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1. Introduction

What is special about the following manifolds?

I RPn, real projective space

I CPm, complex projective space

I HP`, quaternionic projective space

I OP2, the octonionic (Cayley) plane

I Sn, the conformal sphere

As riemannian manifolds, they are the rank 1 compact symmetric
spaces, but the isometry group is a maximal compact subgroup of
a larger symmetry group. . . making these spaces into generalized
flag manifolds G/P, with G semisimple and P parabolic.

They are thus examples of symmetric R-spaces, but how are they
characterized as R-spaces (generalized flag manifolds)? What is
special about their curved analogues (parabolic geometries)?
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1. Real projective structures
Let M be a (real) n-manifold. A (real) affine connection is a
connection D on TM (e.g., D = ∇g for a riemannian metric g).

Affine connections D and D̃ on TM are projectively equivalent iff
∃ γ ∈ Ω1(M), a 1-form, with

D̃X − DX = [[X , γ]]r ∈ C∞(M, gl(TM)),

[[X , γ]]r (Y ) := 1
2

(
γ(X )Y + γ(Y )X

)
.where

We write D̃ = D + γ for short (instead of D̃ = D + [[·, γ]]r ).

A projective structure on Mn (n > 1) is a projective class Πr = [D]
of affine connections. Connections in Πr have the same torsion,
oftened assumed zero.

Basic questions.

1. When does there exist a metric connection in Πr?
Seek g ∈ C∞(M, S2T ∗M) and D ∈ Πr with Dg = 0.

2. Is g unique?
Seek geodesically equivalent metrics g1 and g2.
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1. The real metrization equation

Key observation. The problem linearizes for the section

h = vol
2/(n+1)
g ⊗g−1 of L∗ ⊗ S2TM, where L⊗(n+1) = ∧nTM.

Lemma. For X ∈ TM, γ ∈ T ∗M: [[X , γ]] · h = X � h(γ, ·).

Consequence. According to the decomposition

T ∗M ⊗ S2TM =
(
id � TM

)
⊕
(
T ∗M ⊗0 S2TM

)
,

tensored with L∗, the second component (Dh)0 of Dh is
projectively invariant (independent of D ∈ Πr ).

Suppose that (Dh)0 = 0. Then there is a section ZD of L∗ ⊗ TM
such that for all X ∈ TM,

DXh = X � ZD .

Conclude. If h is a nondegenerate solution, and
∇ = D − h−1(ZD) ∈ Πr , then ∇h = 0.

4



1. Complex projective structures

Let (M, J) be an almost complex manifold of real dimension
n = 2m. A complex affine connection is a connection D on TM
with DJ = 0 (e.g., D = ∇g for a hermitian metric g).

Complex affine connections D and D̃ are c-projectively equivalent
iff ∃ γ ∈ Ω1(M), a 1-form, with

D̃X − DX = [[X , γ]]c ∈ C∞(M, gl(TM, J)),

[[X , γ]]c(Y ) := 1
2

(
γ(X )Y + γ(Y )X − γ(JX )JY − γ(JY )JX

)
.

We write D̃ = D + γ for short.

A c-projective structure on M2m (m > 1) is an c-projective class
Πc = [D] of complex affine connections. Connections in Πc have
the same torsion, often assumed type (0, 2)—and then given by
the Nijenhuis tensor of J.
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1. The hermitian metrization equation

Basic questions. When is there a connection D ∈ Πc preserving a
hermitian metric g? If so, when is g unique?

Require g(JX , JY ) = g(X ,Y ) for all X ,Y , and Dg = 0. If D is
torsion-free then g is a Kähler metric.

Key fact. As in the real case, the problem linearizes for the section

h = vol
1/(m+1)
g ⊗g−1 of L∗ ⊗ S2TM, where Lm+1 = ∧2mTM.

The c-projectively invariant equation is:

DXh = X � ZD + JX � JZD .

Since h is hermitian, ϕ := h(J·, ·) is skew, i.e., a section of
L∗ ⊗∧2TM. The equivalent equation on ϕ is

DXϕ = X ∧ KD + JX ∧ JKD

where KD = JZD . Solutions are called hamiltonian 2-vectors.
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1. Quaternionic structures

Let (M,Q) be a quaternionic manifold of real dimension n = 4`
(thus Q ⊂ gl(TM), with fibres isomorphic to sp(1), spanned by
imaginary quaternions J1, J2, J3). A quaternionic affine connection
is a connection on TM preserving Q (e.g., D = ∇g for a
quaternion Kähler metric g on M).

Fact. For any two quaternionic connections D and D̃ with the
same torsion, ∃ γ ∈ Ω1(M) with

D̃X − DX = [[X , γ]]q ∈ C∞(M, gl(TM,Q)),

[[X , γ]]q(Y ) := 1
2

(
γ(X )Y + γ(Y )X

−
∑
i

(
γ(JiX )JiY + γ(JiY )JiX

))
.

An equivalence class of quaternionic connections may be denoted
Πq = [D]. There is a canonically determined class whose torsion is
the intrinsic torsion of the quaternionic structure.
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1. Quaternion Kähler metrics
On (M,Q), compatible (quaternion Kähler) metrics are again
given by a linear equation, for Q-hermitian sections h of
L∗ ⊗ S2TM (with L`+1 = ∧4`TM):

DXh = X � ZD +
∑

i JiX � JiZ
D

for some (hence any) D ∈ Πq (with ZD a trace of Dh).

Aside. In the torsion-free case, this has an interpretation in terms
of the twistor space Z of M, which is the unit sphere bundle in Q.

I Z is a complex 2`+ 1 manifold with real structure, containing
real “twistor lines” (rational curves CP1 ⊂ Z with normal
bundle O(1)⊗ C2`): M is the space of such twistor lines.

I Under Penrose transform, h corresponds to a holomorphic

section π of ∧2TZ ⊗K
1/(`+1)
Z . The standard twistor theory of

quaternionic Kähler metrics g uses the section θ of

T ∗Z ⊗ K
−1/(`+1)
Z dual to π∧`, and the inverse of π on ker θ.

If g is hyperkähler, this defines a symplectic foliation of Z
over CP1; if not, θ is a contact structure on Z .
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2. A common framework: abelian parabolic geometries

Real, complex and quaternionic projective geometries all have a
natural metrization equation, suggesting a common framework. In
each case, the geometry is specified by two pieces of data:

I A principal P0-subbundle F 0 of the frame bundle GL(M)
(where P0 is GL(n,R),GL(m,C) or GL(`,H) · Sp(1)).

I An equivalence class Π of connections on F 0, which form an
affine space modelled on Ω1(M), using an algebraic bracket
[[·, ·]] : TM × T ∗M → p0M := F 0 ×P0 p0 ⊆ gl(TM).

These are characteristic features of abelian parabolic geometries,
i.e., Cartan geometries modelled on generalized flag varieties (or
R-spaces) in cominuscule (or |1|-graded) representations.

The model spaces for the projective geometries are the projective
spaces RPn, CPm and HP`. Another abelian parabolic geometry
is conformal geometry, modelled on the conformal n-sphere Sn.

Goal. Develop metrization theory for a class of abelian parabolic
geometries: “projective parabolic geometries”.
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2. Parabolic subalgebras and generalized flag manifolds

Let G be a semisimple Lie group with Lie algebra g. A parabolic
subalgebra p of g is a Lie subalgebra whose Killing perp p⊥ is a
nilpotent subalgebra of p.

Consequences: p⊥ is the nilpotent radical (or nilpotency ideal) of
p, and p0 := p/p⊥ is a reductive Lie algebra, with p ∼= p0 n p⊥.
Also, the Killing form of g induces a duality between g/p and p⊥.

A generalized flag manifold (or R-space) X is an adjoint orbit of
parabolic subalgebras. Since parabolic subalgebras are
self-normalizing, the stabilizer of a point p ∈ X is the Lie subgroup
P of G with Lie algebra p. Thus X ∼= G/P.

Generalized flag manifolds arise as highest weight orbits in
projectivized representations P(V ) of G . The parabolic subalgebras
p are the infinitesimal stabilizers of highest weight spaces, and
their nilpotent radicals p⊥ are abelian iff V is cominuscule.
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2. Classification of cominuscule representations

Irreducible cominuscule representations V of semisimple Lie
algebras g are real forms of the following:

An,k g = sln+1(C) acting on V = ∧kCn+1;

BDn g = son(C) acting on V = Cn;

Dn g = so2n(C) acting on a half-spin representation V ;

Cn g = sp2n(C) acting on V = ∧n
0C2n;

E6 a 27-dimensional irreducible reresentation V of g = e6(C);

E7 a 56-dimensional irreducible reresentation V of g = e7(C).

The corresponding generalized flag manifolds are: (A)
grassmannians, (BD) conformal quadrics, (D) maximal isotropic
grassmannians, (C) lagrangian grassmannians, and (E) two
exceptional manifolds of dimensions 16 and 27.
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2. Cartan geometries

A Cartan geometry on M, modelled on G/P, where
dim M = dim G/P, is a principal G -bundle FG → M with

I a principal G -connection and

I a reduction FP ⊆ FG of structure group to P ⊆ G

satisfying the Cartan condition: the induced 1-form on M with
values in the associated bundle gM/pM := FP ×P g/p is a bundle
isomorphism. Thus M inherits the first order geometry of G/P.

In the parabolic case, the duality between p⊥ and g/p implies that
T ∗M is isomorphic to the associated bundle p⊥M of nilpotent ideals
in pM . Hence pM ∼= p0M n T ∗M, where p0M ⊂ gl(TM).

If also p⊥ is abelian, then there is an algebraic bracket

[[, ]] : TM × T ∗M → p0M ⊆ gl(TM)

induced by the Lie bracket on gM (the “adjoint tractor bundle”).
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2. The bundle of Weyl structures
The principal G -connection on FG induces a covariant derivative
on any bundle associated to a G -representation V . In particular,
with V = g, there is a connection on gM .

A Weyl structure is a Lie algebra splitting gM ∼= TM ⊕ p0M ⊕T ∗M.
It induces a connection on TM by restriction and projection.

Fact. Weyl structures are sections of an affine bundle W modelled
on T ∗M. This is an algebraic fact about filtered isomorphisms of g
with g/p⊕ p0 ⊕ p⊥.

Weyl structures thus form an affine space Π modelled on Ω1(M).

In terms of connections, we can describe W using jets. An affine
connection may be viewed as a splitting of the 1-jet sequence

0→ T ∗M ⊗ TM → J1(TM)→ TM → 0.

It is thus a section of an affine bundle modelled on
Hom(TM,T ∗M ⊗ TM). W is a affine subbundle of this bundle of
splittings, modelled on T ∗M.
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2. Computing with Weyl connections

A function Φ on Π is an invariant if it is constant, i.e.,
∀D ∈ Π, γ ∈ Ω1(M), δγΦ(D) := d

dt Φ(D + tγ)|t=0 is zero.

For a section s of a vector bundle E associated to the frame
bundle, δγDX s = [[X , γ]] · s (the natural action of p0M on E ).

Variation of the second derivative:

δγD2
X ,Y s = [[X , γ]] ·DY s + [[Y , γ]] ·DX s −D[[X ,γ]]·Y s + [[Y ,DXγ]] · s.

Hence the curvature RD ∈ Ω2(M, p0M) of D, given by
D2
X ,Y s − D2

Y ,X s = RD
X ,Y · s, satisfies

δγRD
X ,Y = −[[Id ∧ Dγ]]X ,Y := −[[X ,DY γ]] + [[Y ,DXγ]].

Can write: RD = W + [[Id ∧ rD ]], where W is invariant
(δγW = 0), and the normalized Ricci tensor rD ∈ Ω1(M,T ∗M)
satisfies δγrD = −Dγ.

14



2. Recovering the Cartan connection

Abelian parabolic geometries are thus equipped with the data we
see in projective geometries:

I A principal P0-subbundle F 0 of the frame bundle GL(M) (the
fibre GL(M)x consists of linear isomorphisms g/p→ TxM).

I An affine bundle W of Weyl structures, modelled on T ∗M,
whose sections form an affine space Π of connections on F 0.

Conversely, these data suffice to construct a normal Cartan
connection on the pullback FP of W to F 0, which is an affine
bundle modelled on p⊥, hence also a principal exp p⊥-bundle over
F 0. As a bundle over M, FP is then a principal P-bundle.
The Cartan connection θ on FP is then the sum of three pieces.

I The solder form of F 0 pulls back to θ1 ∈ Ω1(FP , g/p).

I The tautological Weyl structure defines θ0 ∈ Ω1(FP , p
0).

I The normalized Ricci tensor rD is a 1-form on W with values
in T ∗M, and so pulls back to θ−1 ∈ Ω1(FP , p

⊥).
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2. Linear representations of the Cartan connection
Let M be a parabolic geometry modelled on G/P and let V be a
representation of G . The p⊥ action induces a filtration

V ⊃ p⊥V ⊃ · · · ⊃ (p⊥)kV ⊃ · · · ⊃ V 0 ⊃ {0},

where the socle V 0 is the kernel of the p⊥ action. The top of the
filtration is the quotient H0(V ) := V /p⊥V . Note V 0 ∼= H0(V ∗)∗.

Similarly, VM := FP ×P V is a filtered bundle. In particular, VM

has a natural subbundle V 0
M and quotient H0(VM). A Weyl

structure splits this filtration.

Since VM
∼= FG ×G V , it has an induced connection. This gives

rise to an invariant linear differential equation of finite type on
C∞(H0(VM)). Solutions correspond to parallel sections of VM

with respect to a “prolongation connection”, which agrees with the
induced connection modulo curvature terms.

For M ∼= G/P, VM
∼= M × V is trivialized by parallel sections.

However, V 0
M is not constant in this trivialization. In particular, if

V 0
M is a line bundle, then x 7→ (V 0

M)x maps M into P(V ).
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3. Projective parabolic geometries and prolongation

We wish to identify projective parabolic geometries as a subclass of
abelian parabolic geometries.

Working principle. Projective parabolic geometries should have a
“nice” metrization problem: compatible metrics are nondegenerate
solutions of an invariant linear differential equation of finite type.

Consider again the projective case, and the equation (Dh)0 = 0,
i.e., Dh = X � ZD .
Question: what equation is satisfied by ZD?
Differentiate and skew symmetrize (this is called “prolongation”):

RD
X ,Y · h = X � DY ZD − Y � DXZD .

This determines DZD modulo its trace, i.e., we may introduce a
section λD of L∗ with DZD = λD id+ curvature terms.
A further prolongation determines DλD completely.
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3. The prolongation connection and parallel sections

Conclude. Compatible metrics correspond to parallel sections
(h,ZD , λD) of WM := (L∗ ⊗ S2TM)⊕ (L∗ ⊗ TM)⊕ L∗ for the
prolongation connection

DX

 h
ZD

λD

 =

 DXh − X � ZD

DXZD − λDX + h(rDX ) + · · ·
DXλ

D + rDX (ZD) + · · ·


where the dots denote projective curvature terms. WM has rank
1
2n(n + 1) + n + 1 = 1

2(n + 1)(n + 2), which provides an upper
bound on the space of parallel sections.

In the projectively flat case, we have a linear representation of the
(flat) Cartan connection. On RPn, the solution space is
W := S2Rn+1, i.e., the compatible metrics on RPn are those
induced by nondegenerate inner products on Rn+1.

The embedding of RPn in P(W ) induced by L∗ ⊂ RPn ×W is
not minimal: it is the Veronese embedding [x ] 7→ [x ⊗ x ].
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3. Representations and compatible metrics
Suppose p is a parabolic in g with p⊥ abelian, and choose an
splitting of g as a graded Lie algebra g/p⊕ p0 ⊕ p⊥.

Suppose W is a representation of g with graded decomposition

W = (L∗ ⊗ B)⊕ (L∗ ⊗ g/p)⊕ L∗

for representations L and B of p0, with dim L = 1.

On a parabolic geometry M of this type, W induces a bundle WM ,
which splits using a Weyl structure as

WM = (L∗ ⊗ B)⊕ (L∗ ⊗ TM)⊕ L∗.

Defining h(α, β) = α · (β · h), B maps to a subbundle of S2TM.
Also L∗ ⊗ TM is a subbundle of T ∗M ⊗ L∗ ⊗ B.

Proposition. The equation (Dh)0 = 0, i.e., DXh = X · ZD for a
section ZD of L∗ ⊗ TM, is invariant (i.e., independent of D ∈ Π).

Proof. Since X · h = 0, [[X , γ]] · h = X · (γ · h).
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3. Characterizing projective parabolic geometries

Idea. An abelian parabolic geometry, modelled on G/P, is a
projective parabolic geometry if G has a representation W of the
previous form. This is quite restrictive.

I The 1-dimensional summand L∗ ⊂W implies that G/P is
highest weight orbit in P(W ).

I The natural filtration of W has height 3.

The irreducible W are real forms of the following:

I G = SLn(C) acting on W = S2Cn;

I G = SLp(C)× SLq(C) acting on W = Cp ⊗ Cq;

I G = SL2`(C) acting on W = ∧2C2`;

I G = SOn+1(C) acting on W = Cn+1;

I G = SO10(C) acting on W = C16 (half-spin representation);

I G = E6(C) acting on W = C27.

These are the isotropy representations of symmetric R-spaces!

20



3. Symmetric R-spaces revisited

Proposition. Suppose W is a representation of g with ∧2W
irreducible. Let q0 = g⊕ C be a 1-dimensional central extension.
Then the weight of the centre can be chosen so that q := q0 n W
is a parabolic subalgebra with abelian nilpotent radical W in
h ∼= W ∗ ⊕ q0 ⊕W .

Equivalently (W ,W ∗) is a Jordan pair. Thus if we choose y ∈W ,
x · z = [x , [y , z ]] makes W ∗ into a Jordan algebra.
If F = (ad y)2 : W ∗ →W is invertible, then F−1(y) is an identity
element for the multiplication.

Proposition. W admits elements with (ad y)2 invertible if and
only if H/Q is a self-dual symmetric R-space, i.e., h admits an
inner involution interchanging W and W ∗.
(Or equivalently, an sl2 subalgebra containing a grading element.)
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3. Definition via selfdual symmetric R-spaces
Defn. A projective parabolic geometry is a Cartan geometry with
model the generalized flag manifold G/P in the projective isotropy
representation P(W ) of a selfdual symmetric R-space H/Q.

Equivalently, the model is a space of primitive idempotents in a
semisimple Jordan algebra (W , y) (with y ∈W generic).

Thus h ∼= W ⊕ (g⊕ R)⊕W ∗ provides M with a distinguished
bundle WM , which is a subbundle of a Lie algebra bundle hM
containing gM , and splits as (L∗ ⊗ B)⊕ (L∗ ⊗ TM)⊕ L∗.
The classification of selfdual symmetric R-spaces is well known.
They are real forms of the following.

Type h q0 W

C sp2n+2(C) gln+1(C) S2Cn+1

A sl2n+2(C) s(gln+1(C)⊕ gln+1(C)) Cn+1 ⊗ Cn+1

D so4n+4(C) gl2n+2(C) ∧2C2n+2

BD son+4(C) con+2(C) Cn+2

E e7(C) ce6(C) C27
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3. Projective parabolic geometries of riemannian type

Projective parabolic geometries of riemannian type are those where
the model admits compatible positive definite metrics. Such
models depend on two parameters r , d (with dim M = n = rd) and
the Jordan algebra W ∼= Jd+1(Rr ) is “formally real”.

Type h G = (Q0)ss Jordan alg. G/P r , d

C sp2n+2(R) PGLn+1(R) Jn+1(R) RPn 1, n
A su(m + 1,m + 1) PGLm+1(C) Jm+1(C) CPm 2,m
D so2`+2(H) PGL`+1(H) J`+1(H) HP` 4, `

BD so(n + 2, 2) SO(n + 1, 1) J2(Rn) Sn n, 1
E e7(−25) E6(−26) J3(O) OP2 8, 2

Note that WM has rank 1
2(d + 1)(n + 2), and L(n+r)/2 = ∧nTM.

Also, n-dimensional conformal geometry appears as “projective
geometry of dimension 1 over Rn”, with model Sn = RnP1.
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3. The projective hessian equation
The linear differential equation on sections h of the quotient
L∗ ⊗ B of WM is the projective metric equation.
The dual bundle W ∗

M
∼= L ⊕ (L ⊗ T ∗M)⊕ (L ⊗ B∗) has natural

quotient L, on which the induced equation is second order.
Proposition. On sections ` of L, the equation

D2`+ [[rD , `]] ∈ L ⊗ B∗

is projectively invariant (independent of D ∈ Π).

Proof. δγ(D2`+ [[rD , `]])(X ,Y ) =[[
[[X , γ]], [[Y ,D`]]

]]
+
[[

[[Y , γ]], [[X ,D`]]
]]
−
[[

[[[[X , γ]],Y ]],D`
]]

. By
two applications of the Jacobi identity, this is −

[[
X ,
[[

Y , [[D`, γ]]
]]]]

;
thus δγ(D2`+ [[rD , `]]) = [[γ,D`]], which is a section of L ⊗ B∗.
Remarks. In the real case (r = 1), B∗ = S2T ∗M: this equation is
vacuous and there is an invariant third order equation on sections of L.

In the complex case (r = 2), solutions have J-invariant hessian and are
hamiltonians for Killing fields of compatible Kähler metrics.

When d = 1, rD is not well-defined: the choice of a hessian equation is a

“Möbius structure”, and is part of the data defining a c-projective curve.
24



3. Projective Killing tensors

Any generalized flag variety G/P in P(W ) is an intersection of
quadrics, determined by the complement of the Cartan square
�2W ∗ in S2W ∗ (homogeneous quadratic polynomials on W ).

For projective parabolic geometries, this complement is an
irreducible representation U ⊆ S2W ∗, with quotient L2 ⊗ B∗.
Proposition. For sections k of L2 ⊗ B∗, the equation

(DXk)(Y ,Z ) + (DY k)(Z ,X ) + (DZk)(X ,Y ) = 0

is projectively invariant (independent of D ∈ Π).

Proof. Just check that the symmetrization of ([[X , γ]] · k)(Y ,Z )
vanishes.

Solutions will be called projective Killing 2-tensors. They give
quadratic integrals of the geodesic flow with respect to any D ∈ Π:
if DXX = 0 and then DX (k(X ,X )) = (DXk)(X ,X ) = 0.
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3. Metrics and integrability

For a section h of L∗ ⊗ B, its volume form volh is a section of
L−n/2 ⊗∧nTM ∼= Lr/2. As an L∗-valued metric on T ∗M, h is
nondegenerate iff volh is nonvanishing, in which case there is an
inverse metric h−1 on TM, which is a section of L ⊗ B∗.

Let h∗ = vol
2/r
h h−1, which is a section of L2 ⊗ B∗.

Proposition. h∗ is a polynomial in h of degree d − 1.

Proof. It is easy to check that h∗ has homogeneity d − 1. In fact it
is essentially the “adjugate” of “cofactor matrix” of h.

Proposition. Let h be a solution of the projective metric equation.
Then h∗ is a projective Killing 2-tensor.

[This reflects the well-known fact that the geodesic flow of a metric
is hamiltonian, and the energy, given by the metric, is conserved.]

Proof. If h is nondegenerate, we can choose D ∈ Π with Dh = 0.
Then Dh∗ = 0, so h∗ is a projective Killing 2-tensor. In general we
approximate h by nondegenerate pointwise solutions.
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3. Mobility and pencils of compatible metrics
Definition. The mobility of a projective parabolic geometry is the
dimension of the span of the set of nondegenerate solutions to the
projective metric equation.

A pencil of compatible metrics is a 2-dimensional linear space V of
solutions of the projective metric equation.

Thus the mobility is at most dim W = 1
2(d + 1)(n + 2). It is ≥ 1 if

there is a compatible metric, and ≥ 2 if there is a pencil of
compatible metrics.

The “pencil” here is the projective line P(V) of solutions (in V) up
to constant rescaling: in these terms, the 2-dimensional family of
solutions may be viewed as a section h of O(1)⊗ (L∗ ⊗ B) over
P(V)×M—instead of V∗ ⊗ (L∗ ⊗ B) over M.

Such a pencil h yields a degree d − 1 polynomial of projective
Killing 2-tensors h∗ (a section of O(d − 1)⊗ L2 ⊗ B∗ over
P(V)×M—or equivalently Sd−1V∗ ⊗ L2 ⊗ B over M).

These determine a family of quadratic integrals of the geodesic
flow for any compatible metric.
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3. Pencils of compatible metrics: classification
A further contraction of h∗ with h yields a degree d polynomial of
volume forms. For torsion-free geometries, such volume forms
solve the projective hessian equation. For complex and
quaternionic geometries, this implies the existence of a degree
d − 1 polynomial of Killing vector fields.

These results have already yielded classifications of compatible
pencils in the real and complex cases (the quaternionic case has
yet to be worked out).
In the complex case, we use the classification of hamiltonian
2-forms, and write volh = πc π̃, where πc has distinct constant
roots ηi : 1 ≤ i ≤ N and π̃ has nonconstant roots ξj : 1 ≤ j ≤ `.
We have compatible metrics h(v)−1 : v ∈ V of the form

N∑
i=1

π̃(ηi )

ε(ηi \, v)
gi +

∑̀
j=1

∆jΘj(ξj)

ε(ξj
\, v)

(( dξj
Θj(ξj)

)2
+
(

J
dξj

Θj(ξj)

)2)
,

where 0 6= ε ∈ ∧2V∗, ∆j =
∏

k ε(ξj
\, ξk

\), the gi s are Kähler
metrics and the Θjs are functions of one variable.
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3. Tautological bundles and projective coordinates

In the real case, the embedding of RPn in P(W ) is not minimal:
since W = S2Rn+1, it is the Veronese embedding [x ] 7→ [x ⊗ x ].
The minimal embedding identifies RPn with P(Rn+1), which gives
rise to a rank n + 1 bundle V R

M , whose quotient is L1/2. This is the
tautological bundle OR(1), on whose sections µ the equation

D2µ+ rDµ = 0

is projectively invariant. The solutions are “affine sections of
O(1)”. If the projective structure on M is flat, they provide the
homogeneous coordinates for the development of M into RPn.

Similarly, in the complex and quaternionic cases, there are
tautological complex and quaternionic line bundles OC(1) and
OH(1), equipped with differential equations whose solutions are
the coordinates needed to develop M into CPm or HP`.

29



3. Projective geometries and Cartan holonomy

Basic fact 1. RP2m+1 is an S1 ∼= RP1 bundle over CPm (the
Hopf fibration), given by a choice of complex structure on the
fundamental representation R2m+2 of GL(2m + 2,R) (yielding the
fundamental representation Cm+1 of GL(m + 1,C)).

For any c-projective manifold M2m, the real projectivization of
OC(1) is an RP1 bundle N2m+1 with a real projective structure on
it, and the projective Cartan connection preserves a complex
structure in its fundamental representation.

Conversely, a projective structure on a (2m + 1)-manifold whose
Cartan connection has such a holonomy reduction is locally a circle
bundle over an c-projective manifold (S. Armstrong).

Basic fact 2. CP2`+1 is a S2 ∼= CP1 bundle over HP`. The
generalization is the twistor space Z 2`+1 → M4` of a quaternionic
manifold M4`, which is a 2-sphere bundle in Q, or the complex
projectivization of OH(1). Twistor spaces are (locally) c-projective
manifolds with reduced holonomy Cartan connection.
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3. Projective submanifolds
Observation 1. Let (M2m, J) be a c-projective manifold. A
submanifold N is totally real if J(TN) ∩ TN = 0. If N is maximal
(dim N = m), then TM ∼= TN ⊕ J(TN) along N.

By projecting c-projective connections onto TN, N inherits a
projective structure: for X ,Y ∈ TN, the projection of [[X , γ]]c(Y )
is [[X , i∗γ]]r (Y ), where i : M → N is the inclusion.

Observation 2. Let (M4`,Q) be a quaternionic manifold. A
submanifold N is totally complex if TN is invariant under some
J ∈ Q (along N), but I (TN) ∩ TN = 0 for any I ∈ Q
anticommuting with J. If N is a maximal (dim N = 2`), then
I (TN) is an I -independent complement to TN.

This induces a c-projective structure on N: for X ,Y ∈ TN, the
projection of [[X , γ]]q(Y ) is [[X , i∗γ]]c(Y ).

Furthermore, using ±J, N lifts to a pair of complex submanifolds
in the twistor space Z . When the blow-up of Z along these
submanifolds is a CP1 bundle over N, this generalizes the
Feix–Kaledin construction of hyperkähler metrics (Borowka–C).
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Outlook

1. Projective parabolic geometries seem to provide a framework
with the right level of generality for coherent nontrivial results.
Much remains to be investigated.

2. In particular, quaternionic geometries are (still!) in their infancy,
and much can be learned by analogy with the complex case. It
should also be amusing to study the octonionic case.

3. It is natural to seek generalizations, for instance to nonabelian
nilpotent radical. The metrization problem may again be used as
motivation: one approach seeks subriemannian metrics on the
horizontal distribution in TM which are horizontally parallel for
some Weyl structure.

4. Thanks for your attention!
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