridge University Press, 1995.
- [Sommer 2001] G. Sommer (ed.), Geometric Computing with Clifford Algebras, Springer, 2001.
- [Wene 1995] G. P. Wene, "The Idempotent stucture of an infinite dimensional Clifford algebra", pp161–164 of [Micali 1992].