The Coulomb energy of spherical designs on S^{2}

Paul Leopardi
paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.
For presentation at Computational Analysis on the Sphere Workshop, Nashville, December 2003.

Joint work with Kerstin Hesse, UNSW.

Coulomb energy of a point set on S^{2}

The Coulomb energy of a point set $X=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}\right\} \subset S^{2}$, is the energy of the $1 / r$ potential on X,

$$
E(X):=\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m}\left|\mathrm{x}_{i}-\mathrm{x}_{j}\right|^{-1} .
$$

On S^{2} the potential $|\mathrm{x}-\mathrm{y}|^{-1}$ can also be expressed as

$$
|\mathrm{x}-\mathrm{y}|^{-1}=\frac{1}{\sqrt{2-2 \mathrm{x} \cdot \mathrm{y}}}
$$

Key result

For a sequence of point sets on S^{2}, where

- each set \boldsymbol{X} is a spherical \boldsymbol{n}-design with \boldsymbol{m} points, where $m=O\left(n^{2}\right)$, and where
- the spherical distance between points of \boldsymbol{X} is at least λ / \sqrt{m}, for some λ common to all sets of the sequence, the Coulomb energy $\boldsymbol{E}(\boldsymbol{X})$ is bounded by

$$
E(X) \leqslant \frac{1}{2} m^{2}+O\left(m^{3 / 2}\right)
$$

This bound has the same form as the estimates of the minimum energy of \boldsymbol{m} points on \boldsymbol{S}^{2}.

Why spherical designs?

If \boldsymbol{X} is a spherical \boldsymbol{n}-design, for the potential $\boldsymbol{p}(\mathrm{x} \cdot \mathrm{y})$, with \boldsymbol{p} a polynomial of degree at most \boldsymbol{n}, the energy is given by

$$
\begin{aligned}
E(X, p) & =\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m} p\left(\mathrm{x}_{i} \cdot \mathrm{x}_{j}\right) \\
& =\frac{1}{2} \frac{m^{2}}{4 \pi} \int_{S^{2}} p(\mathrm{x} \cdot \mathrm{y}) d s(\mathrm{x})-\frac{m}{2} p(1) \\
& =\frac{m^{2}}{4} \int_{-1}^{1} p(z) d z-\frac{m}{2} p(1)
\end{aligned}
$$

So we split our $1 / r$ potential into a polynomial part and a tail, calculate the energy of the polynomial part exactly, and estimate the energy of the tail.

Why have a separation condition?

We want the energy of the tail to be small, so we must keep the points separated.

- The $1 / r$ potential is unbounded as $r \rightarrow 0$, and therefore the tail is also unbounded.
- The disjoint union of two or more spherical \boldsymbol{n}-designs is also a spherical \boldsymbol{n}-design. Call these unions composite spherical \boldsymbol{n}-designs, eg. vertices of two cubes.
- Using composite spherical designs it is easy to construct a sequence where the minimum distance decreases arbitrarily quickly, and the energy increases arbitrarily quickly.
- To exclude such sequences, we must impose a separation condition.

Why use $\boldsymbol{m}^{-1 / 2}$ in particular?

The sphere is a 2 D manifold, so $m^{-1 / 2}$ is natural.

- The minimum spherical distance is bounded above by

$$
\frac{\sqrt{6}}{2} \frac{\pi}{\sqrt{m}}
$$

(L. Fejes Tóth, 1949, 1964).

- The minimum energy point sets have minimum spherical distance bounded below by

$$
\frac{C}{\sqrt{m}}
$$

(Dahlberg, 1978).

Outline of the method

1. Split the potential into a polynomial part of degree \boldsymbol{n} and a tail.
2. Using the properties of the spherical design, calculate the polynomial part of the energy exactly.
3. Use the separation condition to give a bound on the energy contribution of the tail.

Splitting the potential

The identity $(\mathbf{1}-\boldsymbol{z}) \boldsymbol{P}_{\boldsymbol{k}}^{(\mathbf{1 , 0})}(\boldsymbol{z})=\boldsymbol{P}_{\boldsymbol{k}}(\boldsymbol{z})-\boldsymbol{P}_{\boldsymbol{k}+\mathbf{1}}(\boldsymbol{z})$ leads to a split into a Jacobi partial sum and a well behaved tail, giving

$$
\begin{aligned}
\frac{1}{\sqrt{2-2 t}}= & \sum_{k=0}^{\infty} \frac{2 k+2}{(2 k+1)(2 k+3)} P_{k}^{(1,0)}(z) \\
= & \sum_{k=0}^{n} \frac{2 k+2}{(2 k+1)(2 k+3)} P_{k}^{(1,0)}(z) \\
& +\frac{2 n+4}{(2 n+3)(2 n+5)} \frac{P_{n+1}(z)}{1-z} \\
& +\sum_{k=n+2}^{\infty} \frac{2}{(2 k-1)(2 k+3)} \frac{P_{k}(z)}{1-z}
\end{aligned}
$$

Energy of the polynomial part

$$
\begin{aligned}
& \text { For } \begin{aligned}
s_{n} & :=\sum_{k=0}^{n} \frac{2 k+2}{(2 k+1)(2 k+3)} P_{k}^{(1,0)} \text { we have } \\
E\left(X, s_{n}\right) & =\frac{m^{2}}{4} \int_{-1}^{1} s_{n}(z) d z-\frac{m}{2} s_{n}(1) \\
& =\frac{1}{2} m^{2}-\frac{m}{2} \frac{(n+1)(n+2)+m}{2 n+3}
\end{aligned} \\
& \text { If } m=(n+1)^{2} \text { then } E\left(X, s_{n}\right)=\frac{1}{2} m^{2}-\frac{1}{2} m^{3 / 2}
\end{aligned}
$$

Convergence of the tail of the potential

Since $\left|P_{n}(z)\right| \leqslant 1$ for $z \in[-1,1]$, the series for the tail

$$
\begin{aligned}
t_{n}(z) & :=\frac{2 n+4}{(2 n+3)(2 n+5)} \frac{P_{n+1}(z)}{1-z} \\
& +\sum_{k=n+2}^{\infty} \frac{2}{(2 k-1)(2 k+3)} \frac{P_{k}(z)}{1-z}
\end{aligned}
$$

is pointwise absolutely convergent in $[-1,1$) and uniformly absolutely convergent in $[-1,1-\epsilon]$.

Bounding the tail of the potential

From (Bernstein, 1930) we also have, for $\mathbf{0}<\boldsymbol{\theta}<\boldsymbol{\pi}, \boldsymbol{k}>\mathbf{0}$,

$$
\left|P_{k}(\cos \theta)\right| \leqslant\left(\frac{2}{\pi}\right)^{1 / 2} k^{-1 / 2}(\sin \theta)^{-1 / 2}
$$

so for $0<\theta<\pi$ we have the bound

$$
t_{n}(\cos \theta) \leqslant f(\theta):=\frac{5}{3}\left(\frac{2}{\pi}\right)^{1 / 2} n^{-3 / 2}(\sin \theta)^{-5 / 2}
$$

so we also have

$$
t_{n}(-\cos \theta)=t_{n}(\pi-\theta) \leqslant f(-\theta)=f(\theta)
$$

Bounding the energy of the tail

The energy of the tail is given by

$$
\begin{aligned}
E\left(X, t_{n}\right) & =\frac{1}{2} \sum_{i=1}^{m} E_{i}\left(X, t_{n}\right) \\
\text { where } \quad E_{i}\left(X, t_{n}\right) & :=\sum_{j=1, j \neq i}^{m} t_{n}\left(\mathrm{x}_{i} \cdot \mathrm{x}_{j}\right) .
\end{aligned}
$$

For each point x_{i}, we split S^{2} into 4 zones, with $\rho:=\frac{\lambda}{2 \sqrt{m}}$.

- D_{i}^{+}, the closed north polar cap of radius ρ, centre \mathbf{x}_{i},
- \boldsymbol{R}_{i}^{+}, the remainder of the northern hemisphere,
- $\boldsymbol{D}_{\boldsymbol{i}}^{-}$, the closed south polar cap of radius ρ, and
- \boldsymbol{R}_{i}^{-}, the remainder of the southern hemisphere.

Bounding the energy of the tail

The tail energy $\boldsymbol{E}_{\boldsymbol{i}}\left(\boldsymbol{X} \cap \boldsymbol{D}_{\boldsymbol{i}}^{+}, \boldsymbol{t}_{\boldsymbol{n}}\right)$ of the north polar cap is zero.
The south polar cap contains at most two points, and $E_{i}\left(X \cap D_{i}^{-}, t_{n}\right) \leqslant 2 n^{-1}$.

We estimate the tail energy of $\boldsymbol{R}_{\boldsymbol{i}}^{ \pm}$using Riemann-Stieltjes integrals of the form

$$
E_{i}\left(X \cap R_{i}^{ \pm}, f\right)=\int_{\rho}^{\pi / 2} f(\theta) d g_{i}^{ \pm}(\theta)
$$

where $\boldsymbol{g}_{\boldsymbol{i}}^{ \pm}$is the counting function corresponding to $\boldsymbol{X} \cap \boldsymbol{R}_{\boldsymbol{i}}^{ \pm}$.

Counting points

For $\mathbf{x}_{\boldsymbol{i}} \in \boldsymbol{X}, \boldsymbol{g}_{\boldsymbol{i}}^{ \pm}(\boldsymbol{\theta})$ is the number of points of \boldsymbol{X} in the open spherical collar $S\left(\pm \mathrm{x}_{i}, \rho, \theta\right)$, with centre $\pm \mathrm{x}_{\boldsymbol{i}}$, inner spherical radius ρ, outer radius $\boldsymbol{\theta}$, where the minimum spherical separation distance is $2 \rho=\lambda m^{-1 / 2}$.

An area argument leads to

$$
\begin{gathered}
g_{i}^{ \pm}(\theta) \leqslant \frac{1-\cos (\theta+\rho)}{1-\cos \rho}, \text { for } \theta+\rho \leqslant \pi \\
\text { so } \quad g_{i}^{ \pm}(\theta) \leqslant h(\theta):=\frac{\pi^{2}}{4} \rho^{-2} \sin ^{2} \theta+\pi \rho^{-1} \sin \theta+1
\end{gathered}
$$

for $\boldsymbol{\theta} \leqslant \frac{\boldsymbol{\pi}}{\mathbf{2}}$. We also know that $\boldsymbol{g}_{\boldsymbol{i}}^{ \pm}(\boldsymbol{\theta}) \leqslant \boldsymbol{m}$.

Bounding the energy of the tail

The Riemann-Stieltjes estimate yields

$$
\begin{aligned}
& E_{i}\left(X \cap R_{i}^{ \pm}, f\right)=\int_{\rho}^{\pi / 2} f(\theta) d g_{i}^{ \pm}(\theta) \\
& \quad=f(\pi / 2) g_{i}^{ \pm}(\pi / 2)-f(\rho) g_{i}^{ \pm}(\rho)-\int_{\rho}^{\pi / 2} g_{i}^{ \pm}(\theta) d f(\theta) \\
& \quad \leqslant f(\pi / 2) m-\int_{\rho}^{\pi / 2} h(\theta) d f(\theta) \\
& \quad \leqslant C \lambda^{-5 / 2} m^{5 / 4} n^{-3 / 2}, \quad \text { so we finally obtain the bound } \\
& E\left(X, t_{n}\right) \leqslant C_{\lambda} m^{9 / 4} n^{-3 / 2}
\end{aligned}
$$

Results

Putting the potential back together, we get

$$
\begin{aligned}
E(X) & \leqslant \frac{1}{2} m^{2}-\frac{m}{2} \frac{(n+1)(n+2)+m}{2 n+3}+C_{\lambda} m^{9 / 4} n^{-3 / 2} \\
& \leqslant \frac{1}{2} m^{2}+O(m n)+O\left(m^{2} n^{-1}\right)+O\left(m^{9 / 4} n^{-3 / 2}\right)
\end{aligned}
$$

When $m=\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$, we have our key result,
$E(X) \leqslant \frac{1}{2} m^{2}+O\left(m^{3 / 2}\right)$,
since $n=O\left(m^{1 / 2}\right)$ by the linear programming bound (Delsarte et al., 1977).

