DIAMETER BOUNDS FOR EQUAL AREA PARTITIONS OF THE UNIT SPHERE
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Abstract. The recursive zonal equal area (EQ) sphere partitioningridhgn is a practical algorithm for par-
titioning higher dimensional spheres into regions of eqarah and small diameter. Another such construction is
due to Feige and Schechtman. This paper gives a proof foraimeds on the diameter of regions for each of these
partitions.
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1. Introduction. Stolarsky [L2, p. 581] asserts the existence for any natural number
of partition of the unit spher8? ¢ R?*! into N regions of equal area and small diameter.
The recursive zonal equal area (EQ) sphere partitioningyéhgm [8, Section 3] is a practical
means to achieve such a partition. Feige and Schechtgivg a construction which can
easily be modified to give another such partition.

In this paper we prove that the both EQ partition and the medlifeige-Schechtman
partition satisfy Stolarsky’s assertion.

This paper is the companion t8][and is meant to be read in conjunction with that paper.
Any definitions and notation not found here are to be foun@&jnThe proofs given here are
based on those in the PhD thesisgnd much of the technical detail which has been omitted
here will be found in the thesis.

This paper is organized as follows. Sectirepeats enough of the definitions and theo-
rems of B] to orient the reader. Sectidhcontains the continuous model of the EQ partition
which is used in the proof of the properties of this partiti@®ection4 proves that the EQ
partition satisfies Stolarsky’s assertion. Sectiocontains estimates which will be used in
the remainder of the paper. Sectidprovides a proof that the modified Feige-Schechtman
construction satisfies Stolarsky’s assertion. An appepdivides proofs for some of the
lemmas. Further proofs and more details can be found]in [

2. Preliminaries. For convenience, this section repeats some of the definidod re-
states some of the theorems givengh [
For any two points, b € S¢, the Euclidean and spherical distances are related by

la, bl =T (s(a, b)),

where
(2.2) Y(0) := \/2—2C059:2$ing.
Ford > 0, the area o6? C R4+ is given by P, p. 1]
d+1
272
o(Sh) = ——.
L(4)

For all that follows, we will use the following abbreviatisnFord > 1, we define
W= U(Sd_l) and := U(Sd).

*Centre for Mathematics and its Applications, Australian  tidlzal University.
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The area of a spherical céf{a, 9) of spherical radiug and centen is [6, Lemma 4.1
p. 255]

(4
(2.2) V() =0 (S(a,0)) = w/o (sin&)?1ae.

The function® is the inverse ob.
This paper considers the Euclidean diameter of regions)etkfs follows.
DEFINITION 2.1. Thediameterof a regionR € S¢ ¢ R?*! is

diam R := sup{||x — y|| | x,y € R}.

The following definitions are specific to the main theorenasest here.
DEFINITION 2.2. A setZ of partitions ofS? is said to bediameter-boundedith diam-
eter boundX € R, ifforall P € Z, for eachR € P,

diam R < K |P| 7.

DEFINITION 2.3. The set of recursive zonal equal area partition$éis defined as
EQ(d) := {EQ(d, N) | N € N.}.

whereEQ(d, N) denotes the recursive zonal equal area partition of the splitereS? into
N regions, which is defined via the algorithm given in Sectiaf [B].

The partitionEQ(d, N) has the following properties.

THEOREM2.4.Ford > 1andN > 1, the partitionEQ(d, N) is an equal area partition
of %.

The proof of Theoren2.4is straightforward, following immediately from the constr
tion of the EQ partition§, Section 3].

THEOREM2.5.For d > 1, EQ(d) is diameter-bounded in the sense of Definitioh

Theorem?2.5is a special case of Stolarsky’s assertion:

THEOREM 2.6. [12, p. 581] For eachd > 0, there is a constant; such that for all
N > 0, there is a partition of the unit sphe® into IV regions, with each region having area
Q/N and diameter at most;N .

We will also often refer to the following quantities, definedsteps 1 to 3 of the EQ
partition algorithm forlEQ(d, V) [8, Section 3.2].

Q@
N7

1 — 20,
0.:=O(Vg), 0r:=Vi, nj:==" .
I

(2.3) Vg =

3. A continuous model of the partition algorithm. Step 4 of the EQ partition algo-
rithm [8, 3.2] is the first rounding step, which produeeom n;. We define

nr
pi=—
n

so that

(31) (SF:pé].
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For N > 2,if n; > 5 then Step 4 yields

1 1
n e n]—§,n]+§ .

1
2

and thereforeq], Lemma 3.5.1, p. 87]

1 1
1— 1 .
pe[ 2 + 1’ +2n1—1)

We see that bounds ferare given by lower bounds far;. The crudest such bound is
given byn; > % which merely imples that > 1/2.

We can re-express the bound > % in terms of a lower bound oV by means of the
functionv, where

(3.2) v(z) = (%)7 <7T ~20 (%)) .

The functionv defined by 8.2) satisfies/(2) = 0, v(N) = ny, andv(z) is monotoni-
cally increasing inz for x > 2 [7, Lemma 3.5.2, p. 87]. As a consequence, it is possible to
define the inverse functial, where

3.3) No(y) :==v(y)

for y > 0. We then have\y (v(z)) = = andv(Ny(y)) =y forz > 2 andy > 0, and by the
inverse function theoreryy (y) is monotonic increasing ip for y > 0.
For N > z such that > A;(1/2), we then have

(3.4) ny > v(x) > %
and
(3.5) p € lpr(@), pu ()],
where
1 1
(3.6) pr(z) =1- (@) +1 and pp(z):=1+ (@) =1

We can makey., (z) andpy (x) arbitrarily close to 1 by making large enough. More pre-
cisely,

(3.7) pr(x) /1, andpy(z) \, 1 asz — occ.

Step 6 of the EQ partition algorithm is the second roundirg stvhich produces;
from y,. By examining steps 5 to 7 of the EQ partition algorithm, istsaightforward to
verify thatford > 1, N > 1 andi € {1, ...,n} the following relationships hold7} Lemmas
3.5.3,3.5.4, pp. 88-89]:

1 1 n n
a; € {—5,5], a, =0, ;yi:;mizN—Z

V(0:41) — V(9,)

€ No,
Vr 0

My = Yi + Q-1 — a =

V(9;) = V(VF;) + ai-1Vr,
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To make it easier to find bounds for functions which vary fromme to zone, such agm
we define and use continuous analogs of these functions wHyisinstead of having to find
a bound for a function value over+ 2 points, wheren varies with N, we need only find
a bound for a function over a fixed number of points and cowtistintervals. We therefore
define the functions

V() +6p) — V(0)

(3.8) YW := Vi , M(7,8,9) = V() + 1+ 5,
T(r,9) :=0(V(¥) — 7Vr), B(B,0) := ©(V(Y + 6r) + BVr),
A V) = B(B,9) — T (1,0 P = i
(Ta ﬁa ) (57 ) (T7 )7 W(T757 ) fe[T(%?%(ﬁﬁ)] Slnga
P(r, 8,0) = W(r, 8,9) M(r, B,0) T4,
so that fori € {1,...,n} we have
Y(Or:) = yi, M(=ai-1,a:,VF;) = my,
T(—ai—1,9F;) = Vi, B(ai,Vp,;i) = Dit1,
A(=a;—1,ai,VF;) = 0;, W(—ai-1,a;,9F,;) = w;,
P(—ai—1,a:,VF,;) = p;.

These functions have symmetries which follow from the syini@e of the trigonometric
functions. The functio) satisfies

V(r =) =Y —dp).
The functionsZ” andB satisfy the identities

T(r,m=19)=mn—B(r,9 —dp) and
B(B,m—v)=nm—-T(8,9 —0p).

For eachf € {M, A, W, P}, the functionf satisfies
f(T7677T - 19) = f(ﬁ,T,Qg — 6F)

For our feasible domain we therefore use thelsalefined as follows.
DEFINITION 3.1. Thefeasible domaif is defined as

D := D, UD,, UD;,

where

)

],ﬁzm},

N =
N =

(3.9 D :={(r,5,9) | 7=0,8¢€ [—

m

11 11
Dy, == {(Tvﬁaﬁ) | TE |:_§7§:| 76 |:_§7§:| 70 € [19F727F_0C_25F]}7
11

D= {(r8.0) | 7€ |-5.5] =00 =7~ 0.~ e}

We can now use the feasible dom&irand the analogue functio@sand? to bound the
maximum diameter of regions of the EQ patrtition.
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LEMMA 3.2.[7, Lemma 3.5.11]
Assume that > 1 and thatEQ(d — 1) has diameter bound. Then forN > 2, if we
define

maxdiam(d, N) := . g}g&(}; ) diam R,
€EQ(d,

then

maxdiam(d, N) < \/(mﬁx A)2 + n2(m§x73)2.

We need only consider the northern hemisphere to obtainctvalind for the diameter of a
region of the recursive zonal equal area partitio§bfFirst define the following subdomains
of the feasible domaiid.
o
2 )

o
2 )

Dy = {(T,ﬁ,ﬁ)eﬂ) ‘ﬁg

ST RN

D_ := {(7,6,19) eD ‘ 9 >
(310) Dm+ = Dm n ]D)+,

The following result then holds.

LEMMA 3.3.[7, Lemma 3.5.12]

For f € {M,A, W, P} and(r,3,9) € D_, we can find7’, 5',9') € D, such that
f(,p5,9) = f(r,5,9). In particular, if (1, 3,9) € Dy, then(r',5,9') € Dy, and if
(1,8,9) € Dy, —, then(r’, 5,9') € D,y 4.

COROLLARY 3.4.For f € {M, AW, P},

max = max J.
D ! Dy !

An analysis of the diameter of the polar caps is not needetth&proof of Theoren.5.
It is included for completeness, and for comparison to thgd-€schechtman bound to be
examined below. This is a consequence of the isodiametuiality forS.

THEOREM 3.5. (Isodiametric inequality foB?)

Any regionR C S? of spherical diametef < 7 has area bounded by

o < (2)

Equality holds only for spherical caps of spherical radgls

This result is well known. See] for a proof of a generalized version of this inequality,
based on the proof ofl].

We have the following upper bound for the diameter of a podar efEQ(d, N).

LEMMA 3.6. Ford > 1 and N > 2, the diameter of each polar cap 8fQ(d, N) is
bounded above bi. N~ i, where
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The following two bounds are used in the proof of Theotzfm

LEMMA 3.7.For d > 1, there is a positive constaifn € N and a monotonic decreas-
ing positive real functiorK' o such that for each partitioRQ(d, N') with
N >x > Np,

-

mSXA < Ka(x)N™ 4.

LEMMA 3.8.For d > 1, there is a positive constai¥p € N and a monotonic decreas-
ing positive real functior”'p such that for each partitioLQ(d, V) with
N >x > Np,

=

mH%XP < Cp(z)N™4.

4. Proofs of main theorems.
Proof of Theoren2.5.

The theorem is true fai = 1, with EQ(1) having diameter boun&’; = 2, since the
recursive zonal equal area partition algorithm partitidrescircleS' into IV equal segments,
each of arc lengtBr /N, and therefore each segment has diameter lesthal.

Now assume that > 1 andN > 2. We know from Lemma&.2that

maxdiam(d, N) < \/(m]gux A)2 + K2 (m}gx??)z.

From Lemma3.7, we know that there is a positive constavit € N and a monotonic
decreasing positive real functidiia such that for each partitioBQ(d, N) with N > z >
Na,

-

mH%XA < Ka(x)N™4d.

From Lemma3.8, we know that there is a positive constaviz € N and a monotonic
decreasing positive real functidrp such that for each partitioBQ(d, N) with N > = >
Np,

al=

mﬁux’P < Cp(x)N™14.
Define
NH = max(NA, Np)

Assuming thattQ(d — 1) is diameter bounded, with diameter boundhen forN >
Ny, we havemaxdiam(d, N) < Ky N—17,where

Ky = \/KA(NH)Q + IQQCP(NH)2.

Ford > 1andN < Ny, we note that the diameter 8f is 2, and so the diameter of any
region is bounded by 2. Therefore fdf < Ny, maxdiam(d, N) < K N—4,where

Ky = 2N},
Finally, we see by induction that far > 1, maxdiam(d, N) < K N—a, where

Kd = Inax(KL, KH)
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5. Estimates for caps.Later we will need to comparén 6 with sin(6 + ¢), for various
0 and¢. The following estimate is useful for this task.
For allg, ¢ € R we have

sin(f + ¢) —sinf = 2 sing cos (9+ g) .
Therefore fory € (0, 7], 0 € (0,7/2 — ¢/2] we havesin(f + ¢) > sind > 0.
In the estimate below we assume tHat (0,¢], £ € (0,7/2], and use the well-known
sine ratio function

sincf := sin 0
We have the well-known estimate
(5.1) sinf € [sinc&, 1] 6.

In the estimates below we assume that (0, ], £ € (0,7/2].
From (2.2 we haveDV(6) = wsin®~! 4. Using the estimate5(1) therefore gives us

DV(0) € [(sinc &)1 1] whdt,
so
(5.2) V(9) € [(sinc &)1, 1] ged.
If we then substitut®(v) for ¢, we obtain forv € [0, V()],

(5.3) O(v) € [1, (sinc&) "] (§>év .

=

w

The estimatesy(2) and 6.3) are crude. There are instances where we need a sharper
upper bound than that given b§.9). The estimate below is more accurate for ladiger 0
away fromm /2.

LEMMA 5.1.[7, Lemma 2.3.18]

Ford > 2 andé € [0,7/2) we have

. d

w sin® 6
5.4 ) < ———,
(5.4) V(o) d cosf

with equality only whe® = 0.
If we combine 6.2) with (5.4) we obtain
COROLLARY 5.2.Ford > 2 andd € [0,7/2) we have

(5.5) V(9) € [L ! ]f sin? §.

sinc@’ cosf | d
Recall from .3 thatd. = © ($£) and define

(5.6) Jo(z) = sinc © <Q> .

T
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As aresultof .3, for N > = > 2 we have

(5.7) 9, € [1, Jo(z) ] <g) 51,

Using Lemmab.1, we obtain the following upper bound fgin ¥...
LEMMA 5.3.[7, Lemma 3.5.14]
Forz > 2,

(5.8) 27 sin© (Q> < (ﬁ) .
X w

Therefore, forV > 2,
1

(5.9 sind,. < (§> 1.
w
Combining 6.6), (5.7) and £.9) we have the estimate

(5.10) sind. € [Jo(x),1] (g)ﬁ o7

forN > x> 2.

6. The modified Feige and Schechtman construction-eige and Schechtmagj[give
a constructive proof of the following lemma, which can bedugeprove Stolarsky’s assertion.
LEMMA 6.1.[5, Lemma 21, pp. 430-431]

For each0 < v < 7/2 the spheré&s?~! can be partitioned intgV = (O(l)/y)d regions
of equal area, each of diameter at mast

Lemma6.1 corresponds to a diameter bound of ordxéwﬁ) rather tharO (N ¢ ) but
the construction given in the prods,[pp. 430—431] is easily modified to yield the following
upper bound on the smallest maximum diameter of an equalpaizion ofS.

LEMMA 6.2. Ford > 1, N > 2, there is a partition’S(d, N) of the unit spher&?
into N regions, with each regioft € F'S(d, N) having areal)/N and Euclidean diameter
bounded above by

diam R < Y (min(w, 89.)),

with T defined byZ.1) andd. defined byZ.3).

We now use the modified Feige—Schechtman construction t@8twlarsky’s assertion,
Theoren2.6.
Proof of Theoren?.6.

Ford = 1, we partition the circle into equal segments and the proa$iger the proof of
Theorenm2.5.

Ford > 1 andN = 1, there is one region of diamete= 2N~—7.Ford > 1andN = 2,

there are two regions, each of diametet 2T N~
Otherwise we use Lemnta2 and the estimate$(7) and 6.9). Define

Nps =
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ThenforN > Nrg,

Q
’ﬂc = AT < )
°(%)

ool 3

with equality only whenV = Ngg. Therefore, forN > Nrg, Lemmass.3and6.2give us

max  diam R < 2 sin4d, < 8 sind, < KpgN 4,

REFS(d,N)

where
Qd\7
KFS =8 <—> .
w

For2 < N < Nrg, we have

1

d .

maxdiam F'S(d,N) < 2 = 2NIN~7 < QNéSN

Let Kpgp :=2 Nﬁs. Using 6.5 we have

s 1 w PR w qT
V(S) mncgdsm 8>dSln 8
We also havein Z > 1 so that
™ w
v(§) > g
Therefore
Q Qd
NFS = w2y < 4.d -,
V(%) w
in other words,
Qd

We therefore hav& rsr, < Krg.
Ford > 2 we have J, Lemma 2.3.20]

(6.1) % > \/%

For the caseV = 2, from (6.1) we obtain

Qd
29+ < 87 V2rd < 8¢ — = K¢y,
w

Therefore Theorerf.6is satisfied bye; = Kpg. O
Remarks. The Feige—Schechtman constdfits thus provides an upper

bound for the minimum constant for the diameter bound of arakgrea
partition of S?. Theorems.4and2.5yield an alternate proof of Theorem

2.6, with ¢; = K.



10 P. LEOPARDI

Appendix A. Proofs of Lemmas.

The definitions of the function& and? and the definition of the feasible domdin
depend on the fitting collar angdg. Thus the proofs of Lemmas7and3.8need an estimate
for og.

Recall from @.1) thatdz = pd;. Therefore, from3.5), for N > = > Ny(1/2), where
Ny is defined by 8.3) we have

(A.1) 6r € [pr(), pu(2)]dr.

We also need estimates fdy-;, as defined by Step 5 of the EQ partition algorithfin [
Section 3.2], and fosin ¥ ; andV(0 ;).
Here and below, we generalize the definitionjef;, by defining

7-9F,L =Y. + (L — 1)5}?,

forve [1,n+1].
For N > z > Ny(1/2), whereN is defined by 8.3), the estimatess(7) and (A.1) now
yield

(A2) g e [(g)éw—l)mw, (g)éJc(w)ler(L—l)pH(w) b1,

The estimates fasin ¥, andV (¢, ) below assume thay > = > Nj(1/2), where\
is defined by 8.3), and the lower bounds for these estimates also assume that

(A3) 0 (%) + (- oute) (9) <7

If we define
() = sine (9 (%) + (= 1)pu(a) (%) é) ,

then from 6.1) and (A.2) we have the estimate

d

sindr, € [JF,L@ ((g) . 1>pL<x>> , (ﬁ)é J@)'T 4 (- 1>pH<w>] 5y

w
and from 6.2) we have the estimate

V(,ﬂF,L) S [SL,L(,T), SH,L(.”L')]VR,

where

If we define
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then, sincefp,(z) /1, J.(x) /1, pr(x) / 1andpg(x) \, 1, asx — oo we see that

sp.(z) /s, andsg, (x) N\, s,

asr — o0.
By makingx large enough andsmall enough, we can ensure that3) holds.
LEMMA A.1.[7, Lemma 3.5.16]
If x > No(5), whereNj is defined by&.3), then @.3) holds for

13
1,— .
Le{’z}]

For the remainder of this paper we use the abbreviation

The proofs of Lemma8.7 and3.8require the following results, which are proved ify [
Chapter 3].

LEMMA A.2.[7,Lemma 3.5.17]

There is anc > Ny (5), such that

(A.4) I (14 ()" (1 +npr(x) (%)}i)d > g

LEMMA A.3.[7,Lemma 3.5.19]
If z > Ny(5), andz satisfies £.4) then forN > x we have

3
(A.5) V(i +nor) > SV

As aresult of A.5) we have

.
VW, +nép) — V(0e) > 73

From 2.2 and the symmetries of the sine function, foe (0, 7/2 — ndr /2] we have

a% (VW +nér) — V(D)) = DV(9 + ndr) — DV(9)

(A.6) =w (sind71(19 +ndp) —sin?! 9) >0,

with equality only wheny = = — 9.
This results in the following corollary.
COROLLARY A.4. [7, Corollary 3.5.20]

If x > Ny(5), andz satisfies £.4) then forN > z and? € [9.,  — J. — ndr] we have

(A7) V(I +nor) — V(9) > %
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If 2 > Ny(5), andN > z thenn > 5, s0dpo < %. Since8md > 167 > 49, we
therefore have
Ja

Proof of Lemma3.6.
Assume thatl > 1 and N > 1. From @.3) we know that the diameter of each of the
polar caps of the partitioRQ(d, N) is 2 sin .. From (6.9) we have the estimate

1

d
2sind, < 2 (@> N-1,
w

forN>x>2.0

Proof of LemmaB.7.
Throughout this proof, we assume thet > = wherez > Ny(5), with A defined by
(3.9, so thatn > 5. Using Corollary3.4, we also assume thét, 3
For the top collar(r, 3,9) € Dy, (3.9 givest =0, 8 € [—3
we have

e D;.
, 0 =Y. From .2

V(B(B,9.) = V(e 4 6r) + Vi < V(W + 0p) + %_

Sincen > 5, we haved. + op € [¥., ™ — 9. — ndr|, and we can use\(7) to obtain

V(B(B,0.)) < V(@ + 6r) + % < V(0 + (1+m)5r),

and therefore

B(ﬁa 190) < 190 + (1 + 77)5F
Therefore 8.8) yields

AT, 5,9) = A0, 8,9.) = B(8,9.) — T(0,9.) = B(3,9:) — 9. < (1 +n)dp.
1
[_

=B
For (r,8,9) € Dy (3.10 givesT € [-1,1], 8 € [-3,3]. 9 € [Vp2 T — £

Sincen > 5, we havey + 6p € [J.,® — 9. — ndr], since
3
Dot 26p < Do+ 205 < °,
2 2
yielding

5
19+5F<g+7F<7r—19c—5F.

From (2.2), (3.8) and A.7) we now have

V(B(8,9)) = V(0 +6p) + BVr < V(I +0F) + % < V(0 + (1+n)dr).

We therefore have

(A.9) B(3,0) < 9+ (1+n)6p.
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Sinced — nop > 9., using @.2), (3.8) and (A.7) we also have

V(T(r,9)) = V() + Vg > V(D) - % > V(I — o),

so that
(A.10) Y —nop < T(1,9).

Combining @.9) and A.10), and using 8.8) we therefore have

A(T, 3,9) = B(8,9) — T(1,9) < (1 +2n)dF.
The estimate4.1) now yields
A(r, 8,9) < Ka(z)N™1,
where
Ka(z) = (1+2) pr(z) Q7,

with pg (x) defined by 8.6).

We also have

Ka(z) \ Ka(oo) = (14 2n) Q4

asx — oo, sincepy () \, 1 asz — oo, by (3.7). O
Proof of LemméB.8

Throughout this proof, we assume tht> = wherez > Ny(5), with Ay defined by

(3.9, so thatn > 5. Using Corollary3.4, we also assume thét, 5,9) € D...
We will show that

with C'; monotonic non-increasing ari¢h monotonic non-decreasing.
We first examiné\. Using (A.9) for ¥ < /2 — (1 + n)dr we have

W(r, 8,9) <sin(d + (1 +n)dp) <sind + (1 +n)dr.
Ford € [n/2(1 +n)dp,m/2 — dp /2] we have
T
2

soW(r,3,9) < sind + (1 +n)dp. Sinced € [J.,m — J.] we havesind > sind. and
therefore

2
sind + (1+m)p > = (5= +mar) + 1 +moe>1,

)
W(Tuﬁa'ﬂ) < (1 + (1 + 77)81DF19 ) sin19.

From (A.1) we havedp < pH(x)Q%N%l. From 6.10 we have

1
Qd\ 7 -
sind, > Jo(x) <—) NT

w
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so thatW(r, 8,9) < C1(z)sind, with

;udw)(g)z

Cl(:v) =1+ (1 +77) JC(.CC) d

)

with ’f]’j—((mgﬁ)) \, lasz — oo, sinceJ.(z) /' 1andpy(x) \, 1 asz — oco. ThusCi(z) is
monotonic nonincreasing as— oo.

Now for M. From (3.8) we have

M(1,8,9) >

But

V(U + 6r) — V()
VR

I+op
:w/ sin? ™t ¢d¢ > wopsin o
9

forv € [0,7/2 — 0r/2]. SO

M(7,5,09) > wsind_lﬁg—F -
Vr

1
1

. _ d—1
sin? 9. N7

d—1

> (prldd — ) sin® 'YN T

sinced > .. Using 3.5 and 6.10 we therefore have
M(7,8,9) > Ca(z)sin® P ON T,

where

— w -
Cy(x) == pwﬂ% — Jo ()t (m) °
If Jc(az:)”lflpL(:z:)w%dd%1 > 1 then we have’;(z) > 0. This is true forz sufficiently large
sincewd?~! > 1 and since botW,(z) /1 andp.(z) / 1 asz — co. We also see thats,
is monotonically nondecreasirg.

Proof of Lemméb.2
This proof uses a modified version of the construction givengroof of b, Lemma 21]
in[5, p. 430-431].
1. Givend > 1, N > 2, use @.3 to determine).. Thenwe hav®’(¥.) = Vg = Q/N,
with Vr being the area we need for each region of the partition.
2. A saturated packin@f packing radiug is a packing of spherical caps of packing
radiusp such that another cap cannot be added without moving thérexisaps.
Create a saturated packing &f by caps of spherical radiu%., constructed via a
greedy algorithm so that each cap kisses at least one otheketn be the number
of caps in the packing.
We see that no point d¥¢ is more thar2d, from the centre of a cap, otherwise
we could have added another cap. Thereforesthgentre points of the packing are
also the centres of a covering®f by spherical caps of spherical radii$, [13, p.
1091][14, Lemma 1, p. 2112].
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Now partitionS? into Voronoi cellsV;, i € {1,...,m} based on these: centre
points. The Voronoi cell; corresponding to centre poihtonsists of those points
of S which are at least as close to the centre pba they are to of any of the other
centre points.

We see that the Voronoi cells must contain the packing cag®arcontained in the
covering caps. Thus eadh has area at leadir and spherical diameter at most
min (7, 29.).

. Now create a graph with a node for each centre point and an edge for each pair of

kissing packing caps.

. Take any spanning treg of " (also known as anaximal treg[10, Section 6.2 pp.

101-103)).

The treeS has leaves, which are nodes having only one edge, and eitirgle
centre node, or a bicentre, which is a pair of nodes joinedbgdge. The centre or
bicentre nodes are the nodes for which the shortest patlyteafhas the maximum
number of edges3] [4, Volume 9, p. 430] 11, Chapter 6, Section 9, p. 135]. If
there is a single centre, mark it as the root node. If therebikantre, arbitrarily
mark one of the two nodes as the root node. Now create thetelitéreel” from .S
by directing the edges from the leaves towards the rohtChapter 6, Section 7, p.
129].

. For each leaf, of T definen; := |o(V;)/Vr], (with || denoting the least integer

function ofz).

. PartitionV; into the super-regioy; with o(U;) = n;Vr and the remainddi’; :=

Vi\ Uj.

. For each nonleaf nodeother than the root, defin€,, = V. U U(j,k)eT W, thatiis,

we add all the remainders of the daughters ¢ V;, to obtainXj,.

. Now definen;, := |o(X%)/Vr| and partitionX, into the super-regiod/;, with

o(Ux) = niVr and the remainddiy, := X, \ U.

Continue until only the root node is left.

For the root nodg if we definelU, := V, U U(M)GT Wy, we see that we must have
o(Ug) = n¢Vg, where

ny ::N—Zni.

i)

that s, the area of the super-region corresponding to thien@de must be an integer
multiple of Vg.

Since at each step we have assemblednly from the Voronoi cells corresponding
to kissing packing caps, ea€h is contained in a spherical cap with centre the same
as the centre of the corresponding packing cap, and spheaias min(r, 49.),

and so the spherical diameter of ed¢his at mostmin(r, 89.).

Now partition eacl/; into n; regions of ared’r, and letF'S(d, N) be the resulting
partition ofS?. ThenFS(d, N) is a partition ofS? into IV regions, with each region

R € FS(d, N) having ared)/N and Euclidean diameter bounded above by

m
. < . o (T .
diam R < T (mln(ﬂ', 8196)) 2sin (Inln (2 , 4196))
Remarks.Feige and Schechtman’s proof uses a maximal packing instead

of a saturated packing, but maximality is harder to achiexkthe proof of
Lemma6.2only needs a saturated packing.
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