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Abstract

The sphere optimization program sphopt was originally written
as a sequential program using lapack, and was converted to use
scalapack, primarily to overcome memory limitations. The conver-
sion was relatively straightforward, using a small number of organizing
principles which are widely applicaple to the scalapack paralleliza-
tion of serial code. The main innovation is the use of a compressed
block cyclic storage scheme to store two symmetric matrices in little
more than the storage needed for one matrix. The resulting psphopt
program scales at least as well as the scalapack Cholesky decompo-
sition routine which it uses.
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1 Introduction

The sphere optimization program sphopt finds a point set on the unit sphere
S2 ⊂ R3 which maximizes the determinant of a certain Gram matrix. The
sphopt program is limited by the memory size of the computer on which
it runs. This paper briefly describes psphopt, a parallel version of sphopt

which uses scalapack to overcome these memory limitations. An earlier
paper [12] describes the optimization problem and its significance in more
detail. A draft report [9] provides more detail on the structure of psphopt.

Consider the polynomial space Pn(S2), the space of spherical polynomials
of degree at most n. This is a reproducing kernel Hilbert space of dimension
(n+ 1)2 with reproducing kernel

Gn(x, y) := G̃n(x · y) =
n∑

`=0

∑̀
k=−`

Y`,k(x)Y`,k(y) =
n+ 1

4π
P (1,0)

n (x · y), (1)

where Y`,k is a spherical harmonic of degree ` and order k, and P
(1,0)
n is a

Jacobi polynomial of degree n [11, (4.31)] [12, (2.4)–(2.6)] [2, Section 9.6].
A fundamental system is a set of (n + 1)2 points of S2 which exactly

interpolates all polynomials of Pn(S2). An extremal fundamental system
X = {x1, . . . , xm} is a fundamental system which maximizes the determinant
of the Gram matrix G where Gi,j := Gn(xi, xj), for i, j from 1 to m = (n+1)2.

Given a polynomial degree n, the program sphopt finds a fundamental
system by maximizing the determinant of the Gram matrix G. As noted by
Sloan and Womersley [12], this is a non-convex problem with many local
maxima.

2 The sphopt optimization program

The matrix G is symmetric and is non-negative definite as a result of (1).
We therefore have detG = (detL)2 where G = LLT is the Cholesky de-
composition of G. To avoid floating point overflow, sphopt maximizes f =
log(detG) = 2 log(detL), which is the sum of the logs of the diagonal ele-
ments of L.

To obtain a local maximum of f , sphopt uses the l-bfgs-b (bound con-
strained limited memory bfgs) algorithm as implemented in the l-bfgs-
b package [14]. The l-bfgs-b algorithm is based on the limited memory
bfgs [10] quasi-Newton optimization method. l-bfgs-b requires the func-
tion and gradient value at each step and approximates the Hessian. The
optimization follows a typical iterative structure:
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repeat
determine a search subspace;
find the optimal point set in this subspace;
update the current point set;

until the point set is locally optimal ;

Finding the optimal point set within a subspace typically involves multi-
ple function and gradient evaluations. In the case of sphopt, evaluation of
the gradient needs the inverse of G, and the the matrix DG, the element-by-
element derivative of the Gram matrix. Specifically, the gradient ∇f where
(∇f)k,i := ∂f/∂Xk,i is computed by

∇f = 2X (DG •G−1),

where Xk,i := (xi)k, k = 1, 2, 3, (DG)i,j := G̃′n(xi ·xj), and • is the Hadamard
(element-by-element) product. In practice sphopt uses spherical polar co-
ordinates, and the gradient with respect to these coordinates is computed
using the chain rule.

The sphopt program uses lapack [1] to compute the Cholesky decompo-
sition (DPOTRF), matrix inverse (DPOTRI), and matrix multiplication (DSYMM)
which are needed at every step of l-bfgs-b.

3 The ScaLAPACK parallelization of sphopt

Two reasons why one would want to parallelize a serial numerical program
are to reduce running time and to covercome memory constraints. In 2002,
when the calculations for the Sloan and Womersley paper [12] were being per-
formed, the main problem was the memory limitations of available hardware.
For the high polynomial degrees which were required, the Gram matrix G
and its derivative DG would not fit in main memory.

Since both G and DG are symmetric matrices, only one half of each need
be stored. Because both are dense matrices, the storage required for G and
DG in ieee 754 double precision floating point is 8(n + 1)4 bytes, where n
is the polynomial degree. Thus for degree 191, the largest degree treated in
the Sloan and Womersley paper [12], sphopt would need more than 10 GB.

The solution chosen to meet the memory requirements of sphopt was to
use distributed memory parallelism via scalapack [5, 7, 3]. scalapack is
a package for distributed memory parallel linear algebra. It contains dis-
tributed memory versions of many of the lapack linear algebra routines,
including the solution of dense systems of equations, matrix inversion and
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eigensystems. The Parallel Basic Linear Algebra Subroutines (pblas) com-
ponent of lapack includes matrix-vector and matrix-matrix products. The
Basic Linear Algebra Communications Subsystem (blacs) [8] component
enables communication between processes. scalapack is often implemented
via the Message Passing Interface (mpi) [13].

The organizing principles behind the scalapack parallelization of exist-
ing code containing lapack calls are those for scalapack code in general.
The goal is to maintain correctness and accuracy while improving speed and
allowing larger problems to be solved. scalapack programs execute the same
code in multiple processes. Each process identifies itself via process ID, allow-
ing different processes to take different branches. The input data and results
of each scalapack call are distributed between multiple processes. These
processes must communicate and must synchronize before each scalapack
call.

To parallelize an existing program which uses lapack, it is therefore
necessary to examine each lapack or blas call, and any Fortran 9X matrix
operations and convert each to use the following scheme:

1. Distribute operands; 2. Synchronize; 3. Operate; 4. Distribute results.
To parallelize an existing program which has lapack calls inside loops,

it is necessary to ensure that all relevant processes execute the loops in syn-
chrony. This requirement is closely related to the need for heterogeneous
coherence as described in Dongarra et al. [8, Section D.2]. The safest way to
implement loops governed by a varying termination condition is to designate
one process as the control process, and send it all data which determines the
termination condition. The control process then broadcasts its decision to the
other processes. This broadcast per loop keeps the processes synchronized
and ensures that all processes execute the same number of loops.

The psphopt program therefore runs l-bfgs-b code in the control process
only and the program uses the following main optimization loop:

1. The control process broadcasts the current point set X;

2. Each process creates its own local parts of G and DG;

3. Each process uses scalapack for Cholesky decomposition (PDPOTRF [4]),
matrix inverse (PDPOTRI) and matrix multiplication (PDSYMM) to obtain
its own parts of f and ∇f ;

4. Each process sends its parts of f and ∇f back to the control process;

5. The control process calls l-bfgs-b with the new values of f and ∇f ;

6. l-bfgs-b calculates a new X, or stops.
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4 Compressed block cyclic storage

scalapack uses the block cyclic storage scheme [3, Section 4.3] to store
matrices. This uses two views of a matrix: the global view and the local
(per process) view. In scalapack, the processes are numbered using a two-
dimensional scheme, with each process having a process row number and a
process column number, each starting from zero.

The row and column dimensions of a matrix are treated, separately, or-
thogonally, but in exactly the same way, so it is only necessary to describe
one of the two dimensions, say rows.

The concept of a block is common to the global and local views of a
matrix. For a given matrix, there is a fixed number of rows in a block, for
all row blocks except possibly the last, which may be incomplete. Each row
block in the global view is given a row block number starting from zero and
is allocated cyclically to a process row. If there are P process rows, we have:

ROW BLOCK: 0 1 2 ... P-1 P P+1 P+2 ... 2P-1 2P ...

PROCESS ROW: 0 1 2 ... P-1 0 1 2 ... P-1 0 ...

ROW CYCLE: 0 0 0 ... 0 1 1 1 ... 1 2 ...

In the local view of process row q, we have:

ROW CYCLE: 0 1 2 3 ... c

LOCAL ROW BLOCK: 0 1 2 3 ... c

GLOBAL ROW BLOCK: q P+q 2P+q ... (c-1)P+q

Each global row cycle corresponds exactly to a local row block for each
process row, except possibly the last row cycle, which may be incomplete.

We now go back to considering the matrix as a 2D structure in terms
of row and column cycles. We assume that we have a square process array
and that the row and column block sizes are equal. Therefore all cycles are
square, except possibly the last cycle in a row or column.

For a symmetric matrix, in the global view, cycle (m,n) equals cycle
(n,m) transposed.

Compressed block cyclic storage stores two symmetric matrices in min-
imal storage with corresponding global blocks stored on the same process,
allowing element-by-element operations to be performed locally.

Because scalapack routines on symmetric matrices touch only the upper
or the lower triangle, at the cycle level, we need only store the upper or lower
triangle of cycles. If we have two symmetric matrices, say A and B, such
that we only use scalapack routines on A, we have the opportunity to save
memory on each processor by storing most of B in the untouched triangle
of A.
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Let’s choose the upper triangle. We store the upper triangle of cycles of
symmetric matrix A according to the usual block cyclic storage scheme. This
allows scalapack to operate directly on matrix A. For matrix B, we need
to store three types of cycle:

1. Square cycles of the strict upper triangle of B.

2. Square cycles of the diagonal of B.

3. Non-square cycles of the ragged right hand edge of B.

We store cycles of type 1, say cycle (m,n) with m < n, in the lower triangle
of A, as cycle (n,m). The cycle is stored as-is — it is not transposed. This
is essential to ensure that we can perform element-by-element operations on
A and B locally.

Cycles of type 2 and 3 must be stored in extra storage. Globally, for
type 2, we need one cycle of columns and a full set of rows; for type 3, we
need up to one cycle of columns and a full set of rows except for the last
cycle, which overlaps with the last cycle of type 2. In both cases, we store
the cycle as-is, not transposed.

In the case of psphopt we store the matrix G as per A and split the
storage of DG as per B above.

Note that the compressed block cyclic storage scheme is not the same
as the packed symmetric storage scheme of D’Azevedo and Dongarra [6].
The packed symmetric scheme was not used in psphopt because the associ-
ated prototype code does not provide a packed version of the matrix inverse
function PDPOTRI.

5 Performance and scalability

The psphopt program was originally run on the Australian Partnership for
Advanced Computing (apac) National Facility sc cluster, which was a Com-
paq AlphaServer SC45 cluster with 127 nodes, each containing four ev68
processors clocked at 1 GHz, and 4 GB to 16 GB of main memory. All of
the parallel optimization runs were performed on the apac sc cluster, with
the results reported in Sloan and Womersley [12]. The apac sc cluster was
decommissioned in 2005 and replaced by the ac cluster.

The apac ac cluster is an sgi Altix 3700 Bx2 cluster containing 1920
Itanium 2 processors, arranged as 30 partitions of 64 processors each. Each
partition has between 128 GB and 384 GB of ram. Each Itanium 2 processor
is clocked at 1.6 GHz and has three levels of cache, including 6 MB of level 3
cache. The processors are connected via sgi numalink4, which has a rated
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mpi latency of less than 2µs and bandwidth of 3.2 GB/s in each direction.
The numalink4 connection is hierarchical. Pairs of processors are connected
to memory by a Super Hub (shub). Eight processors and their shubs are
connected by a pair of routers to form a cr-brick. Four cr-bricks, contain-
ing a total of 32 processors, are connected to each other via their routers
and connected to higher level routers. There are two more levels of routers
connecting groups of 128 processors and 512 processors respectively.

The memory hierarchy of the ac cluster is a great improvement on the
memory limitations imposed by the sc cluster, but the scheduler used on the
apac ac cluster still limits the amount of memory per cpu which is available
to a job.

Performance and scalability of the psphopt program was benchmarked
by running jobs on the apac ac cluster for degrees 31, 44, 63, 90, 127
and 180, using 1, 4, 9, 16, 25, 36, 64 and 100 processors. The polynomial
degrees were chosen so that the corresponding numbers of points were close
to being successive powers of 2, being 1024, 2025, 4096, 8281, 16384 and
32761 respectively.

All jobs used a block size of 128× 128. The psphopt code was compiled
using Intel Fortran 9.1 with the scalapack implementation provided by the
Intel Math Kernel Library 10.0.011.

For each degree for each number of processors, the timing test ran ten
steps of the l-bfgs-b algorithm, which then used ten or more function and
gradient evaluations. For each function and gradient evaluation, walltime was
measured on process (0,0) for the creation of the G and DG matrice (tg),
for the PDPOTRF Cholesky decomposition (tf), for the PDPOTRI inverse (ti),
and for the total, including these times, synchronization time and the time
for PDSYMM calculation and broadcast of the gradient (tt). For the single
processor jobs, timing was for the corresponding lapack code.

For some degrees there were a number of evaluation steps where PDPOTRF

determined that the matrix G was singular. Timing for these evaluation steps
had to be excluded, since in those cases the code recalculates G and does
the Cholesky decomposition again, doubling tg and tf. There is also a time
penalty for the first evaluation step, due to paging and caching. For each
degree for each number of processors, the first evaluation step was therefore
excluded.

The timings produced were still highly variable in two cases.

1. The variability in ti and tf for evaluation steps within four-processor
jobs was high. For degree 63, the standard deviation of tf was as
much as 7 percent of the mean. The variability was likely caused by
traffic from other jobs on the same eight-processor cr-brick. Scheduling
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these jobs as 8 processor jobs but only using eight processors reduced
the standard deviation of ti and tf to less than one percent of the
mean in all cases.

2. When this 64-processor and 100-processor jobs were repeated, this re-
vealed a high variability in the average value of tf. For example, for
degree 127, one 100-processor job had an average tf of 6.57 s while an-
other had 4.26 s. The cause of this variability is complicated: the pbs
scheduler on apac ac allocates a different set of processors for each
job; the Cholesky PDPOTRF code uses a large number of point-to-point
mpi sends and receives; and the numalink4 topology of apac ac does
not necessarily match the processor grid which blacs assumes, so that
processors which are adjacent in terms of process row or process col-
umn may actually be linked by a path which traverses as many as six
routers. The smallest average tf was reported by the jobs which were
scheduled to run across the smallest number of groups of 32 processors
which were closest to each other in the numalink4 topology. These
were the jobs whose timing was used in the results reported here.
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Figure 1: Left: G and DG time (tg). Right: (P)DPOTRF time (tf).
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Figure 2: Left: (P)DPOTRI time (ti). Right: Total time (tt).

For each polynomial degree the timings were plotted and a log-log regression
was performed for walltime versus number of processors, excluding single
processor jobs.

Figures 1 and 2 show the timing results for tg, tf, ti and tt respectively.
Table 1 displays the scaling exponents obtained from the log-log regression
of the timing results. An exponent of -1 indicates perfect strong scalability.

Table 1: Scaling exponents obtained from log-log regression of timing.

Degree 31 44 63 90 127 180
tg -0.84 -0.87 -0.85 -0.92 -0.99 -1.03
tf -0.31 -0.46 -0.69 -0.79 -0.87 -0.88
ti -0.28 -0.41 -0.67 -0.81 -0.89 -0.90
tt -0.35 -0.52 -0.74 -0.85 -0.91 -0.91

These results show that the strong scaling of tg is better than of ti or
tf, and that tt also scales a little better than ti or tf. The near horizontal
lines in the graphs of tg for degrees 31, 44 and 63 link the cases where the
same number of blocks are local to process (0,0).
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Memory performance was also tested. The serial program sphopt stores
D and DG as separate full matrices. The storage needed for double precision
for degree 180 is therefore just under 16 GB. The sphopt job for degree 180
was run for six hours. It used a maximum of 16 527 MB of virtual memory,
matching the estimate. The apac ac scheduler required the job to request 16
processors even though only one was used. In six hours, the single processor
performed just one function and gradient evaluation. In contrast, the 16
processor psphopt job performed 12 evaluations in 2 hours 19 minutes, using
a total of 10 714 MB spread across the 16 processors.
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