A generalized FFT for Clifford algebras

Paul Leopardi
paul.leopardi@unsw.edu.au

School of Mathematics, University of New South Wales.
For presentation at ICIAM, Sydney, 2003-07-07.

GFT for finite groups

(Beth 1987, Diaconis and Rockmore 1990; Clausen and Baum 1993)
The generalized Fourier transform (GFT) for a finite group \mathbb{G} is the representation map D from the group algebra $\mathbb{C} \mathbb{G}$ to a faithful complex matrix representation of \mathbb{G}, such that D is the direct sum of a complete set of irreducible representations.

$$
\begin{aligned}
& D: \mathbb{C} G \rightarrow \mathbb{C}(M), \quad D=\bigoplus_{k=1}^{n} D_{k}, \\
& \text { where } D_{k}: \mathbb{C} \mathbb{G} \rightarrow \mathbb{C}\left(m_{k}\right) \text {, and } \sum_{k=1}^{n} m_{k}=M \text {. }
\end{aligned}
$$

The generalized FFT is any fast algorithm for the GFT.

GFT for supersolvable groups

(Baum 1991; Clausen and Baum 1993)

Definition 1.
The 2-linear complexity $\boldsymbol{L}_{\mathbf{2}}(\boldsymbol{X})$, of a linear operator \boldsymbol{X} counts non-zero additions $\mathbb{A}(\boldsymbol{X})$, and non-zero multiplications, except multiplications by $\mathbf{1}$ or $\mathbf{- 1}$.

The GFT \boldsymbol{D}, for supersolvable groups has

$$
L_{2}(D)=\mathrm{O}\left(|G| \log _{2}|G|\right)
$$

GFT for Clifford algebras

(Hestenes and Sobczyck 1984; Wene 1992; Felsberg et al. 2001)
The GFT for a real universal Clifford algebra, $\mathbb{R}_{p, \boldsymbol{q}}$, is the representation map $\boldsymbol{P}_{\boldsymbol{p}, \boldsymbol{q}}$ from the real framed representation to the real matrix representation of $\mathbb{R}_{p, \boldsymbol{q}}$.
$P_{p, q}: \mathbb{R}^{\mathbb{P}(-q, p)} \rightarrow \mathbb{R}\left(2^{N(p, q)}\right)$, where

- $\varsigma(a, b):=\{a, a+1, \ldots, b\} \backslash\{0\}$.
- $\mathbb{P} \boldsymbol{\varsigma}(-\boldsymbol{q}, \boldsymbol{p})$ is the power set of $\varsigma(-\boldsymbol{q}, \boldsymbol{p})$, a set of index sets with cardinality 2^{p+q}.
- The real framed representation $\mathbb{R}^{\mathbb{P} \varsigma(-q, p)}$ is the set of maps from $\mathbb{P} \boldsymbol{\varsigma}(-\boldsymbol{q}, \boldsymbol{p})$ to \mathbb{R}, isomorphic as a real vector space to the set of 2^{p+q} tuples of real numbers indexed by subsets of $\varsigma(-q, p)$.

This is not the "discrete Clifford Fourier transform" of Felsberg, et al.

Clifford algebras and supersolvable groups

(Braden 1985; Lam and Smith 1989)
The real universal Clifford algebra $\mathbb{R}_{p, \boldsymbol{q}}$, is a quotient of the group algebra $\mathbb{R} \mathbb{G}_{\boldsymbol{p}, \boldsymbol{q}}$, by an ideal, where $\mathbb{G}_{\boldsymbol{p}, \boldsymbol{q}}$ is a 2 -group, here called the frame group. $\mathbb{G}_{\boldsymbol{p}, \boldsymbol{q}}$ is supersolvable.
The GFT for Clifford algebras is related to that for supersolvable groups:

$$
\mathbb{C} \mathbb{G}_{p, q} \xrightarrow{D} \quad D\left(\mathbb{C}_{p, q}\right) \subseteq \mathbb{C}(M)
$$

$$
\mathbb{R} \mathbb{G}_{p, \boldsymbol{q}} \xrightarrow{\boldsymbol{D}} \quad D\left(\mathbb{R} \mathbb{G}_{\boldsymbol{p}, \boldsymbol{q}}\right) \subseteq \mathbb{C}(\boldsymbol{M})
$$

$$
\text { quotient } \downarrow \quad \downarrow \text { quotient }
$$

$$
\mathbb{R}_{p, q} \xrightarrow[P_{p, q}]{ } P_{p, q}\left(\mathbb{R}_{p, q}\right) \subseteq \mathbb{R}\left(2^{N(p, q)}\right)
$$

GFT for the neutral Clifford algebra $\mathbb{R}_{n, n}$

(Braden 1985; Lam and Smith 1989)
The GFT for the neutral Clifford algebra $\mathbb{R}_{n, n}$ is a map:
$P_{n}: \mathbb{R}^{\mathbb{P} \varsigma(-n, n)} \rightarrow \mathbb{R}\left(2^{n}\right) .|\mathbb{P} \varsigma(-n, n)|=4^{n}$.
The frame group $\mathbb{G}_{n, n}$ is an extraspecial 2-group. $\left|\mathbb{G}_{n, n}\right|=2^{2 n+1}$.
For $\mathbb{R}_{n, n}$ we might expect $L_{2}\left(P_{n}\right)=\mathrm{O}\left(n 4^{n}\right)$ this way:

$$
\begin{array}{ccc}
\mathbb{R}_{n, n} & \xrightarrow{P_{n, n}} & \mathbb{R}\left(2^{n}\right) \\
\downarrow & & \uparrow \\
\mathbb{C} \mathbb{G}_{n, n} \xrightarrow[D]{ } D\left(\mathbb{C} \mathbb{G}_{n, n}\right)
\end{array}
$$

but there are explicit algorithms for both forward and inverse GFT.

Kronecker product

Definition 2.
If $\boldsymbol{A} \in \mathbb{R}(\boldsymbol{r})$ and $\boldsymbol{B} \in \mathbb{R}(\boldsymbol{s})$, then

$$
(A \otimes B)_{j, k}=\boldsymbol{A}_{j, k} B
$$

if $\boldsymbol{A} \otimes \boldsymbol{B}$ is treated as an $\boldsymbol{r} \times \boldsymbol{r}$ block matrix with $\boldsymbol{s} \times s$ blocks.

A well known property of the Kronecker product is:
Lemma 3.
If $\boldsymbol{A}, \boldsymbol{C} \in \mathbb{R}(\boldsymbol{r})$ and $\boldsymbol{B}, \boldsymbol{D} \in \mathbb{R}(\boldsymbol{s})$, then

$$
(A \otimes B)(C \otimes D)=A C \otimes B D
$$

Generating set for $\mathbb{R}_{n, n}$

(Porteous 1969)

Definition 4. Here and in what follows, define:

$$
\begin{aligned}
\boldsymbol{I}_{n} & :=\text { unit matrix of dimension } \mathbf{2}^{n}, \quad \boldsymbol{I}:=\boldsymbol{I}_{\mathbf{1}} \\
\boldsymbol{J} & :=\left[\begin{array}{cc}
\mathbf{0} & -\mathbf{1} \\
\mathbf{1} & \mathbf{0}
\end{array}\right], \boldsymbol{K}:=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{0}
\end{array}\right] .
\end{aligned}
$$

Lemma 5.
If \boldsymbol{S} is an orthonormal generating set for $\mathbb{R}\left(\mathbf{2}^{\boldsymbol{n - 1}}\right)$, then

$$
\{-J K \otimes A \mid A \in S\} \cup\left\{J \otimes I_{n-1}, K \otimes I_{n-1}\right\}
$$

is an orthonormal generating set for $\mathbb{R}\left(2^{n}\right)$.

Generalized Fourier transform

Definition 6. Use Lemma 5 to define the GFT of each generator of $\mathbb{R}_{\boldsymbol{n}, \boldsymbol{n}}$

$$
\begin{aligned}
P_{n} \mathrm{e}_{\{-n\}}:=J \otimes I_{n-1}, & P_{n} \mathrm{e}_{\{n\}}:=K \otimes I_{n-1}, \\
\text { for } \quad 1-n \leqslant k \leqslant n-1, & P_{n} \mathrm{e}_{\{k\}}:=-J K \otimes P_{n-1} \mathrm{e}_{\{k\}} .
\end{aligned}
$$

$$
\text { We can now compute } \boldsymbol{P}_{\boldsymbol{n}} \mathrm{e}_{\boldsymbol{T}} \text { as: } \quad \boldsymbol{P}_{\boldsymbol{n}} \mathrm{e}_{\boldsymbol{T}}=\prod_{k \in \boldsymbol{T}} \boldsymbol{P}_{\boldsymbol{n}} \mathrm{e}_{\{k\}}
$$

Each basis matrix is monomial and each non-zero is $\mathbf{- 1}$ or $\mathbf{1}$. We can now define $\boldsymbol{P}_{\boldsymbol{n}}: \mathbb{R}^{\mathbb{P} \boldsymbol{\varsigma}(-\boldsymbol{n}, \boldsymbol{n})} \rightarrow \mathbb{R}\left(\mathbf{2}^{\boldsymbol{n}}\right)$, by:

$$
P_{n} a=\sum_{T \subseteq \varsigma(-n, n)} a_{T} P_{n} \mathrm{e}_{T}, \quad \text { for } a=\sum_{T \subseteq \varsigma(-n, n)} a_{T} \mathrm{e}_{T}
$$

Bound for linear complexity of GFT

Theorem 7.
$\boldsymbol{L}_{\mathbf{2}}\left(\boldsymbol{P}_{\boldsymbol{n}}\right)$ is bounded by $\boldsymbol{d}^{3 / 2}$, where \boldsymbol{d} is the dimension of $\mathbb{R}\left(\mathbf{2}^{n}\right) \cong \mathbb{R}_{\boldsymbol{n}, \boldsymbol{n}}$.
Proof
Since $P_{n} \mathrm{e}_{T}$ is of size $2^{\boldsymbol{n}} \times 2^{\boldsymbol{n}}$ and is monomial, it has $\mathbf{2}^{\boldsymbol{n}}$ non-zeros.
$\mathbb{R}\left(2^{n}\right)$ has 4^{n} basis elements.
$\mathbb{A}\left(P_{n}\right)$ is therefore bounded by

$$
4^{n} \times 2^{n}=\left(4^{n}\right)^{3 / 2}=d^{3 / 2}
$$

where d is the dimension of $\mathbb{R}\left(2^{n}\right) \cong \mathbb{R}_{n, n}$.
There are no non-trivial multiplications. \square

\mathbb{Z}_{2} grading and \otimes are keys to GFT

(Lam 1973)
The algebras $\mathbb{R}_{\boldsymbol{p}, \boldsymbol{q}}$ are $\mathbb{Z}_{\mathbf{2}}$-graded. Each $\boldsymbol{a} \in \mathbb{R}_{\boldsymbol{p}, \boldsymbol{q}}$ can be split into odd and even parts, $a=a^{+}+a-$, with odd \times odd $=e v e n$, etc. Scalars are even and the generators are odd.

We can express $\boldsymbol{P}_{\boldsymbol{n}}$ in terms of its actions on the even and odd parts of a multivector: $P_{n} a=P_{n} a^{+}+P_{n} a^{-}, a=a^{+}+a^{-} \in \mathbb{R}_{n, n}$. Lemma 8. For all $b \in \mathbb{R}_{n-1, n-1}$, we have

$$
\begin{aligned}
& P_{n} b^{+}=I \otimes P_{n-1} b^{+}, P_{n} b^{-}=-J K \otimes P_{n-1} b^{-} \\
& \text {so that } \\
&\left(P_{n} a^{-}\right)\left(P_{n} b^{-}\right)=\left(-J K \otimes P_{n-1} a^{-}\right)\left(-J K \otimes P_{n-1} b^{-}\right) \\
&=I \otimes\left(P_{n-1} a^{-}\right)\left(P_{n-1} b^{-}\right) \\
&=I \otimes\left(P_{n-1}\left(a^{-} b^{-}\right)\right)=P_{n}\left(a^{-} b^{-}\right)
\end{aligned}
$$

Recursive expression for P_{n}

Theorem 9. For $\boldsymbol{n}>\mathbf{0}$, for the GFT $\boldsymbol{P}_{\boldsymbol{n}}$ as per Definition 6, for $\boldsymbol{a} \in \mathbb{R}_{\boldsymbol{n}, \boldsymbol{n}}, \quad \boldsymbol{a}=\boldsymbol{a}^{+}+\boldsymbol{a}^{-}$, with

$$
\begin{aligned}
& a^{+}=a_{\underline{\underline{\emptyset}}}^{+}+\mathrm{e}_{\{-n\}} a_{-n}^{+}+a_{\underline{n}}^{+} \mathrm{e}_{\{n\}}+\mathrm{e}_{\{-n\}} a_{\underline{-n, n}}^{+} \mathrm{e}_{\{n\}}, \\
& a^{-}=a_{\underline{\emptyset}}^{-}+\mathrm{e}_{\{-n\}} a_{\underline{-n}}^{-}+a_{\underline{n}}^{-} \mathrm{e}_{\{n\}}+\mathrm{e}_{\{-n\}} a_{\underline{-n, n}}^{-} \\
& \mathrm{e}_{\{n\}}, \\
& \text { we have } P_{n} a=P_{n} a^{+}+P_{n} a^{-}, \\
& P_{n} a^{+}=I \otimes P_{n-1} a_{\underline{\emptyset}}^{+}+K \otimes P_{n-1} a_{\underline{-n}}^{+}+ \\
&-J \otimes P_{n-1} a_{\underline{n}}^{+}+J K \otimes P_{n-1} a_{-n, n}^{+}, \\
& P_{n} a^{-}=-J K \otimes P_{n-1} a_{\underline{\emptyset}}^{-}+J \otimes P_{n-1} a_{\underline{-n}}^{-} \\
& K \otimes P_{n-1} a_{\underline{n}}^{-}+I \otimes P_{n-1} a_{\underline{-n, n}}^{-} .
\end{aligned}
$$

Base cases and linear complexity

Theorem 10.

$$
P_{0} a^{+}=\left[a^{+}\right], \quad P_{0} a^{-}=0
$$

Proof If $a \in \mathbb{R}_{\mathbf{0}, 0}$ then \boldsymbol{a} is even, so $a^{-}=0 . \square$
Theorem 11. For $\boldsymbol{n} \geq \mathbf{0}$,

$$
L_{2}\left(P_{n}\right) \leqslant n 4^{n}=\frac{1}{2} d \log _{2} d
$$

where $\boldsymbol{d}=4^{\boldsymbol{n}}$ is the dimension of $\mathbb{R}_{\boldsymbol{n}, \boldsymbol{n}}$.
Proof (Sketch)
Count non-zero additions at each level of recursion.
You will obtain at most 4^{n} additions at each of n levels.

Real framed inner product

Recall that if $\boldsymbol{a} \in \mathbb{R}_{\boldsymbol{n}, \boldsymbol{n}}$, then \boldsymbol{a} can be expressed as

$$
a=\sum_{T \subseteq \varsigma(-n, n)} a_{T} \mathrm{e}_{T}
$$

The basis $\left\{\mathrm{e}_{\boldsymbol{T}} \mid \boldsymbol{T} \subseteq \varsigma(-\boldsymbol{n}, \boldsymbol{n})\right\}$ is orthornormal with respect to the real framed inner product

$$
a \bullet b:=\sum_{T \subseteq \varsigma(-n, n)} a_{T} b_{T}
$$

We have

$$
\mathrm{e}_{S} \bullet \mathrm{e}_{T}=\delta_{S, T} \text { and } a_{T}=a \bullet \mathrm{e}_{T}
$$

Normalized Frobenius inner product

Since the GFT P_{n} is an isomorphism, it preserves this inner product. That is, there is an inner product $\bullet: \mathbb{R}\left(\mathbf{2}^{n}\right) \times \mathbb{R}\left(2^{n}\right) \rightarrow \mathbb{R}$, such that, for $a, b \in \mathbb{R}_{n, n}$,

$$
\begin{aligned}
P_{n} a \bullet P_{n} b & =a \bullet b \\
\text { so } \quad P_{n} a \bullet P_{n} \mathrm{e}_{T} & =a \bullet \mathrm{e}_{T}=a_{T}
\end{aligned}
$$

This is the normalized Frobenius inner product.
Lemma 12.
For $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}\left(\mathbf{2}^{\boldsymbol{n}}\right)$, the normalized Frobenius inner product:

$$
\begin{aligned}
& \qquad A \circ B:=2^{-n} \operatorname{tr} A^{T} B=2^{-n} \sum_{j, k=1}^{2^{n}} A_{j, k} B_{j, k} \\
& \text { satisfies } P_{n} a \bullet P_{n} b=a \bullet b, \text { for } a, b \in \mathbb{R}_{n, n}
\end{aligned}
$$

Inverse GFT

Since $P_{n} a \bullet P_{n} \mathrm{e}_{T}=a_{T}$, we can define $Q_{n}:=P_{n}^{-1}$ by Definition 13.

$$
\begin{aligned}
Q_{n} & : \mathbb{R}\left(2^{n}\right) \rightarrow \mathbb{R}^{\mathbb{P} \varsigma(-n, n)} \\
\text { For } A & \in \mathbb{R}\left(2^{n}\right), \quad T \subseteq \varsigma(-n, n), \\
\left(Q_{n} A\right)_{T} & :=A \bullet P_{n} \mathrm{e}_{T}
\end{aligned}
$$

Naive algorithm for $Q_{\boldsymbol{n}}$ evaluates $\boldsymbol{A} \bullet \boldsymbol{P}_{\boldsymbol{n}} \mathbf{e}_{\boldsymbol{T}}$ for each $T \subseteq \varsigma(-n, n)$.

Theorem 14. $L_{2}\left(Q_{n}\right) \leqslant d^{3 / 2}+d \log d$, where $d=4^{n}$.
Proof (Sketch)
$\mathbb{A}\left(Q_{n}\right) \leqslant 2^{n} \times 4^{n}$, and the naive algorithm also needs at most 4^{n} divisions by 2^{n}. \square

Left Kronecker quotient

The left Kronecker quotient is a binary operation which is an inverse operation to the Kronecker matrix product.

Definition 15.

$$
\begin{aligned}
\theta & : \mathbb{R}(r) \times \mathbb{R}(r s) \rightarrow \mathbb{R}(s), \\
\text { for } A & \in \mathbb{R}(r), \operatorname{nnz}(A) \neq 0, \quad C \in \mathbb{R}(r s), \\
(A \otimes C)_{j, k} & :=\frac{1}{\operatorname{nnz}(\boldsymbol{A})} \sum_{A_{j, k} \neq 0} \frac{C_{j, k}}{A_{j, k}},
\end{aligned}
$$

where \boldsymbol{C} is treated as an $\boldsymbol{r} \times \boldsymbol{r}$ block matrix with $\boldsymbol{s} \times \boldsymbol{s}$ blocks, ie. as if $C \in \mathbb{R}(s)(r)$.

Left Kronecker quotient

Theorem 16.
The left Kronecker quotient is an inverse operation to the
Kronecker matrix product, when applied from the left, as follows:
For $A \in \mathbb{R}(r), \operatorname{nnz}(A) \neq 0, B \in \mathbb{R}(s)$,
we have $\boldsymbol{A} \otimes(\boldsymbol{A} \otimes \boldsymbol{B})=\boldsymbol{B}$.
Proof

$$
\begin{aligned}
A \otimes(A \otimes B) & =\frac{1}{\operatorname{nnz}(A)} \sum_{A_{j, k} \neq 0} \frac{A_{j, k} B}{A_{j, k}} \\
& =\frac{1}{\operatorname{nnz}(A)} \sum_{A_{j, k} \neq 0} B \\
& =B
\end{aligned}
$$

Left Kronecker quotient and orthogonality

Lemma 17. For $A \in \mathbb{R}\left(2^{n}\right), B \in \mathbb{R}\left(2^{n}\right), C \in \mathbb{R}\left(2^{n} s\right)$, if $\mathrm{nnz}(A)=2^{n}$ then $A \otimes(B \otimes C)=\left(A^{\prime} \bullet B\right) C$, where

$$
A_{j, k}^{\prime}=\frac{1}{A_{j, k}}, \text { if } \boldsymbol{A}_{j, k} \neq \mathbf{0}, \mathbf{0} \text { otherwise. }
$$

Proof

$$
\begin{aligned}
A \otimes(B \otimes C) & =\frac{1}{\operatorname{nnz}(A)} \sum_{A_{j, k} \neq 0} \frac{B_{j, k} C}{A_{j, k}} \\
& =\frac{1}{2^{n}} \sum_{j, k=1}^{2^{n}} A_{j, k}^{\prime} B_{j, k} C \\
& =\left(A^{\prime} \circ B\right) C
\end{aligned}
$$

Left Kronecker quotient and orthogonality

Lemma 18. If $\boldsymbol{n}>\mathbf{0}$ and

$$
\begin{aligned}
A & \in \mathbb{R}\left(2^{n+m}\right)=\sum_{T \subseteq \varsigma(-n, n)}\left(P_{n} \mathrm{e}_{T}\right) \otimes A_{T}, \text { where } \\
\boldsymbol{A}_{\boldsymbol{T}} & \in \mathbb{R}\left(2^{m}\right), \text { then }\left(P_{n} \mathrm{e}_{T}\right) \otimes \boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{T}}, \text { for } \boldsymbol{T} \subseteq \varsigma(-n, n) .
\end{aligned}
$$

Corollary 19.

$$
\begin{aligned}
& \text { If } n>\mathbf{0}, \boldsymbol{A}_{\boldsymbol{I}}, \boldsymbol{A}_{\boldsymbol{J}}, \boldsymbol{A}_{\boldsymbol{K}}, \boldsymbol{A}_{\boldsymbol{J K}} \in \mathbb{R}\left(\mathbf{2}^{n-1}\right), \\
& \text { and } \boldsymbol{A}=\boldsymbol{I} \otimes \boldsymbol{A}_{\boldsymbol{I}}+\boldsymbol{J} \otimes \boldsymbol{A}_{\boldsymbol{J}}+\boldsymbol{K} \otimes \boldsymbol{A}_{\boldsymbol{K}}+\boldsymbol{J} \boldsymbol{K} \otimes \boldsymbol{A}_{\boldsymbol{J K}}, \\
& \text { then } \boldsymbol{I} \otimes \boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{I}}, \quad \boldsymbol{J} \otimes \boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{J}}, \\
& \quad \boldsymbol{K} \otimes \boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{K}}, \quad \boldsymbol{J} \boldsymbol{K} \otimes \boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{J K}} .
\end{aligned}
$$

Recursive expression for Q_{n}

Theorem 20.
For $\boldsymbol{n}>\mathbf{0}, \boldsymbol{A} \in \mathbb{R}\left(\mathbf{2}^{\boldsymbol{n}}\right), Q_{n}$ as per Definition 13,

$$
\begin{aligned}
Q_{n}(A) & =Q_{n-1}(I \otimes A)^{+}-Q_{n-1}(J K \otimes A)^{-} \\
& +\mathrm{e}_{\{-n\}}\left(Q_{n-1}(J K \otimes A)^{+}+Q_{n-1}(I \otimes A)^{-}\right) \mathrm{e}_{\{n\}} \\
& +\mathrm{e}_{\{-n\}}\left(Q_{n-1}(\boldsymbol{K} \otimes A)^{-}+Q_{n-1}(J \otimes A)^{+}\right) \\
& +\left(-Q_{n-1}(J \otimes A)^{-}+Q_{n-1}(\boldsymbol{K} \otimes A)^{+}\right) \mathrm{e}_{\{n\}} .
\end{aligned}
$$

For $\boldsymbol{n}=\mathbf{0}$, we have $\boldsymbol{Q}_{0}[a]=a$.
Proof (Sketch)
Start with Theorems 9 and 10 and apply Corollary 19. \square

Linear complexity of inverse GFT

Theorem 21.
$L_{2}\left(Q_{n}\right) \leqslant 2 n 4^{n}=d \log _{2} d$, where $\boldsymbol{d}=4^{n}$ is the dimension of $\mathbb{R}_{n, n}$.

Proof

Q_{n} uses Q four times. Each time needs at most $4^{\boldsymbol{n - 1}}$ additions.
Q_{n} also uses Q_{n-1} four times. So,

$$
\mathbb{A}\left(Q_{n}\right) \leqslant 4^{n}+4 \mathbb{A}\left(Q_{n-1}\right) \leqslant n 4^{n}=\frac{1}{2} d \log _{2} d .
$$

For Q_{n}, each of the four uses of Q needs 4^{n-1} divisions by 2 .

So $L_{2}\left(Q_{n}\right) \leqslant 2 n 4^{n}=d \log _{2} d . \square$

Benchmark for GluCat implementation

(Lounesto et al. 1987; Lounesto 1992; Raja 1996)

- Generic library of universal Clifford algebra templates
- For details, see http://glucat.sf.net

References 1

References

[Ablamowicz 1996]
[Baum 1991]
R. Ablamowicz, P. Lounesto, J. M. Parra (eds), Clifford algebras with numeric and symbolic computations, Birkhäuser, 1996.

Ulrich Baum, "Existence and effi cient construction of fast Fourier transforms on supersolvable groups", Computational Complexity 1 (1991), no. 3, 235-256
[Bayro Corrochano \& Sobczyk]
E. Bayro Corrochano, G. Sobczyk, Geometric algebra with applications in science and engineering. Birkhäuser, 2001.
[Beth 1987]
[Braden 1985]
Thomas Beth, "On the computational complexity of the general discrete Fourier transform", Theoretical Computer Science, 51 (1987), no. 3, 331-339.
H. W. Braden, "N-dimensional spinors: Their properties in terms of fi nite groups", J. Math. Phys. 26 (4), April 1985. American Institute of Physics.

References 2

References

[Bulow et al. 2001]
[Chernov 2001]
[Clausen \& Baum 1993]
[Diaconis \& Rockmore 1990
[Felsberg et al. 2001]

Thomas Bülow, Michael Felsberg, Gerald Sommer, "Non-commutative hypercomplex Fourier transforms of multidimensional signals", pp187-207 of [Sommer 2001].

Vladimir M. Chernov, "Clifford algebras as projections of group algebras", pp461-476 of [Bayro Corrochano \& Sobczyk].

Michael Clausen, Ulrich Baum, Fast Fourier transforms. Bibliographisches Institut, Mannheim, 1993.

Persi Diaconis, Daniel Rockmore, "Effi cient computation of the Fourier transform on fi nite groups", J. Amer. Math. Soc. 3 (1990), no. 2, 297-332.

Michael Felsberg, Thomas Bülow, ; Gerald Sommer, Vladimir M. Chernov, "Fast algorithms of hypercomplex Fourier transforms", pp231-254 of [Sommer 2001].

References 3

References
[Hestenes \& Sobczyk 1984] David Hestenes, Garret Sobczyk, Clifford algebra to geometric calculus : a unified language for mathematics and physics, D. Reidel, 1984.
[Lam 1973]
[Lam \& Smith 1989]
[Lounesto 1987]
[Lounesto 1992]
T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc., 1973.
T. Y. Lam, Tara L. Smith, "On the Clifford-Littlewood-Eckmann groups: a new look at periodicity mod 8 ", Rocky Mountains Journal of Mathematics, vol 19, no 3, Summer 1989.
P. Lounesto, R. Mikkola, V. Vierros, CLICAL User Manual: Complex Number, Vector Space and Clifford Algebra Calculator for MS-DOS Personal Computers, Institute of Mathematics, Helsinki University of Technology, 1987.
P. Lounesto, "Clifford algebra calculations with a microcomputer", pp39-55 of [Micali et al. 1989].

References 4

References

[Micali et al. 1989] A. Micali, R. Boudet, J. Helmstetter, (eds), Clifford algebras and their applications in mathematical physics : proceedings of second workshop held at Montpellier, France, 1989, Kluwer Academic Publishers, 1992.
[Porteous 1969] I. Porteous, Topological geometry, Van Nostrand Reinhold, 1969.
[Raja 1996]
[Sommer 2001] G. Sommer (ed.), Geometric Computing with Clifford Algebras, Springer, 2001.
[Wene 1995] G. P. Wene, "The Idempotent stucture of an infi nite dimensional Clifford algebra", pp161-164 of [Micali et al. 1989].

