
The Coulomb energy of spherical designs
on S2

Paul Leopardi

paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.

For presentation at Computational Analysis on the Sphere Workshop,

Nashville, December 2003.

Joint work with Kerstin Hesse, UNSW.

The Coulomb energy of spherical designs on S
2 – p. 1/16



Coulomb energy of a point set on S2

The Coulomb energy of a point set X = {x1, . . . , xm} ⊂ S2 ,
is the energy of the 1/r potential on X ,

E(X) :=
1

2

m
∑

i=1

m
∑

j=1,j 6=i

|xi − xj|−1.

On S2 the potential |x − y|−1 can also be expressed as

|x − y|−1 =
1

√
2 − 2 x · y

.
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Key result

For a sequence of point sets on S2 , where
• each set X is a spherical n -design with m points, where

m = O(n2) , and where
• the spherical distance between points of X is at least

λ/
√

m, for some λ common to all sets of the sequence,

the Coulomb energy E(X) is bounded by

E(X) 6
1

2
m2 + O(m3/2).

This bound has the same form as the estimates of the minimum
energy of m points on S2 .
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Why spherical designs?

If X is a spherical n -design, for the potential p(x · y) , with p
a polynomial of degree at most n , the energy is given by

E(X, p) =
1

2

m
∑

i=1

m
∑

j=1,j 6=i

p(xi · xj)

=
1

2

m2

4π

∫

S2

p(x · y)ds(x) − m

2
p(1)

=
m2

4

∫ 1

−1

p(z)dz − m

2
p(1).

So we split our 1/r potential into a polynomial part and a tail,
calculate the energy of the polynomial part exactly, and estimate
the energy of the tail.
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Why have a separation condition?

We want the energy of the tail to be small, so we must keep the
points separated.

• The 1/r potential is unbounded as r → 0 , and therefore
the tail is also unbounded.

• The disjoint union of two or more spherical n -designs is
also a spherical n -design. Call these unions composite
spherical n -designs, eg. vertices of two cubes.

• Using composite spherical designs it is easy to construct a
sequence where the minimum distance decreases arbitrarily
quickly, and the energy increases arbitrarily quickly.

• To exclude such sequences, we must impose a separation
condition.
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Why use m−1/2 in particular?

The sphere is a 2D manifold, so m−1/2 is natural.
• The minimum spherical distance is bounded above by

√
6

2

π
√

m

(L. Fejes Tóth, 1949, 1964).
• The minimum energy point sets have minimum spherical

distance bounded below by

C
√

m

(Dahlberg, 1978).
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Outline of the method

1. Split the potential into a polynomial part of degree n and a
tail.

2. Using the properties of the spherical design, calculate the
polynomial part of the energy exactly.

3. Use the separation condition to give a bound on the energy
contribution of the tail.
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Splitting the potential

The identity (1 − z)P
(1,0)
k (z) = Pk(z) − Pk+1(z) leads to a

split into a Jacobi partial sum and a well behaved tail, giving

1
√

2 − 2t
=

∞
∑

k=0

2k + 2

(2k + 1)(2k + 3)
P

(1,0)
k (z)

=
n

∑

k=0

2k + 2

(2k + 1)(2k + 3)
P

(1,0)
k (z)

+
2n + 4

(2n + 3)(2n + 5)

Pn+1(z)

1 − z

+
∞
∑

k=n+2

2

(2k − 1)(2k + 3)

Pk(z)

1 − z
.
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Energy of the polynomial part

For sn :=
n

∑

k=0

2k + 2

(2k + 1)(2k + 3)
P

(1,0)
k we have

E(X, sn) =
m2

4

∫ 1

−1

sn(z)dz − m

2
sn(1)

=
1

2
m2 − m

2

(n + 1)(n + 2) + m

2n + 3
.

If m = (n + 1)2 then E(X, sn) = 1
2
m2 − 1

2
m3/2 .
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Convergence of the tail of the potential

Since |Pn(z)| 6 1 for z ∈ [−1, 1] , the series for the tail

tn(z) :=
2n + 4

(2n + 3)(2n + 5)

Pn+1(z)

1 − z

+
∞
∑

k=n+2

2

(2k − 1)(2k + 3)

Pk(z)

1 − z

is pointwise absolutely convergent in [−1, 1) and uniformly
absolutely convergent in [−1, 1 − ε] .
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Bounding the tail of the potential

From (Bernstein, 1930) we also have, for 0 < θ < π , k > 0 ,

|Pk(cos θ)| 6

(

2

π

)1/2

k−1/2(sin θ)−1/2,

so for 0 < θ < π we have the bound

tn(cos θ) 6 f(θ) :=
5

3

(

2

π

)1/2

n−3/2(sin θ)−5/2,

so we also have

tn(− cos θ) = tn(π − θ) 6 f(−θ) = f(θ).
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Bounding the energy of the tail

The energy of the tail is given by

E(X, tn) =
1

2

m
∑

i=1

Ei(X, tn),

where Ei(X, tn) :=
m

∑

j=1,j 6=i

tn(xi · xj).

For each point xi , we split S2 into 4 zones, with ρ := λ
2
√

m
.

• D+
i , the closed north polar cap of radius ρ , centre xi ,

• R+
i , the remainder of the northern hemisphere,

• D−
i , the closed south polar cap of radius ρ , and

• R−
i , the remainder of the southern hemisphere.
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Bounding the energy of the tail

The tail energy Ei(X ∩ D+
i , tn) of the north polar cap is zero.

The south polar cap contains at most two points, and
Ei(X ∩ D−

i , tn) 6 2n−1 .

We estimate the tail energy of R±
i using Riemann-Stieltjes

integrals of the form

Ei(X ∩ R±
i , f) =

∫ π/2

ρ

f(θ)dg±
i (θ).

where g±
i is the counting function corresponding to X ∩ R±

i .
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Counting points

For xi ∈ X , g±
i (θ) is the number of points of X in the open

spherical collar S(±xi, ρ, θ) , with centre ±xi , inner spherical
radius ρ , outer radius θ , where the minimum spherical
separation distance is 2ρ = λm−1/2 .

An area argument leads to

g±
i (θ) 6

1 − cos(θ + ρ)

1 − cos ρ
, for θ + ρ 6 π,

so g±
i (θ) 6 h(θ) :=

π2

4
ρ−2 sin2 θ + πρ−1 sin θ + 1,

for θ 6
π

2
. We also know that g±

i (θ) 6 m.
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Bounding the energy of the tail

The Riemann-Stieltjes estimate yields

Ei(X ∩ R±
i , f) =

∫ π/2

ρ

f(θ)dg±
i (θ)

= f(π/2)g±
i (π/2) − f(ρ)g±

i (ρ) −
∫ π/2

ρ

g±
i (θ)df(θ)

6 f(π/2)m −
∫ π/2

ρ

h(θ)df(θ)

6 Cλ−5/2m5/4n−3/2, so we finally obtain the bound

E(X, tn) 6 Cλm9/4n−3/2.
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Results

Putting the potential back together, we get

E(X) 6
1

2
m2 − m

2

(n + 1)(n + 2) + m

2n + 3
+ Cλm9/4n−3/2

6
1

2
m2 + O(mn) + O(m2n−1) + O(m9/4n−3/2).

When m = O(n2) , we have our key result,

E(X) 6
1

2
m2 + O(m3/2),

since n = O(m1/2) by the linear programming bound
(Delsarte et al., 1977).
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