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Abstract. The recursive zonal equal area (EQ) sphere partitioning algorithm is a practical algorithm for par-
titioning higher dimensional spheres into regions of equalarea and small diameter. Another such construction is
due to Feige and Schechtman. This paper gives a proof for the bounds on the diameter of regions for each of these
partitions.
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1. Introduction. Stolarsky [12, p. 581] asserts the existence for any natural numberN
of partition of the unit sphereSd ⊂ R

d+1 into N regions of equal area and small diameter.
The recursive zonal equal area (EQ) sphere partitioning algorithm [8, Section 3] is a practical
means to achieve such a partition. Feige and Schechtman [5] give a construction which can
easily be modified to give another such partition.

In this paper we prove that the both EQ partition and the modified Feige-Schechtman
partition satisfy Stolarsky’s assertion.

This paper is the companion to [8] and is meant to be read in conjunction with that paper.
Any definitions and notation not found here are to be found in [8]. The proofs given here are
based on those in the PhD thesis [7] and much of the technical detail which has been omitted
here will be found in the thesis.

This paper is organized as follows. Section2 repeats enough of the definitions and theo-
rems of [8] to orient the reader. Section3 contains the continuous model of the EQ partition
which is used in the proof of the properties of this partition. Section4 proves that the EQ
partition satisfies Stolarsky’s assertion. Section5 contains estimates which will be used in
the remainder of the paper. Section6 provides a proof that the modified Feige-Schechtman
construction satisfies Stolarsky’s assertion. An appendixprovides proofs for some of the
lemmas. Further proofs and more details can be found in [7].

2. Preliminaries. For convenience, this section repeats some of the definitions and re-
states some of the theorems given in [8].

For any two pointsa,b ∈ Sd, the Euclidean and spherical distances are related by

‖a,b‖ = Υ
(

s(a,b)
)

,

where

Υ(θ) :=
√

2 − 2 cos θ = 2 sin
θ

2
.(2.1)

Ford > 0, the area ofSd ⊂ Rd+1 is given by [9, p. 1]

σ(Sd) =
2 π

d+1

2

Γ(d+1
2 )

.

For all that follows, we will use the following abbreviations. Ford > 1, we define

ω := σ(Sd−1) and Ω := σ(Sd).
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2 P. LEOPARDI

The area of a spherical capS(a, θ) of spherical radiusθ and centera is [6, Lemma 4.1
p. 255]

V(θ) := σ (S(a, θ)) = ω

∫ θ

0

(sin ξ)d−1dξ.(2.2)

The functionΘ is the inverse ofV .
This paper considers the Euclidean diameter of regions, defined as follows.
DEFINITION 2.1. Thediameterof a regionR ∈ Sd ⊂ Rd+1 is

diamR := sup{‖x− y‖ | x,y ∈ R}.

The following definitions are specific to the main theorems stated here.
DEFINITION 2.2. A setZ of partitions ofSd is said to bediameter-boundedwith diam-

eter boundK ∈ R+ if for all P ∈ Z, for eachR ∈ P ,

diamR 6 K |P |− 1
d .

DEFINITION 2.3. The set of recursive zonal equal area partitions ofSd is defined as

EQ(d) := {EQ(d, N) | N ∈ N+}.

whereEQ(d, N) denotes the recursive zonal equal area partition of the unitsphereSd into
N regions, which is defined via the algorithm given in Section 3of [8].

The partitionEQ(d, N) has the following properties.
THEOREM 2.4. For d > 1 andN > 1, the partitionEQ(d, N) is an equal area partition

of Sd.
The proof of Theorem2.4 is straightforward, following immediately from the construc-

tion of the EQ partition [8, Section 3].
THEOREM 2.5. For d > 1, EQ(d) is diameter-bounded in the sense of Definition2.2.
Theorem2.5is a special case of Stolarsky’s assertion:
THEOREM 2.6. [12, p. 581] For eachd > 0, there is a constantcd such that for all

N > 0, there is a partition of the unit sphereSd into N regions, with each region having area
Ω/N and diameter at mostcdN

− 1
d .

We will also often refer to the following quantities, definedin steps 1 to 3 of the EQ
partition algorithm forEQ(d, N) [8, Section 3.2].

VR :=
Ω

N
, θc := Θ(VR), δI := V

1
d

R , nI :=
π − 2θc

δI

.(2.3)

3. A continuous model of the partition algorithm. Step 4 of the EQ partition algo-
rithm [8, 3.2] is the first rounding step, which producesn from nI . We define

ρ :=
nI

n

so that

δF = ρδI .(3.1)
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ForN > 2, if nI >
1
2 then Step 4 yields

n ∈
(

nI −
1

2
, nI +

1

2

]

.

and therefore [7, Lemma 3.5.1, p. 87]

ρ ∈
[

1 − 1

2nI + 1
, 1 +

1

2nI − 1

)

.

We see that bounds forρ are given by lower bounds fornI . The crudest such bound is
given bynI > 1

2 which merely imples thatρ > 1/2.
We can re-express the boundnI > 1

2 in terms of a lower bound onN by means of the
functionν, where

ν(x) :=
( x

Ω

)
1
d

(

π − 2Θ

(

Ω

x

))

.(3.2)

The functionν defined by (3.2) satisfiesν(2) = 0, ν(N) = nI , andν(x) is monotoni-
cally increasing inx for x > 2 [7, Lemma 3.5.2, p. 87]. As a consequence, it is possible to
define the inverse functionN0 where

N0(y) := ν−1(y)(3.3)

for y > 0. We then haveN0

(

ν(x)
)

= x andν
(

N0(y)
)

= y for x > 2 andy > 0, and by the
inverse function theorem,N0(y) is monotonic increasing iny for y > 0.

ForN > x such thatx > N0(1/2), we then have

nI > ν(x) >
1

2
(3.4)

and

ρ ∈ [ρL(x), ρH(x)],(3.5)

where

ρL(x) := 1 − 1

2ν(x) + 1
and ρH(x) := 1 +

1

2ν(x) − 1
.(3.6)

We can makeρL(x) andρH(x) arbitrarily close to 1 by makingx large enough. More pre-
cisely,

ρL(x) ր 1, andρH(x) ց 1 asx → ∞.(3.7)

Step 6 of the EQ partition algorithm is the second rounding step, which producesmi

from yi. By examining steps 5 to 7 of the EQ partition algorithm, it isstraightforward to
verify that ford > 1, N > 1 andi ∈ {1, . . . , n} the following relationships hold [7, Lemmas
3.5.3, 3.5.4, pp. 88–89]:

ai ∈
[

−1

2
,
1

2

]

, an = 0,

n
∑

i=1

yi =

n
∑

i=1

mi = N − 2,

mi = yi + ai−1 − ai =
V(ϑi+1) − V(ϑi)

VR

∈ N0,

V(ϑi) = V(ϑF,i) + ai−1VR,
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To make it easier to find bounds for functions which vary from zone to zone, such asy, m
we define and use continuous analogs of these functions. Thisway, instead of having to find
a bound for a function value overn + 2 points, wheren varies withN , we need only find
a bound for a function over a fixed number of points and continuous intervals. We therefore
define the functions

Y(ϑ) :=
V(ϑ + δF ) − V(ϑ)

VR

, M(τ, β, ϑ) := Y(ϑ) + τ + β,(3.8)

T (τ, ϑ) := Θ
(

V(ϑ) − τVR

)

, B(β, ϑ) := Θ
(

V(ϑ + δF ) + βVR

)

,

∆(τ, β, ϑ) := B(β, ϑ) − T (τ, ϑ), W(τ, β, ϑ) := max
ξ∈[T (τ,ϑ),B(β,ϑ)]

sin ξ,

P(τ, β, ϑ) := W(τ, β, ϑ)M(τ, β, ϑ)
1

1−d ,

so that fori ∈ {1, . . . , n} we have

Y(ϑF,i) = yi, M(−ai−1, ai, ϑF,i) = mi,

T (−ai−1, ϑF,i) = ϑi, B(ai, ϑF,i) = ϑi+1,

∆(−ai−1, ai, ϑF,i) = δi, W(−ai−1, ai, ϑF,i) = wi,

P(−ai−1, ai, ϑF,i) = pi.

These functions have symmetries which follow from the symmetries of the trigonometric
functions. The functionY satisfies

Y(π − ϑ) = Y(ϑ − δF ).

The functionsT andB satisfy the identities

T (τ, π − ϑ) = π − B(τ, ϑ − δF ) and

B(β, π − ϑ) = π − T (β, ϑ − δF ).

For eachf ∈ {M, ∆,W ,P}, the functionf satisfies

f(τ, β, π − ϑ) = f(β, τ, ϑ − δF ).

For our feasible domain we therefore use the setD, defined as follows.
DEFINITION 3.1. Thefeasible domainD is defined as

D := Dt ∪ Dm ∪ Db,

where

Dt := {(τ, β, ϑ) | τ = 0, β ∈
[

−1

2
,
1

2

]

, ϑ = ϑc},(3.9)

Dm := {(τ, β, ϑ) | τ ∈
[

−1

2
,
1

2

]

, β ∈
[

−1

2
,
1

2

]

, ϑ ∈ [ϑF,2, π − ϑc − 2δF ]},

Db := {(τ, β, ϑ) | τ ∈
[

−1

2
,
1

2

]

, β = 0, ϑ = π − ϑc − δF }.

We can now use the feasible domainD and the analogue functions∆ andP to bound the
maximum diameter of regions of the EQ partition.
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LEMMA 3.2. [7, Lemma 3.5.11]
Assume thatd > 1 and thatEQ(d − 1) has diameter boundκ. Then forN > 2, if we

define

maxdiam(d, N) := max
R∈EQ(d,N)

diamR,

then

maxdiam(d, N) 6
√

(max
D

∆)2 + κ2(max
D

P)2.

We need only consider the northern hemisphere to obtain a valid bound for the diameter of a
region of the recursive zonal equal area partition ofSd. First define the following subdomains
of the feasible domainD.

D+ :=

{

(τ, β, ϑ) ∈ D

∣

∣

∣

∣

ϑ 6
π

2
− δF

2

}

,

D− :=

{

(τ, β, ϑ) ∈ D

∣

∣

∣

∣

ϑ >
π

2
− δF

2

}

,

Dm+ := Dm ∩ D+,(3.10)

The following result then holds.
LEMMA 3.3. [7, Lemma 3.5.12]
For f ∈ {M, ∆,W,P} and (τ, β, ϑ) ∈ D−, we can find(τ ′, β′, ϑ′) ∈ D+ such that

f(τ ′, β′, ϑ′) = f(τ, β, ϑ). In particular, if (τ, β, ϑ) ∈ Db, then(τ ′, β′, ϑ′) ∈ Dt, and if
(τ, β, ϑ) ∈ Dm−, then(τ ′, β′, ϑ′) ∈ Dm+.

COROLLARY 3.4. For f ∈ {M, ∆,W ,P},

max
D

f = max
D+

f.

An analysis of the diameter of the polar caps is not needed forthe proof of Theorem2.5.
It is included for completeness, and for comparison to the Feige–Schechtman bound to be
examined below. This is a consequence of the isodiametric inequality forSd.

THEOREM 3.5. (Isodiametric inequality forSd)
Any regionR ⊂ S

d of spherical diameterδ < π has area bounded by

σ(R) 6 V
(

δ

2

)

.

Equality holds only for spherical caps of spherical radiusδ
2 .

This result is well known. See [2] for a proof of a generalized version of this inequality,
based on the proof of [1].

We have the following upper bound for the diameter of a polar cap ofEQ(d, N).
LEMMA 3.6. For d > 1 andN > 2, the diameter of each polar cap ofEQ(d, N) is

bounded above byKcN
− 1

d , where

Kc := 2

(

Ω d

ω

)
1
d

.
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The following two bounds are used in the proof of Theorem2.5.
LEMMA 3.7. For d > 1, there is a positive constantN∆ ∈ N and a monotonic decreas-

ing positive real functionK∆ such that for each partitionEQ(d, N) with
N > x > N∆,

max
D

∆ 6 K∆(x)N− 1
d .

LEMMA 3.8. For d > 1, there is a positive constantNP ∈ N and a monotonic decreas-
ing positive real functionCP such that for each partitionEQ(d, N) with
N > x > NP ,

max
D

P 6 CP (x)N− 1
d .

4. Proofs of main theorems.
Proof of Theorem2.5.

The theorem is true ford = 1, with EQ(1) having diameter boundK1 = 2π, since the
recursive zonal equal area partition algorithm partitionsthe circleS1 into N equal segments,
each of arc length2π/N , and therefore each segment has diameter less than2π/N .

Now assume thatd > 1 andN > 2. We know from Lemma3.2that

maxdiam(d, N) 6

√

(

max
D

∆
)2

+ κ2
(

max
D

P
)2

.

From Lemma3.7, we know that there is a positive constantN∆ ∈ N and a monotonic
decreasing positive real functionK∆ such that for each partitionEQ(d, N) with N > x >

N∆,

max
D

∆ 6 K∆(x)N− 1
d .

From Lemma3.8, we know that there is a positive constantNP ∈ N and a monotonic
decreasing positive real functionCP such that for each partitionEQ(d, N) with N > x >

NP ,

max
D

P 6 CP (x)N− 1
d .

Define

NH := max(N∆, NP ).

Assuming thatEQ(d − 1) is diameter bounded, with diameter boundκ, then forN >

NH , we havemaxdiam(d, N) 6 KHN− 1
d , where

KH :=
√

K∆(NH)2 + κ2CP (NH)2.

Ford > 1 andN 6 NH , we note that the diameter ofSd is 2, and so the diameter of any
region is bounded by 2. Therefore forN 6 NH , maxdiam(d, N) 6 KLN− 1

d , where

KL := 2N
1
d

H .

Finally, we see by induction that ford > 1, maxdiam(d, N) 6 KdN
− 1

d , where

Kd := max(KL, KH).
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5. Estimates for caps.Later we will need to comparesin θ with sin(θ +φ), for various
θ andφ. The following estimate is useful for this task.

For allθ, φ ∈ R we have

sin(θ + φ) − sin θ = 2 sin
φ

2
cos

(

θ +
φ

2

)

.

Therefore forφ ∈ (0, π], θ ∈ (0, π/2 − φ/2] we havesin(θ + φ) > sin θ > 0.
In the estimate below we assume thatθ ∈ (0, ξ], ξ ∈ (0, π/2], and use the well-known

sine ratio function

sinc θ :=
sin θ

θ
.

We have the well-known estimate

sin θ ∈ [sinc ξ, 1] θ.(5.1)

In the estimates below we assume thatθ ∈ (0, ξ], ξ ∈ (0, π/2].
From (2.2) we haveDV(θ) = ω sind−1 θ. Using the estimate (5.1) therefore gives us

DV(θ) ∈ [(sinc ξ)d−1, 1] ωθd−1,

so

V(θ) ∈ [(sinc ξ)d−1, 1]
ω

d
θd.(5.2)

If we then substituteΘ(v) for θ, we obtain forv ∈ [0,V(ξ)],

Θ(v) ∈ [1, (sinc ξ)
1−d

d ]

(

d

ω

)
1
d

v
1
d .(5.3)

The estimates (5.2) and (5.3) are crude. There are instances where we need a sharper
upper bound than that given by (5.2). The estimate below is more accurate for larged for θ
away fromπ/2.

LEMMA 5.1. [7, Lemma 2.3.18]
For d > 2 andθ ∈ [0, π/2) we have

V(θ) 6
ω

d

sind θ

cos θ
,(5.4)

with equality only whenθ = 0.
If we combine (5.2) with (5.4) we obtain
COROLLARY 5.2. For d > 2 andθ ∈ [0, π/2) we have

V(θ) ∈
[

1

sinc θ
,

1

cos θ

]

ω

d
sind θ.(5.5)

Recall from (2.3) thatϑc = Θ
(

Ω
N

)

and define

Jc(x) := sinc Θ

(

Ω

x

)

.(5.6)
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As a result of (5.3), for N > x > 2 we have

ϑc ∈ [1, Jc(x)
1−d

d ]

(

d

ω

)
1
d

δI .(5.7)

Using Lemma5.1, we obtain the following upper bound forsin ϑc.
LEMMA 5.3. [7, Lemma 3.5.14]
For x > 2,

x
1
d sin Θ

(

Ω

x

)

6

(

Ω d

ω

)
1
d

.(5.8)

Therefore, forN > 2,

sinϑc 6

(

d

ω

)
1
d

δI .(5.9)

Combining (5.6), (5.7) and (5.9) we have the estimate

sin ϑc ∈ [Jc(x), 1]

(

d

ω

)
1
d

δI(5.10)

for N > x > 2.

6. The modified Feige and Schechtman construction.Feige and Schechtman [5] give
a constructive proof of the following lemma, which can be used to prove Stolarsky’s assertion.

LEMMA 6.1. [5, Lemma 21, pp. 430–431]

For each0 < γ < π/2 the sphereSd−1 can be partitioned intoN =
(

O(1)/γ
)d

regions
of equal area, each of diameter at mostγ.

Lemma6.1corresponds to a diameter bound of orderO(N
1

d+1 ) rather thanO(N
1
d ) but

the construction given in the proof [5, pp. 430–431] is easily modified to yield the following
upper bound on the smallest maximum diameter of an equal areapartition ofSd.

LEMMA 6.2. For d > 1, N > 2, there is a partitionFS(d, N) of the unit sphereSd

into N regions, with each regionR ∈ FS(d, N) having areaΩ/N and Euclidean diameter
bounded above by

diamR 6 Υ
(

min(π, 8ϑc)
)

,

with Υ defined by (2.1) andϑc defined by (2.3).
We now use the modified Feige–Schechtman construction to prove Stolarsky’s assertion,

Theorem2.6.
Proof of Theorem2.6.

Ford = 1, we partition the circle into equal segments and the proof isas per the proof of
Theorem2.5.

Ford > 1 andN = 1, there is one region of diameter2 = 2N− 1
d . Ford > 1 andN = 2,

there are two regions, each of diameter2 = 2
d+1

d N− 1
d .

Otherwise we use Lemma6.2and the estimates (5.7) and (5.9). Define

NFS =
Ω

V
(

π
8

) .
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Then forN > NFS ,

ϑc = Θ

(

Ω

N

)

6
π

8
,

with equality only whenN = NFS . Therefore, forN > NFS , Lemmas5.3and6.2give us

max
R∈FS(d,N)

diamR 6 2 sin 4ϑc < 8 sin ϑc < KFSN− 1
d ,

where

KFS := 8

(

Ω d

ω

)
1
d

.

For2 < N < NFS , we have

maxdiamFS(d, N) 6 2 = 2 N
1
d N− 1

d < 2 N
1
d

FSN− 1
d .

Let KFSL := 2 N
1
d

FS. Using (5.5) we have

V
(π

8

)

>
1

sinc π
8

ω

d
sind π

8
>

ω

d
sind π

8
.

We also havesin π
8 > 1

4 so that

V
(π

8

)

>
ω

4d d
.

Therefore

NFS =
Ω

V
(

π
8

) < 4d Ω d

ω
,

in other words,

Kd
FSL = 2d NFS < 8d Ω d

ω
= Kd

FS .

We therefore haveKFSL < KFS .
Ford > 2 we have [7, Lemma 2.3.20]

Ω

ω
>

√

2π

d
.(6.1)

For the caseN = 2, from (6.1) we obtain

2d+1 < 8d
√

2πd < 8d Ω d

ω
= Kd

FS .

Therefore Theorem2.6is satisfied bycd = KFS .
Remarks. The Feige–Schechtman constantKFS thus provides an upper
bound for the minimum constant for the diameter bound of an equal area
partition ofSd. Theorems2.4and2.5yield an alternate proof of Theorem
2.6, with cd = Kd.
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Appendix A. Proofs of Lemmas.
The definitions of the functions∆ andP and the definition of the feasible domainD

depend on the fitting collar angleδF . Thus the proofs of Lemmas3.7and3.8need an estimate
for δF .

Recall from (3.1) thatδF = ρδI . Therefore, from (3.5), for N > x > N0(1/2), where
N0 is defined by (3.3) we have

δF ∈ [ρL(x), ρH(x)]δI .(A.1)

We also need estimates forϑF,i, as defined by Step 5 of the EQ partition algorithm [8,
Section 3.2], and forsin ϑF,i andV(ϑF,i).

Here and below, we generalize the definition ofϑF,i, by defining

ϑF,ι := ϑc + (ι − 1)δF ,

for ι ∈ [1, n + 1].
ForN > x > N0(1/2), whereN0 is defined by (3.3), the estimates (5.7) and (A.1) now

yield

ϑF,ι ∈
[

(

d

ω

)
1
d

+ (ι − 1)ρL(x),

(

d

ω

)
1
d

Jc(x)
1−d

d + (ι − 1)ρH(x)

]

δI .(A.2)

The estimates forsinϑF,ι andV(ϑF,ι) below assume thatN > x > N0(1/2), whereN0

is defined by (3.3), and the lower bounds for these estimates also assume that

Θ

(

Ω

x

)

+ (ι − 1)ρH(x)

(

Ω

x

)
1
d

6
π

2
.(A.3)

If we define

JF,ι(x) := sinc

(

Θ

(

Ω

x

)

+ (ι − 1)ρH(x)

(

Ω

x

)
1
d

)

,

then from (5.1) and (A.2) we have the estimate

sin ϑF,ι ∈
[

JF,ι(x)

(

(

d

ω

)
1
d

+ (ι − 1)ρL(x)

)

,

(

d

ω

)
1
d

Jc(x)
1−d

d + (ι − 1)ρH(x)

]

δI

and from (5.2) we have the estimate

V(ϑF,ι) ∈ [sL,ι(x), sH,ι(x)]VR,

where

sL,ι(x) := JF,ι(x)d−1

(

1 + (ι − 1)ρL(x)
(ω

d

)
1
d

)d

,

sH,ι(x) :=

(

Jc(x)
1−d

d + (ι − 1)ρH(x)
(ω

d

)
1
d

)d

.

If we define

sι :=

(

1 + (ι − 1)
(ω

d

)
1
d

)d

,
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then, sinceJF,ι(x) ր 1, Jc(x) ր 1, ρL(x) ր 1 andρH(x) ց 1, asx → ∞ we see that

sL,ι(x) ր sι andsH,ι(x) ց sι

asx → ∞.
By makingx large enough andι small enough, we can ensure that (A.3) holds.
LEMMA A.1. [7, Lemma 3.5.16]
If x > N0(5), whereN0 is defined by (3.3), then (A.3) holds for

ι ∈
[

1,
13

4

]

.

For the remainder of this paper we use the abbreviation

η :=
1√
8πd

.

The proofs of Lemmas3.7and3.8require the following results, which are proved in [7,
Chapter 3].

LEMMA A.2. [7, Lemma 3.5.17]
There is anx > N0(5), such that

JF,(1+η)(x)d−1

(

1 + η ρL(x)
(ω

d

)
1
d

)d

>
3

2
.(A.4)

LEMMA A.3. [7, Lemma 3.5.19]
If x > N0(5), andx satisfies (A.4) then forN > x we have

V(ϑc + ηδF ) >
3

2
VR.(A.5)

As a result of (A.5) we have

V(ϑc + ηδF ) − V(ϑc) >
VR

2
.

From (2.2) and the symmetries of the sine function, forϑ ∈ (0, π/2 − ηδF /2] we have

∂

∂ϑ
(V(ϑ + ηδF ) − V(ϑ)) = DV(ϑ + ηδF ) − DV(ϑ)

= ω
(

sind−1(ϑ + ηδF ) − sind−1 ϑ
)

> 0,(A.6)

with equality only whenϑ = π
2 − η δF

2 .
This results in the following corollary.
COROLLARY A.4. [7, Corollary 3.5.20]
If x > N0(5), andx satisfies (A.4) then forN > x andϑ ∈ [ϑc, π − ϑc − ηδF ] we have

V(ϑ + ηδF ) − V(ϑ) >
VR

2
.(A.7)
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If x > N0(5), andN > x thenn > 5, soϑF,2 < π
2 . Since8πd > 16π > 49, we

therefore have

ηδF <
δF

7
.(A.8)

Proof of Lemma3.6.
Assume thatd > 1 andN > 1. From (2.3) we know that the diameter of each of the

polar caps of the partitionEQ(d, N) is 2 sinϑc. From (5.9) we have the estimate

2 sinϑc 6 2

(

Ω d

ω

)
1
d

N− 1
d .

for N > x > 2.

Proof of Lemma3.7.
Throughout this proof, we assume thatN > x wherex > N0(5), with N0 defined by

(3.3), so thatn > 5. Using Corollary3.4, we also assume that(τ, β, ϑ) ∈ D+.
For the top collar,(τ, β, ϑ) ∈ Dt, (3.9) givesτ = 0, β ∈

[

− 1
2 , 1

2

]

, ϑ = ϑc. From (2.2)
we have

V (B(β, ϑc)) = V(ϑc + δF ) + βVR 6 V(ϑc + δF ) +
VR

2
.

Sincen > 5, we haveϑc + δF ∈ [ϑc, π − ϑc − ηδF ], and we can use (A.7) to obtain

V (B(β, ϑc)) 6 V(ϑc + δF ) +
VR

2
< V

(

ϑc + (1 + η)δF

)

,

and therefore

B(β, ϑc) < ϑc + (1 + η)δF .

Therefore (3.8) yields

∆(τ, β, ϑ) = ∆(0, β, ϑc) = B(β, ϑc) − T (0, ϑc) = B(β, ϑc) − ϑc < (1 + η)δF .

For (τ, β, ϑ) ∈ Dm+ (3.10) givesτ ∈
[

− 1
2 , 1

2

]

, β ∈
[

− 1
2 , 1

2

]

, ϑ ∈
[

ϑF,2,
π
2 − δF

2

]

.
Sincen > 5, we haveϑ + δF ∈ [ϑc, π − ϑc − ηδF ], since

ϑc +
3

2
δF < ϑc + 2δF <

π

2
,

yielding

ϑ + δF 6
π

2
+

δF

2
< π − ϑc − δF .

From (2.2), (3.8) and (A.7) we now have

V
(

B(β, ϑ)
)

= V(ϑ + δF ) + βVR 6 V(ϑ + δF ) +
VR

2
< V

(

ϑ + (1 + η)δF

)

.

We therefore have

B(β, ϑ) < ϑ + (1 + η)δF .(A.9)
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Sinceϑ − ηδF > ϑc, using (2.2), (3.8) and (A.7) we also have

V
(

T (τ, ϑ)
)

= V(ϑ) + τVR > V(ϑ) − VR

2
> V(ϑ − ηδF ),

so that

ϑ − ηδF < T (τ, ϑ).(A.10)

Combining (A.9) and (A.10), and using (3.8) we therefore have

∆(τ, β, ϑ) = B(β, ϑ) − T (τ, ϑ) < (1 + 2η)δF .

The estimate (A.1) now yields

∆(τ, β, ϑ) < K∆(x)N− 1
d ,

where

K∆(x) := (1 + 2η) ρH(x) Ω
1
d ,

with ρH(x) defined by (3.6).
We also have

K∆(x) ց K∆(∞) := (1 + 2η) Ω
1
d

asx → ∞, sinceρH(x) ց 1 asx → ∞, by (3.7).

Proof of Lemma3.8.
Throughout this proof, we assume thatN > x wherex > N0(5), with N0 defined by

(3.3), so thatn > 5. Using Corollary3.4, we also assume that(τ, β, ϑ) ∈ D+.
We will show that

W(τ, β, ϑ) 6 C1(x) sin ϑ,

M(τ, β, ϑ) > C2(x) sind−1 N
d−1

d ,

with C1 monotonic non-increasing andC2 monotonic non-decreasing.
We first examineW . Using (A.9) for ϑ 6 π/2 − (1 + η)δF we have

W(τ, β, ϑ) 6 sin(ϑ + (1 + η)δF ) < sin ϑ + (1 + η)δF .

Forϑ ∈ [π/2(1 + η)δF , π/2 − δF /2] we have

sin ϑ + (1 + η)δF >
2

π

(π

2
− (1 + η)δF

)

+ (1 + η)δF > 1,

soW(τ, β, ϑ) < sinϑ + (1 + η)δF . Sinceϑ ∈ [ϑc, π − ϑc] we havesin ϑ > sin ϑc and
therefore

W(τ, β, ϑ) <

(

1 + (1 + η)
δF

sin ϑc

)

sin ϑ.

From (A.1) we haveδF 6 ρH(x)Ω
1
d N

−1

d . From (5.10) we have

sinϑc > Jc(x)

(

Ωd

ω

)
1
d

N
−1

d
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so thatW(τ, β, ϑ) 6 C1(x) sin ϑ, with

C1(x) := 1 + (1 + η)
ρH(x)

Jc(x)

(ω

d

)
1
d

,

with ρH (x)
Jc(x) ց 1 asx → ∞, sinceJc(x) ր 1 andρH(x) ց 1 asx → ∞. ThusC1(x) is

monotonic nonincreasing asx → ∞.
Now forM. From (3.8) we have

M(τ, β, ϑ) >
V(ϑ + δF ) − V(ϑ)

VR

− 1.

But

V(ϑ + δF ) − V(ϑ)

VR

= ω

∫ ϑ+δF

ϑ

sind−1 ξ dξ > ωδF sind−1 ϑ

for ϑ ∈ [0, π/2 − δF /2]. So

M(τ, β, ϑ) > ω sind−1 ϑ
δF

VR

− 1

>

(

ρωΩ
1−d

d − 1

sind−1 ϑcN
d−1

d

)

sind−1 ϑN
d−1

d

sinceϑ > ϑc. Using (3.5) and (5.10) we therefore have

M(τ, β, ϑ) > C2(x) sind−1 ϑN
d−1

d ,

where

C2(x) := ρωΩ
1−d

d − Jc(x)1−d
( ω

Ωd

)
d−1

d

.

If Jc(x)d−1ρL(x)ω
1
d d

d−1

d > 1 then we haveC2(x) > 0. This is true forx sufficiently large
sinceωdd−1 > 1 and since bothJc(x) ր 1 andρL(x) ր 1 asx → ∞. We also see thatC2

is monotonically nondecreasing.

Proof of Lemma6.2.
This proof uses a modified version of the construction given the proof of [5, Lemma 21]

in [5, p. 430-431].
1. Givend > 1, N > 2, use (2.3) to determineϑc. Then we haveV(ϑc) = VR = Ω/N ,

with VR being the area we need for each region of the partition.
2. A saturated packingof packing radiusρ is a packing of spherical caps of packing

radiusρ such that another cap cannot be added without moving the existing caps.
Create a saturated packing ofSd by caps of spherical radiusϑc, constructed via a
greedy algorithm so that each cap kisses at least one other cap. Letm be the number
of caps in the packing.
We see that no point ofSd is more than2ϑc from the centre of a cap, otherwise
we could have added another cap. Therefore them centre points of the packing are
also the centres of a covering ofSd by spherical caps of spherical radius2ϑc [13, p.
1091] [14, Lemma 1, p. 2112].
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3. Now partitionSd into Voronoi cellsVi, i ∈ {1, . . . , m} based on thesem centre
points. The Voronoi cellVi corresponding to centre pointi consists of those points
of Sd which are at least as close to the centre pointi as they are to of any of the other
centre points.
We see that the Voronoi cells must contain the packing caps and be contained in the
covering caps. Thus eachVi has area at leastVR and spherical diameter at most
min(π, 2ϑc).

4. Now create a graphΓ with a node for each centre point and an edge for each pair of
kissing packing caps.

5. Take any spanning treeS of Γ (also known as amaximal tree[10, Section 6.2 pp.
101–103]).
The treeS has leaves, which are nodes having only one edge, and either asingle
centre node, or a bicentre, which is a pair of nodes joined by an edge. The centre or
bicentre nodes are the nodes for which the shortest path to any leaf has the maximum
number of edges [3] [4, Volume 9, p. 430] [11, Chapter 6, Section 9, p. 135]. If
there is a single centre, mark it as the root node. If there is abicentre, arbitrarily
mark one of the two nodes as the root node. Now create the directed treeT from S
by directing the edges from the leaves towards the root [11, Chapter 6, Section 7, p.
129].

6. For each leafj, of T definenj := ⌊σ(Vj)/VR⌋, (with ⌊x⌋ denoting the least integer
function ofx).

7. PartitionVj into the super-regionUj with σ(Uj) = njVR and the remainderWj :=
Vj \ Uj.

8. For each nonleaf nodek other than the root, defineXk = Vk ∪
⋃

(j,k)∈T Wj , that is,
we add all the remainders of the daughters ofk to Vk to obtainXk.

9. Now definenk := ⌊σ(Xk)/VR⌋ and partitionXk into the super-regionUk with
σ(Uk) = nkVR and the remainderWk := Xk \ Uk.

10. Continue until only the root node is left.
11. For the root nodeℓ, if we defineUℓ := Vℓ ∪

⋃

(k,ℓ)∈T Wk, we see that we must have
σ(Uℓ) = nℓVR, where

nℓ := N −
∑

i6=ℓ

ni.

that is, the area of the super-region corresponding to the root node must be an integer
multiple ofVR.
Since at each step we have assembledUi only from the Voronoi cells corresponding
to kissing packing caps, eachUi is contained in a spherical cap with centre the same
as the centre of the corresponding packing cap, and spherical radiusmin(π, 4ϑc),
and so the spherical diameter of eachUi is at mostmin(π, 8ϑc).

12. Now partition eachUi into ni regions of areaVR, and letFS(d, N) be the resulting
partition ofSd. ThenFS(d, N) is a partition ofSd into N regions, with each region
R ∈ FS(d, N) having areaΩ/N and Euclidean diameter bounded above by

diamR 6 Υ
(

min(π, 8ϑc)
)

= 2 sin
(

min
(π

2
, 4ϑc

))

.

Remarks.Feige and Schechtman’s proof uses a maximal packing instead
of a saturated packing, but maximality is harder to achieve and the proof of
Lemma6.2only needs a saturated packing.
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