A generalized FFT for Clifford algebras

Paul Leopardi

paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.

For presentation at ICIAM, Sydney, 2003-07-07.

GFT for finite groups

(Beth 1987, Diaconis and Rockmore 1990; Clausen and Baum 1993)

The generalized Fourier transform (GFT) for a finite group \mathbb{G} is the representation map D from the group algebra \mathbb{CG} to a faithful complex matrix representation of \mathbb{G} , such that D is the direct sum of a complete set of irreducible representations.

$$D: \mathbb{CG} \to \mathbb{C}(M), \ \ D = igoplus_{k=1}^n D_k,$$

where $D_k: \mathbb{CG} \to \mathbb{C}(m_k), \ \ ext{and} \ \sum_{k=1}^n m_k = M.$

The generalized FFT is any fast algorithm for the GFT.

GFT for supersolvable groups

(Baum 1991; Clausen and Baum 1993)

Definition 1.

The 2-linear complexity $L_2(X)$, of a linear operator X counts non-zero additions $\mathbb{A}(X)$, and non-zero multiplications, except multiplications by 1 or -1.

The GFT D, for supersolvable groups has

 $L_2(D) = \mathrm{O}(|G|log_2|G|).$

GFT for Clifford algebras

(Hestenes and Sobczyck 1984; Wene 1992; Felsberg et al. 2001)

The GFT for a real universal Clifford algebra, $\mathbb{R}_{p,q}$, is the representation map $P_{p,q}$ from the real framed representation to the real matrix representation of $\mathbb{R}_{p,q}$.

$$P_{p,q}: \mathbb{R}^{\mathbb{P} \varsigma(-q,p)}
ightarrow \mathbb{R}(2^{N(p,q)}),$$
 where

•
$$\varsigma(a,b):=\{a,a+1,\ldots,b\}\setminus\{0\}.$$

- $\mathbb{P}\varsigma(-q,p)$ is the power set of $\varsigma(-q,p)$, a set of index sets with cardinality 2^{p+q} .
- The real framed representation ℝ^Pς(-q,p) is the set of maps from Pς(-q, p) to ℝ, isomorphic as a real vector space to the set of 2^{p+q} tuples of real numbers indexed by subsets of ς(-q, p).

This is *not* the "discrete Clifford Fourier transform" of Felsberg, et al.

Clifford algebras and supersolvable groups

(Braden 1985; Lam and Smith 1989)

The real universal Clifford algebra $\mathbb{R}_{p,q}$, is a quotient of the group algebra $\mathbb{R}\mathbb{G}_{p,q}$, by an ideal, where $\mathbb{G}_{p,q}$ is a 2-group, here called the frame group. $\mathbb{G}_{p,q}$ is supersolvable. The GFT for Clifford algebras is related to that for supersolvable groups:

GFT for the neutral Clifford algebra $\mathbb{R}_{n,n}$

(Braden 1985; Lam and Smith 1989)

The GFT for the neutral Clifford algebra $\mathbb{R}_{n,n}$ is a map: $P_n : \mathbb{R}^{\mathbb{P}\varsigma(-n,n)} \to \mathbb{R}(2^n). |\mathbb{P}\varsigma(-n,n)| = 4^n.$

The frame group $\mathbb{G}_{n,n}$ is an extraspecial 2-group. $|\mathbb{G}_{n,n}| = 2^{2n+1}$.

For $\mathbb{R}_{n,n}$ we might expect $L_2(\mathbb{P}_n) = O(n4^n)$ this way:

but there are explicit algorithms for both forward and inverse GFT.

Kronecker product

Definition 2. If $A \in \mathbb{R}(r)$ and $B \in \mathbb{R}(s)$, then

 $(A \otimes B)_{j,k} = A_{j,k}B$

if $A \otimes B$ is treated as an $r \times r$ block matrix with $s \times s$ blocks.

A well known property of the Kronecker product is:

Lemma 3. If $A, C \in \mathbb{R}(r)$ and $B, D \in \mathbb{R}(s)$, then $(A \otimes B)(C \otimes D) = AC \otimes BD$

Generating set for $\mathbb{R}_{n,n}$

(Porteous 1969)

Definition 4. Here and in what follows, define:

 $I_n := unit matrix of dimension 2^n, I := I_1$ $J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, K := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$

Lemma 5. If S is an orthonormal generating set for $\mathbb{R}(2^{n-1})$, then

 $\{-JK\otimes A\mid A\in S\}\cup\{J\otimes I_{n-1},K\otimes I_{n-1}\}$

is an orthonormal generating set for $\mathbb{R}(2^n)$.

Generalized Fourier transform

Definition 6. Use Lemma 5 to define the GFT of each generator of $\mathbb{R}_{n,n}$

 $\begin{aligned} P_n \mathbf{e}_{\{-n\}} &:= J \otimes I_{n-1}, \quad P_n \mathbf{e}_{\{n\}} := K \otimes I_{n-1}, \\ for \quad 1-n \leqslant k \leqslant n-1, \quad P_n \mathbf{e}_{\{k\}} := -JK \otimes P_{n-1} \mathbf{e}_{\{k\}}. \end{aligned}$

We can now compute
$$\mathbf{P}_n \mathbf{e}_T$$
 as: $\mathbf{P}_n \mathbf{e}_T = \prod_{k \in T} \mathbf{P}_n \mathbf{e}_{\{k\}}$

Each basis matrix is monomial and each non-zero is -1 or 1. We can now define $\mathbf{P}_n : \mathbb{R}^{\mathbb{P}_{\varsigma}(-n,n)} \to \mathbb{R}(2^n)$, by:

$$\mathbf{P}_n a = \sum_{T \subseteq \varsigma(-n,n)} a_T \mathbf{P}_n \mathbf{e}_T, \quad for \ a = \sum_{T \subseteq \varsigma(-n,n)} a_T \mathbf{e}_T.$$

Bound for linear complexity of GFT

Theorem 7. $L_2(P_n)$ is bounded by $d^{3/2}$, where d is the dimension of $\mathbb{R}(2^n) \cong \mathbb{R}_{n,n}$. **Proof** Since $P_n e_T$ is of size $2^n \times 2^n$ and is monomial, it has 2^n non-zeros.

 $\mathbb{R}(2^n)$ has 4^n basis elements.

 $\mathbb{A}(\mathbf{P}_n)$ is therefore bounded by

$$4^n \times 2^n = (4^n)^{3/2} = d^{3/2},$$

where d is the dimension of $\mathbb{R}(2^n) \cong \mathbb{R}_{n,n}$.

There are no non-trivial multiplications. \Box

\mathbb{Z}_2 grading and \otimes are keys to GFT

(*Lam 1973*)

The algebras $\mathbb{R}_{p,q}$ are \mathbb{Z}_2 -graded. Each $a \in \mathbb{R}_{p,q}$ can be split into odd and even parts, $a = a^+ + a^-$, with $odd \times odd = even$, etc. Scalars are even and the generators are odd.

We can express P_n in terms of its actions on the even and odd parts of a multivector: $P_n a = P_n a^+ + P_n a^-$, $a = a^+ + a^- \in \mathbb{R}_{n,n}$. Lemma 8. For all $b \in \mathbb{R}_{n-1,n-1}$, we have

$$P_n b^+ = I \otimes P_{n-1} b^+, P_n b^- = -JK \otimes P_{n-1} b^-,$$

so that

$$(\mathbf{P}_{n}a^{-})(\mathbf{P}_{n}b^{-}) = (-JK \otimes \mathbf{P}_{n-1}a^{-})(-JK \otimes \mathbf{P}_{n-1}b^{-})$$

= $I \otimes (\mathbf{P}_{n-1}a^{-})(\mathbf{P}_{n-1}b^{-})$
= $I \otimes (\mathbf{P}_{n-1}(a^{-}b^{-})) = \mathbf{P}_{n}(a^{-}b^{-}).$

Recursive expression for P_n

Theorem 9. For n > 0, for the GFT P_n as per Definition 6, for $a \in \mathbb{R}_{n,n}$, $a = a^+ + a^-$, with

$$\begin{split} a^+ &= a^+_{\underline{\emptyset}} + \mathbf{e}_{\{-n\}} a^+_{\underline{-n}} + a^+_{\underline{n}} \mathbf{e}_{\{n\}} + \mathbf{e}_{\{-n\}} a^+_{\underline{-n,n}} \mathbf{e}_{\{n\}}, \\ a^- &= a^-_{\underline{\emptyset}} + \mathbf{e}_{\{-n\}} a^-_{\underline{-n}} + a^-_{\underline{n}} \mathbf{e}_{\{n\}} + \mathbf{e}_{\{-n\}} a^-_{\underline{-n,n}} \mathbf{e}_{\{n\}}, \end{split}$$

we have $P_n a = P_n a^+ + P_n a^-$, $P_n a^+ = I \otimes P_{n-1} a_{\underline{\emptyset}}^+ + K \otimes P_{n-1} a_{\underline{-n}}^+ +$ $-J \otimes P_{n-1} a_{\underline{n}}^+ + JK \otimes P_{n-1} a_{\underline{-n,n}}^+$, and $P_n a^- = -JK \otimes P_{n-1} a_{\underline{\emptyset}}^- + J \otimes P_{n-1} a_{\underline{-n,n}}^- +$ $K \otimes P_{n-1} a_{\underline{n}}^- + I \otimes P_{n-1} a_{\underline{-n,n}}^-$.

Theorem 10.

$${m P}_0 a^+ = [a^+], \ \ {m P}_0 a^- = 0.$$

Proof If $a \in \mathbb{R}_{0,0}$ then a is even, so $a^- = 0$. \Box

Theorem 11. For $n \geq 0$,

$$L_2({m P}_n)\leqslant n4^n=rac{1}{2}d\log_2 d,$$

where $d = 4^n$ is the dimension of $\mathbb{R}_{n,n}$.

Proof (Sketch) Count non-zero additions at each level of recursion.

You will obtain at most 4^n additions at each of n levels. \Box

Recall that if $a \in \mathbb{R}_{n,n}$, then a can be expressed as

$$a = \sum_{T \subseteq \varsigma(-n,n)} a_T \mathbf{e}_T$$

The basis $\{\mathbf{e}_T \mid T \subseteq \varsigma(-n, n)\}$ is orthornormal with respect to the real framed inner product

$$a \bullet b := \sum_{T \subseteq \varsigma(-n,n)} a_T b_T.$$

We have

$$\mathbf{e}_{S} \bullet \mathbf{e}_{T} = \delta_{S,T}$$
 and $a_{T} = a \bullet \mathbf{e}_{T}$

Normalized Frobenius inner product

Since the GFT P_n is an isomorphism, it preserves this inner product. That is, there is an inner product $\bullet : \mathbb{R}(2^n) \times \mathbb{R}(2^n) \to \mathbb{R}$, such that, for $a, b \in \mathbb{R}_{n,n}$,

> $P_n a \bullet P_n b = a \bullet b,$ so $P_n a \bullet P_n e_T = a \bullet e_T = a_T.$

This is the normalized Frobenius inner product. Lemma 12. For $A, B \in \mathbb{R}(2^n)$, the normalized Frobenius inner product:

$$A \bullet B := 2^{-n} \operatorname{tr} A^T B = 2^{-n} \sum_{j,k=1}^{2^n} A_{j,k} B_{j,k},$$
satisfies $P_n a \bullet P_n b = a \bullet b$, for $a, b \in \mathbb{R}_{n,n}$.

Inverse GFT

Since $P_n a \bullet P_n e_T = a_T$, we can define $Q_n := P_n^{-1}$ by Definition 13.

 $egin{aligned} &Q_n: \mathbb{R}(2^n) o \mathbb{R}^{\mathbb{P} arsigma(-n,n)} \ & For \ A \in \mathbb{R}(2^n), \ T \subseteq arsigma(-n,n), \ & (Q_n A)_T := A ullet P_n \mathbf{e_T}. \end{aligned}$

Naive algorithm for Q_n evaluates $A \bullet P_n e_T$ for each $T \subseteq \varsigma(-n, n)$.

Theorem 14. $L_2(Q_n) \leq d^{3/2} + d \log d$, where $d = 4^n$. *Proof* (Sketch)

 $\mathbb{A}(Q_n) \leqslant 2^n \times 4^n$, and the naive algorithm also needs at most 4^n divisions by 2^n . \Box

Left Kronecker quotient

The *left Kronecker quotient* is a binary operation which is an inverse operation to the Kronecker matrix product.

Definition 15.

$$\bigcirc : \mathbb{R}(r) \times \mathbb{R}(rs) \to \mathbb{R}(s),$$
for $A \in \mathbb{R}(r), \quad \operatorname{nnz}(A) \neq 0, \quad C \in \mathbb{R}(rs),$

$$(A \oslash C)_{j,k} := \frac{1}{\operatorname{nnz}(A)} \sum_{A_{j,k} \neq 0} \frac{C_{j,k}}{A_{j,k}},$$

where C is treated as an $r \times r$ block matrix with $s \times s$ blocks, ie. as if $C \in \mathbb{R}(s)(r)$.

Left Kronecker quotient

Theorem 16.

The left Kronecker quotient is an inverse operation to the Kronecker matrix product, when applied from the left, as follows:

For $A \in \mathbb{R}(r)$, $\operatorname{nnz}(A) \neq 0$, $B \in \mathbb{R}(s)$, we have $A \otimes (A \otimes B) = B$.

Proof

$$egin{aligned} A & \otimes \ (A \otimes B) &= rac{1}{ ext{nnz}(A)} \sum_{A_{j,k}
eq 0} rac{A_{j,k}B}{A_{j,k}} \ &= rac{1}{ ext{nnz}(A)} \sum_{A_{j,k}
eq 0} B \ &= B \end{aligned}$$

Left Kronecker quotient and orthogonality

Lemma 17. For $A \in \mathbb{R}(2^n)$, $B \in \mathbb{R}(2^n)$, $C \in \mathbb{R}(2^n s)$, if $\operatorname{nnz}(A) = 2^n$ then $A \otimes (B \otimes C) = (A' \circ B)C$, where

$$A'_{j,k} = rac{1}{A_{j,k}}, \ if A_{j,k}
eq 0, \ 0 \ otherwise.$$

P	ro	of
		•

$$egin{aligned} A & \otimes \left(B \otimes C
ight) = rac{1}{ ext{nnz}(A)} \sum_{A_{j,k}
eq 0} rac{B_{j,k}C}{A_{j,k}} \ &= rac{1}{2^n} \sum_{j,k=1}^{2^n} A_{j,k}^\prime B_{j,k}C \ &= (A^\prime ullet B)C \end{aligned}$$

Left Kronecker quotient and orthogonality

Lemma 18. If n > 0 and

 $A \in \mathbb{R}(2^{n+m}) = \sum_{T \subseteq \varsigma(-n,n)} (P_n e_T) \otimes A_T, where$ $A_T \in \mathbb{R}(2^m), then (P_n e_T) \otimes A = A_T, for T \subseteq \varsigma(-n,n).$ Corollary 19.

If n > 0, $A_I, A_J, A_K, A_{JK} \in \mathbb{R}(2^{n-1})$, and $A = I \otimes A_I + J \otimes A_J + K \otimes A_K + JK \otimes A_{JK}$, then $I \otimes A = A_I$, $J \otimes A = A_J$, $K \otimes A = A_K$, $JK \otimes A = A_{JK}$.

Recursive expression for Q_n

Theorem 20. For $n > 0, A \in \mathbb{R}(2^n), Q_n$ as per Definition 13,

 $\begin{aligned} \mathbf{Q}_{n}(A) &= \mathbf{Q}_{n-1}(I \otimes A)^{+} - \mathbf{Q}_{n-1}(JK \otimes A)^{-} \\ &+ \mathbf{e}_{\{-n\}} \left(\mathbf{Q}_{n-1}(JK \otimes A)^{+} + \mathbf{Q}_{n-1}(I \otimes A)^{-} \right) \mathbf{e}_{\{n\}} \\ &+ \mathbf{e}_{\{-n\}} \left(\mathbf{Q}_{n-1}(K \otimes A)^{-} + \mathbf{Q}_{n-1}(J \otimes A)^{+} \right) \\ &+ \left(-\mathbf{Q}_{n-1}(J \otimes A)^{-} + \mathbf{Q}_{n-1}(K \otimes A)^{+} \right) \mathbf{e}_{\{n\}}. \end{aligned}$

For n = 0, we have $Q_0[a] = a$.

Proof (Sketch)

Start with Theorems 9 and 10 and apply Corollary 19. \Box

Linear complexity of inverse GFT

Theorem 21. $L_2(Q_n) \leq 2n4^n = d \log_2 d,$ where $d = 4^n$ is the dimension of $\mathbb{R}_{n,n}$.

Proof Q_n uses \otimes four times. Each time needs at most 4^{n-1} additions.

 Q_n also uses Q_{n-1} four times. So,

$$\mathbb{A}(oldsymbol{Q}_n)\leqslant 4^n+4\mathbb{A}(oldsymbol{Q}_{n-1}) \hspace{0.1in}\leqslant n4^n=rac{1}{2}d\log_2 d.$$

For Q_n , each of the four uses of \otimes needs 4^{n-1} divisions by 2.

So
$$L_2(\mathbf{Q}_n) \leqslant 2n4^n = d\log_2 d$$
. \Box

Benchmark for GluCat implementation

(Lounesto et al. 1987; Lounesto 1992; Raja 1996)

- Generic library of universal Clifford algebra templates
- For details, see http://glucat.sf.net

2			
~	[Ablamowicz 1996]	R. Ablamowicz, P. Lounesto, J. M. Parra (eds), <i>Clifford</i> <i>algebras with numeric and symbolic computations</i> , Birkhäuser, 1996.	
	[Baum 1991]	Ulrich Baum, "Existence and effi cient construction of fast Fourier transforms on supersolvable groups", <i>Computational</i> <i>Complexity</i> 1 (1991), no. 3, 235–256	
	[Bayro Corrochano & Sobczyk]	E. Bayro Corrochano, G. Sobczyk, <i>Geometric algebra with applications in science and engineering</i> . Birkhäuser, 2001.	
	[Beth 1987]	Thomas Beth, "On the computational complexity of the general discrete Fourier transform", <i>Theoretical Computer Science</i> , 51 (1987), no. 3, 331–339.	
	[Braden 1985]	H. W. Braden, "N-dimensional spinors: Their properties in terms of fi nite groups", <i>J. Math. Phys.</i> 26 (4), April 1985. American Institute of Physics.	

[Bulow et al. 2001]	Thomas Bülow, Michael Felsberg, Gerald Sommer, "Non-commutative hypercomplex Fourier transforms of multidimensional signals", pp187–207 of [Sommer 2001].
[Chernov 2001]	Vladimir M. Chernov, "Clifford algebras as projections of group algebras", pp461–476 of [Bayro Corrochano & Sobczyk].
[Clausen & Baum 1993]	Michael Clausen, Ulrich Baum, <i>Fast Fourier transforms</i> . Bibliographisches Institut, Mannheim, 1993.
[Diaconis & Rockmore 1990]	Persi Diaconis, Daniel Rockmore, "Effi cient computation of the Fourier transform on fi nite groups", <i>J. Amer. Math. Soc.</i> 3 (1990), no. 2, 297–332.
[Felsberg et al. 2001]	Michael Felsberg, Thomas Bülow, ; Gerald Sommer, Vladimir M. Chernov, "Fast algorithms of hypercomplex Fourier transforms", pp231–254 of [Sommer 2001].

Hestenes & Sobczyk 1984]	David Hestenes, Garret Sobczyk, <i>Clifford algebra to geometric calculus : a unified language for mathematics and physics</i> , D. Reidel, 1984.
Lam 1973]	T. Y. Lam, <i>The algebraic theory of quadratic forms</i> , W. A. Benjamin, Inc., 1973.
Lam & Smith 1989]	T. Y. Lam, Tara L. Smith, "On the Clifford-Littlewood-Eckmann groups: a new look at periodicity mod 8", <i>Rocky Mountains Journal of Mathematics</i> , vol 19, no 3, Summer 1989.
Lounesto 1987]	P. Lounesto, R. Mikkola, V. Vierros, <i>CLICAL User Manual:</i> <i>Complex Number, Vector Space and Clifford Algebra Calculator</i> <i>for MS-DOS Personal Computers</i> , Institute of Mathematics, Helsinki University of Technology, 1987.
Lounesto 1992]	P. Lounesto, "Clifford algebra calculations with a microcomputer", pp39–55 of [Micali et al. 1989].

[Micali et al. 1989]	A. Micali, R. Boudet, J. Helmstetter, (eds), <i>Clifford algebras and their applications in mathematical physics : proceedings of second workshop held at Montpellier, France, 1989</i> , Kluwer Academic Publishers, 1992.
[Porteous 1969]	I. Porteous, Topological geometry, Van Nostrand Reinhold, 1969.
[Raja 1996]	A. Raja, "Object-oriented implementations of Clifford algebras in C++: a prototype", in [Ablamowicz 1996].
[Sommer 2001]	G. Sommer (ed.), <i>Geometric Computing with Clifford Algebras</i> , Springer, 2001.
[Wene 1995]	G. P. Wene, "The Idempotent stucture of an infinite dimensional Clifford algebra", pp161–164 of [Micali et al. 1989].