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1. Almost complex manifolds

Suppose that (M, J) is an almost complex manifold with dimR(M) = 2n.

We denote the Nijenhuis tensor of J by

N(X ,Y ) = [X ,Y ]− [JX , JY ] + J([JX ,Y ] + [X , JY ]).

N is a two-form with values in TM, which is of type (0, 2), i.e.

N(JX ,Y ) = −JN(X ,Y ).

Theorem (Newlander-Nirenberg 1957)
(M, J) is a complex manifold ⇐⇒ N ≡ 0.

A complex connection on an almost complex manifold (M, J) is an affine
connection ∇ that preserves the complex structure ∇J = 0.
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For any complex connection ∇ on (M, J) we have:

−4-times the (0, 2)-part of its torsion T∇ equals

−[T∇(X ,Y )− T∇(JX , JY )) + J(T∇(JX ,Y ) + T∇(X , JY ))]

which coincides with the Nijenhuis tensor N.
the curvature has values in gl(TM, J):

R∇(X ,Y ) ◦ J = J ◦ R∇(X ,Y ).

Proposition (Lichnerowicz, 1955)
On any almost complex manifold (M, J) there exist a complex connection
such that T∇ = −1

4N.

Such a complex connection is not unique. Complex connections ∇ with
T∇ = −1

4N are sometimes called minimal connections.

Corollary
There exists a complex torsion-free connection on (M, J) ⇐⇒ N ≡ 0.
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2. Almost H-projective structures

Two affine connections ∇ and ∇̂ on an almost complex manifold (M, J)
are H-projectively equivalent :⇐⇒ there exists a real 1-form Υ ∈ Ω1(M)
such that

∇XY = ∇̂XY + Υ(X )Y + Υ(Y )X −Υ(JX )JY −Υ(JY )JX︸ ︷︷ ︸
:=υΥ(X )(Y )

for all vector fields X ,Y ∈ X(M).
υΥ ∈ Ω1(M, gl(TM, J))

Hence, if ∇̂ is a complex connection, then any H-projectively
equivalent connection ∇ is complex too.
Since υΥ(X )(Y ) = υΥ(Y )(X ), H-projectively equivalent connections
have the same torsion.
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Definition
Suppose that (M, J) is an almost complex with dimR > 2.

An almost H-projective structure on (M, J) is an H-projective
equivalence class [∇] of complex connections whose torsion is of type
(0, 2).
If (M, J) is a complex manifold, then an almost H-projective structure
[∇] on (M, J) is torsion-free and called an H-projective structure.

Remark

A smooth curve c : I → M is J-planar with respect to a complex
connection ∇ :⇐⇒ ∇ċ ċ ∈ span{ċ , Jċ}.
Two complex connections are H-projectively equivalent ⇐⇒ they
have the same J-planar curves.
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Two complex connections are H-projectively equivalent ⇐⇒ they
have the same J-planar curves.

Katharina Neusser (ANU) Almost H-projective structures Kioloa, March 2013 5 / 20



3. Parabolic geometries

Suppose that G is a Lie group and P a closed subgroup of G .

Definition
A Cartan geometry of type (G ,P) on a manifold M is given by a principal
P-bundle G → M together with a Cartan connection, i.e. a one form
ω ∈ Ω1(G, g) such that:
(1) ω is P-equivariant: (rp)∗ω = Ad(p)−1 ◦ ω, ∀p ∈ P
(2) ω reproduces generators of fundamental vector fields
(3) ω(u) : TuG → g is a linear isomorphism for all u ∈ G.

The principal P-bundle G → G/P equipped with the Maurer Cartan
form ωMC ∈ Ω1(G , g) is called the homogeneous model of a Cartan
geometry of type (G ,P).
If G is semisimple and P a parabolic subgroup, then a Cartan
geometry of type (G ,P) is called a parabolic geometry of type (G ,P).
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Curvature
The curvature K ∈ Ω2(G, g) of a Cartan geometry (G → M, ω) is given by

K (ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

It is horizontal and P-equivariant.

For the homogeneous model (G → G/P, ωMC ) of a Cartan geometry
the curvature K vanishes identically.
Conversely, if K ≡ 0, then the Cartan geometry is locally isomorphic
to its homogeneous model.

Natural vector bundles

Any P-module V gives rise to a vector bundle

V := G ×P V := G × V/ ∼, where (u, v) ∼ (u · p, p−1 · v) ∀p ∈ P.

Any P- module homomorphism V→W induces a vector bundle
homomorphism V →W .
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The Cartan connection induces an isomorphism as follows:

G ×P g/p ∼= TM

[u,X + p] 7→ Tupω−1(X ).

Consequently, all tensor bundles over M are associated vector bundles.

Since the curvature K ∈ Ω2(G, g) is P-equivariant and horizontal, it can be
equivalently viewed as section of

Λ2T ∗M ⊗AM ∼= G ×P Λ2(g/p)∗ ⊗ g,

where AM = G ×P g.

In this picture K corresponds to the following P-equivariant function

κ : G → Λ2(g/p)∗ ⊗ g

κ(u)(X + p,Y + p) = K (ω−1(X )(u), ω−1(X )(u)).
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Prolongation procedures of Tanaka (1979), Morimoto (1993), and
Čap-Schichl (2000)
Normalising the curvature of a regular parabolic geometry induces an
equivalence of categories between regular normal parabolic geometries and
certain underlying geometric structures, which admit descriptions in more
conventional geometric terms.

Consider the complex for computing the homology H∗(p+, g) of the
nilradical p+ of the parabolic subalgebra p with values in g

0← g
∂∗← p+ ⊗ g

∂∗← Λ2p+ ⊗ g← ...

Since ∂∗ is P-equivariant, its induces bundle maps

∂∗ : ΛiT ∗M ⊗AM → Λi−1T ∗M ⊗AM.

A parabolic geometry is normal :⇐⇒ ∂∗κ = 0.
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The curvature κ of a normal parabolic geometry therefore gives rise to
a P-equivariant function, called the harmonic curvature,

κh : G → H2(p+, g).

H2(p+, g) is a completely reducible P-module, which can be explicitly
computed via Kostant’s version of the Bott-Borel-Weil Theorem
(1961).
For a regular normal parabolic geometry, it can be shown that

κ = 0 ⇐⇒ κh = 0.
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4. Almost H-projective structures as parabolic geometries

Consider R2(n+1) endowed with the complex structure

J =

 J2
. . .

J2

 where J2 =

(
0 −1
1 0

)
.

gl(n + 1,C) ∼= {A ∈ gl(2(n + 1),R) : AJ = JA} =

=


 A1,1 ... A1,n+1

...
. . .

...
An+1,1 ... An+1,n+1

 : Ai ,j =

(
ai ,j −bi ,j
bi ,j ai ,j

) .

Then

sl(n + 1,C) =

{(
−trC(A) Z

X A

)
: A ∈ gl(n,C),X ∈ Cn,Z ∈ Cn∗

}
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Hence, sl(n + 1,C) admits a |1|-grading as follows:

sl(n + 1,C) = g−1 ⊕ g0 ⊕ g1,

where g0 ∼= gl(n,C) and g−1 ∼= Cn resp. g1 ∼= Cn∗ as g0-modules.

The subalgebra
p := g0 ⊕ g1

is a parabolic subalgebra of g with abelian nilradical p+ = g1.

Set G := PSL(n + 1,C) and let P be the stabiliser in G of the
complex line generated by the first standard basis vector of R2(n+1).

Therefore, the Levi subgroup G0 of P consists of equivalence classes of
matrices of the form(

detC(C )−1 0
0 C

)
where C ∈ GL(n,C)

It follows that the adjoint action of G0 on g induces an isomorphism

G0 ∼= GL(g−1, J) ∼= GL(n,C).
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Theorem (Yoshimatsu (1978), Hrdina (2009))
Suppose that M is a manifold with dimR(M) = 2n > 2. Then there is an
equivalence of categories between

{Almost H-projective structures (J, [∇]) on M}

l 1 : 1

{Normal (real) parabolic geometries of type (PSL(n + 1,C),P) on M} .

Given an almost H-projective manifold (M, J, [∇]), then J defines
reduction of structure group

G0
φ //

p0
��

FM

q
��

M id // M

corresponding to the inclusion G0 ∼= GL(g−1, J) ↪→ GL(g−1) ∼= GL(2n,R)
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The bundle map φ can be encoded by a strictly horizontal
G0-equivariant 1-form θ ∈ Ω1(G0, g−1)

Any connection ∇ in the H-projective class can be viewed as a
principal connection γ∇ ∈ Ω1(G0, g0).
For u ∈ G0 set

Gu := {γ∇(u) : ∇ ∈ [∇]} and G := tu∈G0Gu.

The projection p : G → M is a principal P-bundle, where the right
action of an element g0 exp(Z ) ∈ P on an element γ∇(u) ∈ Gu is
given by the following connection form at u · g0:

ξ 7→ γ∇(u · g0)(ξ) + [Z , θ(ξ)].

Let π : G → G0 be the natural projection. The tautological 1-form
τ ∈ Ω1(G, g−1 ⊕ g0) given by

τ(γ∇(u))(η) = (θ + γ∇(u))(Tπη)

can be extended to a normal Cartan connection ω ∈ Ω1(G, g) (which
is unique up to isomorphism).
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5. The harmonic curvature

Recall that the harmonic curvature is a P-equivariant function
κh : G → H2(p+, g).

Since H2(p+, g) is completely reducible, the harmonic curvature can
be viewed as G0-equivariant function κh : G0 → H2(p+, g).

Consider the complex for computing the cohomology H∗(g−, g):

0→ g
∂→ g∗− ⊗ g

∂→ Λ2g∗− ⊗ g→ ....

The map ∂ is G0-equivariant and so H∗(g−, g) is naturally a
G0-module.
Kostant showed that ∂ and ∂∗ are adjoint operators for some inner
product on Λig∗− ⊗ g ∼=G0 Λip+ ⊗ g.
Hence, one has a algebraic Hodge structure

Λig∗− ⊗ g =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕im(∂),

where � := ∂∂∗ + ∂∗∂.
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In particular, as G0-module H i (g−, g) ∼= Hi (p+, g) is isomorphic to
G0-submodule ker(�) in Λig∗− ⊗ g.

Harmonic curvature of almost H-projective manifold

H2
R(g−1, g) =?

We have H2
C(gC−1, g

C) ∼= H2
R(g−1, g)⊗R C

The Lie algebra g = sl(n + 1,C) can be viewed as real form of the
complex Lie algebra

g⊕ g = sl(n + 1,C)⊕ sl(n + 1,C).

Hence, H2
C(gC−1, g

C) ∼= H2
C(g−1 ⊕ g−1, g⊕ g) as gC0 ∼= g0 ⊕ g0-module.
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H2 (for n = 5)

H2
C(g−1 ⊕ g−1, g⊕ g) =

× • • • •
l l l l l
× • • • •−4 1 1 0 1

0 0 0 0 0
⊕ × • • • •

l l l l l
× • • • •0 0 0 0 0

−4 1 1 0 1

⊕

× • • • •
l l l l l
× • • • •−3 2 0 0 1

−2 1 0 0 0
⊕ × • • • •

l l l l l
× • • • •−2 1 0 0 0

−3 2 0 0 1

⊕

× • • • •
l l l l l
× • • • •1 0 0 0 1

−3 0 1 0 0
⊕ × • • • •

l l l l l
× • • • •−3 0 1 0 0

1 0 0 0 1

Hence, κh has values in three irreducible G0-modules. Correspondingly, we
shall write κh = W 2,0 + W 1,1 + T .
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The theory of parabolic geometries implies then the following:

Interpretation of harmonic curvature; cf. David Calderbank’s
unpublished notes on Hamiltonian 2-vectors
Suppose that (M, J, [∇]) is an almost H-projective manifold with n > 1.

1 (M, J, [∇]) is an H-projective manifold ⇐⇒ T=0
2 (M, J, [∇]) is locally isomorphic to CPn with its canonical

H-projective structure ⇐⇒ κh=0.
(torsion-free case: Tashiro 1957)

3 If T = 0, then

W (1,1) = 0 ⇐⇒ (M, J, [∇]) is complex projective structure .

In this case W (2,0) is Weyl curvature of complex projective manifold.
4 If T = 0 and [∇] is Kählerisable, then W (2,0) = 0.
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The Hodge decomposition

ΛiT ∗M ⊗ gr(AM) = G0 ×G0 Λig∗−1 ⊗ g = im(∂)⊕ ker(�)⊕ im(∂∗)

implies that for any ∇ ∈ [∇]:

∃! P∇ ∈ Ω1(M,T ∗M) s.t. ∂∗(R∇ − ∂P∇) = 0.

W∇ = R∇ − ∂P∇ is called the Weyl curvature and P∇ the Rho tensor
of ∇.
(∂P∇)ab

c
d = δ[a

cP∇b]d − J[a
cP∇b]eJd

e − P∇[ab]δ
c
d − J[a

eP∇b]eJ
c
d

R∇ab
c
d =

= W∇
ab

c
d + δ[a

cP∇b]d − J[a
cP∇b]eJd

e − P∇[ab]δ
c
d − J[a

eP∇b]eJ
c
d

R∇ab
a
d = (∂P∇)ab

a
d = 2n+1

2 P∇bd − 1
2P
∇
db + J(b

eJd)
f P∇fe
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R∇(bd) = nP∇(bd) + J(b
eJd)

f P∇fe

R∇[bd ] = (n + 1)P∇[bd ]

P∇bd = 1
n+1R∇bd + 1

(n+1)(n−1) (R∇(bd) − J(b
eJd)

f R∇fe )

How does P and W change when one changes ∇ H-projectively?

P∇̂ab = P∇ab − 2∇aΥb + 2(ΥaΥb − Ja
eJb

f ΥeΥf )

W∇ is a two form with values in the complex vector bundle gl(TM, J)
and hence we can decompose it into types as follows:

W∇ = W 2,0 + W 1,1 + W 0,2.

W ∇̂
ab

c
d =

= W∇
ab

c
d + Tab

eΥeδ
c
d + Tab

cΥd − J f
e Tab

eΥf Jc
d − Je

cTab
eJd

f Υf︸ ︷︷ ︸
is of type (0,2)

.

The components W 2,0 and W 1,1 are independent of the choice of the
connection in [∇]. These are the two harmonic curvature components.
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W∇ is a two form with values in the complex vector bundle gl(TM, J)
and hence we can decompose it into types as follows:

W∇ = W 2,0 + W 1,1 + W 0,2.

W ∇̂
ab

c
d =

= W∇
ab

c
d + Tab

eΥeδ
c
d + Tab

cΥd − J f
e Tab

eΥf Jc
d − Je

cTab
eJd

f Υf︸ ︷︷ ︸
is of type (0,2)

.

The components W 2,0 and W 1,1 are independent of the choice of the
connection in [∇]. These are the two harmonic curvature components.
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