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Abstract
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§0. Introduction

Let f be a positive function defined on the unit sphere S™ in R"*! and p € R.
In this paper we study the following equation of Monge-Ampere type

det(hij + hdy;) = fhP~1 (1)

on S". Here h;; is the convariant differentiation of h with respect to an ortho-
normal frame on S™. We look for a solution A which is the support function for
some non-degenerate convex body. Recall that the relation between a convex
body and its support function introduces a one-to-one correspondence between
the set of all convex bodies, K, in R"*! and the set S = {h € C(S™) : his a
convex function after being extended as a function of homogeneous degree one
inR”“}. For any p > 1, given two convex bodies K and L with respective
support functions hx and hr, and A, u > 0, we can form a new convex body
Ao K +p po L whose support function is given by (AR, + uhg)%. For p =1,
this sum, which becomes A\K + pL, is called the Minkowski addition. It plays
a central role in the theory of convex bodies. For p > 1, the addition was
introduced by Firey[F| and further developed in Lutwak[L]. It has been shown
that many basic notions and properties such as the mixed volumes, the quer-
massintegrals, Brunn-Minkowski inequality, have their natural counterparts for
p > 1. In particular, the p-mixed volume, V,(K, L), is well-defined and is given
by
n+ 1Vp(K,L) — lim V(K +p,e0L)—V(K)
p e—0 3
(here V(K) is the volume of K). Let /C, be the collection of all convex bodies

containing the origin in their interiors. For any K € IC,, there exists a Borel

measure /i, on S™ so that

Vo(K, L) = hY du, (K, -
p(K, L) n—l—l/SnLMp(’)
for all L € K,. The measure p, is called the p-area measure of K. When p = 1,
it reduces to the ordinary area measure p for K. It turns out that p, is related
to p by [L]:
-1
hh: dpy, = dp.

Recall that the classical Minkowski problem is concerned with prescribing
area measure (or Gauss curvature). It can be formulated as follows: Given a

finite Borel measure m on S, find necessary and sufficient conditions on m so



that it is the area function of a nondegenerate convex body. In the past the
problem was also studied in the smooth category, that is, assuming the Radon-
Nikodym derivative of m with respect to the spherical measure on S™ exists and
is smooth, one looks for a solution of the Minkowski problem whose boundary
is a smooth hypersurface. In terms of the support function this problem is
equivalent to solving (1) for p = 1. It turns out that there are two necessary
and sufficient conditions for the classical problem, namely, (i) m(S™) > m(C)

where C' is any great (n-1)-sphere, and (ii) for j =1,--- ,n+ 1,
/ xzjdm(z) =0 . (2)

Under (i) and (ii) the solution is unique up to translations. Furthermore, the
boundary of the solution is smooth if f is smooth. For a full discussion on
the Minkowski problem and its resolution, one may consult Pogorelov[P] and
Cheng-Yau[CY].

Quite naturally, one may pose the same problem for p-area measure: Given
a finite Borel measure m on S™, find necessary and sufficient conditions on m
so that it is the p-area measure for some non-degenerate convex body in K,. Let
i be the area measure of the solution of the problem. Then the L,-Minkowski

problem is equivalent to solving the equation
p(E,h) = h"~'m(E), (3)

for all Borel sets E in S™. When f = dm/dz is positive and the solution
hypersurface has positive Gauss curvature, this equation reduces to (1). So (1)

is the equation describing the L, -Minkowski problem in the smooth category.

The L,-Minkowski problem was first formulated and studied in Lutwak|[L].
He showed that any even finite Borel measure is a p-area measure for a unique
centrally symmetric convex body. The regularity of the convex body (when f
is regular) was later established in Lutwak-Oliker[LO].

We observe that not every finite Borel measure is a p-area function. Let’s
call a measure “non-concentrating on hemisphere” if its measure on any (open)
hemisphere is positive. Then the p-area measure of any hypersurface in X, must
be non-concentrating on hemisphere. For, let m vanish on some hemisphere H.
Taking F = H in the above equation, the right hand side vanishes and yet the
left hand side is positive as K € K.

Now we state our main results. First we introduce some notations. Denote

the class of all finite Borel measures on S™ which are non-concentrating on



hemisphere by NC'H. For an NCH measure m let f be its Radon-Nikodym
derivative with respect to the spherical measure. We also let K. be the col-
lection of all nondegenerate convex bodies which contain the origin in their

interiors or on their boundaries.

Theorem A Consider (1) and (3) forp >n+ 1.

(a) Let f be a positive function in C*(S™) for some a € (0,1). Then (1) has a
unique, positive solution in C**(S™).

(b) Let m € NCH. There exists a convex body in Ky satisfying (3). It belongs

to IC, when f is bounded from above.
Next, we treat the case p =mn + 1 as an eigenvalue problem.
Theorem B (a) Let f be a positive function in C*(S™) for some a € (0,1).
There exists a unique pair (h,\),h > 0,in C>*(S™) and X > 0 satisfying
det(hi]’ + h(;lj) = Afh" (4)
(b) Let m € NCH. There exists a pair (K, \), K € Kq and X > 0 satisfying
u(E, K) = Ah"m(E), (5)

for all Borel sets E. Moreover, K € K, when f is bounded from above.

In fact, X is characterized by

A= s;}){[/fh""'ldm}_l V(K)=1,K € K,}. (6)

When p € (1,n + 1) the situation is more delicate.

Theorem C Consider (1) and (3) for 1 <p <n+ 1.
(a) Let f € L>®(S™), f > fo for some positive constant fo. Then (1) has a

generalized non-negative solution in the sense of Aleksandrov.

(b) Let m € NCH. Then (3) has a solution in K.

The regularity property in Theorems A and B follows from Proposition 1.2,
which asserts that any positive solution & of (1) is smooth when f is smooth[C2].
As the solution is always positive when p > n + 1, we solve the smooth p-

Minkowski problem in this case without any further necessary condition such
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as (2). This is not surprising because (2) originates from the translational
invariance of the problem, which only holds for p = 1. The regularity in the
case 1 < p <n+ 1 will be treated in Theorem E below.

In [L] it is proved that there are at most one convex body in I, satisfying
(3). For (5) the following uniqueness result is also proved in the same work: Let
(K1,\1) and (K3, A2) be two solutions of (5) where K; € K,,and A\; > 0,7 =
1,2. Then Ay = Ao and K> is a dilate of K. Both results are consequences of

a version of the Minkowski inequality for mixed p-Quermassintegrals.

The remaining cases in (1) p < 1 have not been studied in a systematic
manner. Nevertheless, some significant special cases were discussed before. For
example, when p = 0, n = 2 and f(z)=constant, (1) describes the ultimate
shape of a worn stone in a model posed by Firey[F|, who conjectured that the
constant function is the unique solution. An affirmative answer is obtained
relatively recently in Andrews[A2], where one may find a full discussion of the
problem. Another important case is p = —n — 1 and f(x) = 1. It was Tz
itséica who first studied this equations in 1908. He proved that all solutions are
ellipsoids centered at the origin. The same equation was independently pro-
posed again in the search for projective metric in a convex domain by Loewner-
Nirenberg[LN]. In a different setting, it was studied over a bounded domain in
a hemisphere with certain boundary condition. The problem was later solved
by Cheng-Yau[CY]. We do not know any results when f is non-constant. From
our work [CW3] on the Hessian equations, it is clear that p = —n—1 is the criti-
cal case for the Monge-Ampere operator on the sphere. We solve the subcritical

case p € (—n — 1, 1) in this paper.

Theorem D Let p € (—n —1,1), f € L>°(S™), and f > fo for some constant
fo > 0. Then there exists a generalized nonnegative solution of (1) in the sense
of Aleksandrov. Whenp € (—n—1,—n+1] and f € C*(S™) for some a € (0,1),

the solution is positive and in C%*(S™).

Let us elaborate a little more on the regularity properties of the generalized
solutions. When —n+1 <p <n+1, p# 1, even f is positive and smooth,
the boundary of the solution convex body may touch the origin and hence the
solution is not positive, see §6 for more. Examples can also be found in Andrews
[A1] for n = 1 and Guan-Lin [GL] for all n > 1. In this case the Monge-Ampere
equation (1) is either degenerate (1 < p < n+ 1) or singular (—n+1 < p < 1),



and the solution is not C? in general. But we will prove the following regularity

result.

Theorem E Let h be a solution of equation (1) with —n+1<p <n+1.

(a) If f € L>®(S™), f > fo for some constant fo > 0, then the solution is in
CY(S™) when 1 < p < n+ 1 and the associated convexr hypersurface is in C!
when —n + 1 < p < 1. Moreover h € C*/({h > 0}) for some v € (0,1). If
furthermore f € C%, then h € C**({h > 0}).

(b) If f € COL(S™), f > fo, then the solution is in CH*(S™) for some o € (0,1)
when 1 < p < n+ 1 and the associated convex hypersurface is in C1® when
—n+1l<p<l.

(c) If f € CYU(S?), f > fo, and p € (2, n + 1), then the solution is in
chr(sm).

The above theorem does not exclude the possibility that the solution is
only Lipschitz when —n 4+ 1 < p < 1 and the associated convex hypersurface is
Lipschitz when 1 < p < n+1. By the function given in (6.4), the C1® estimate
is optimal for 1 < p < £(n + 1).

This paper does not go beyond p < —n — 1. Yet the critical case p =
—n — 1 is very delicate and highly interesting because the equation becomes
invariant under all projective transformations on the n-sphere. We shall make
a preliminary study of it. First, using the concept of Klein geometry, we shall
interpret it naturally as a Minkowski problem in centroaffine geometry. Next,

we find a new necessary condition (“obstruction”) for solving it.

Proposition F Let h be a C%-solution of (1) where p = —n —1. Then for any

projective vector field € on S™,

| @ennt=o, 7

where V¢ f is the derivative of f along &.

Incidentally, we point out that for positive p, (1) also describes self-similar
solution for the expanding Gauss curvature flow, and, for negative p, self-similar
solution for the contracting Gauss curvature flow. One may consult Andrews
[A1] [A2] and Urbas[U1] [U2] for works in this direction.

The paper is organized as follows. After the preliminary Section 1, we

prove Theorems A, B and C in Sections 2, 3 and 4 respectively. In Sections 2



and 4 we also present existence results on the general equation obtaining from
(1) by replacing fh?~! by some f(z,h). See Propositions 2.1 and 4.1. In a
board sense this equation may be regarded as a prescribed curvature problem.
Without striving for full generality, our results illustrate how far our methods
go. In Section 5 we study p € (—n — 1, 1) and establish Theorem D. In Section
6 we prove Theorem E. Finally in Section 7 we give an introduction to the

centroaffine Minkowski problem and prove Proposition F.

This paper was written over a number of years. The first draft [CW1] con-
tains the proofs of Theorems A-C for positive measurable f and their extensions
to more general right hand side f(x,u), while Sections 5, 6 and 7 were com-
pleted relatively recently. In the meanwhile Guan and Lin [GL] independently
obtained results similar to Theorem A and Theorem B without the variational
characterization (6). Prior to us they also established Theorem E(c) by a dif-

ferent method.

We wish to point out further works on the L,-Minkowski problem which
have come into our knowledge after the completion of this paper. In [LYZ1]
Lutwak, Yang and Zhang present another approach to the problem (still for
even measures) and subsequently apply it in [LYZ2] to establish a sharp affine
invariant LP-Sobolev inequality. One may consult these papers for other related
works. Concerning (1) for p < 1 a complete classification of all positive solutions
when n = 1 and f is a constant has been carried out by Andrews [A4]. A

surprising discovery is the existence of many non-circular solutions for p < —7.

Acknowledgement Chou’s work was partially supported by an Earmarked
Grant for Research, H.K. Wang’s work was partially supported by the Aus-

tralian Research Council.



§1. Preliminaries

In this section we recall and collect some basic notions and results to be used

in subsequent sections.

For a given convex body K in R"*! we let X be its boundary. The convex
body K is non-degenerate if its interior is non-empty and regular if X is a reg-
ular hypersurface. The support function of K (or X) is a continuous function
defined on S™ given by h(z) = sup{p-z : p € K}. It is convex after being
extended as a function of homogeneous degree 1 in R™*!. It turns out that,
conversely, any continuous, convex function h of homogeneous degree one de-
termines a convex body K = {p € R"™! : p. 2 < h(x),for all z € S"}. So the

collection of all convex bodies, K, can be identified with the set

S ={h € C(S") : h is the restriction of a convex

function of homogeneous degree one in R"1}.

S is regarded as a subspace of C'(S™) in the sup-norm. Corresponding to all

convex bodies containing the origin in their interior, K,, we have
ST={heS:h>0}.

We also set
S* = {h € C*(S™) : (hij + 0;jh) > 0.}

(where h;j is the covariant differentiation of i with respect to an orthonormal
frame on S™), and

Sk =Ssnche(sm) .

So elements in S? determine convex hypersurfaces with positive Gauss cur-
vature. Uniform convergence for support functions corresponds to convergence
of convex bodies in the Hausdorff metric. The Blaschke selection theorem
asserts that for any bounded sequence of convex bodies, one can select a con-
vergent subsequence in the Hausdorff metric. Equivalently, it means that the

support functions of the subsequence converge uniformly.

Any X, the boundary of some K € K, induces a Borel measure on S™ as
follows: For any Borel set E € B,

w(E; X) =H"{p € X : There exists a supporting hyperplane

passing p whose unit outer normal lies in E},



where H™ is the n-dimensional Hausdorff measure. Instead of u(E, X) some-
times we write u(E, h). The measure y is called the area measure of X. When
X belongs to S?,
dp = K tda
= det(h;j + hd;j)dx .

In view of this, h € S is called a generalized solution of (1) if

w(E, h):/Ehp_lf(:z:)d:n, VE € B,

where h is the support function of X. More generally, for a given finite Borel
measure m on S", a generalized solution to the L,-Minkowski problem is a

convex body K in K, whose area measure satisfies

w(E h) =hP"'m(E), VE eB. (1.1)

Concerning (1.1) we have the following basic compactness result ([CY] or

[P]).

Proposition 1.1 Let {h;} be a bounded sequence in S, each h; solving (1.1)
for the measure m;. Suppose that {m;} converges weakly to m. Then {h;}

subconverges to a generalized solution of (1.1).

The regularity property of the generalized solution is contained in the fol-

lowing proposition.

Proposition 1.2 Let h be a generalized solution of (1.1). Let Z = {h = 0}.
Suppose h is locally strictly conver away from Z. Then h is in C7 for any
v € (0,1) and C** away from Z when the Radon-Nikodym derivative of m with
respect to the standard spherical measure on S™, f, is in C and C% for some
a € (0,1) respectively. Moreover, it is in C**22(S™\ 7) if f € CH(S™\Z) N
Ck(S™M\Z) for all k > 1.

We remark that when A > 0 in the whole S", the local strict convexity is
proved in [C1].

Proof For any zp € S™\Z denote the restriction of h on a supporting
hyperplane through z¢ by u. Then u is a convex function in R™ which satisfies

the standard Monge-Ampere equation

det D?u = g(z)uP™t | (1.2)
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where
z,—1 )

V14 |z]?

(Here we have taken z(p to be the south pole.) in the generalized sense of

g(z) = (L+ [2) " P+ f(

Aleksandrov. Since u(zg) > 0, by assumption wu is strictly convex near zo.
Hence for § > 0 small, u is positive in the domain {x : u(x) < u(zo)+z-y+0}.
By Caffarelli’s regularity theory [C2], u is in the Sobolev space W2? for any
p > 1 (C** resp. for some a € (0,1)) whenever g is in C' (C® resp.). When
f belongs to C1'' N C*<, by the Schauder estimates we infer furthermore that
u € Ck+2a(gm\ 7). O

To end this section we note a result on the equivalence between sup-norm

and the LP-norm on ST.

Proposition 1.3 Suppose that m; tends to minNCH weakly. There exists a
positive p = p(n,p, u) such that

Pt < [ WP (1.3)

for all large j and non-negative h in S.

Proof By a compactness argument, there exists p = p(n,p, m) such that

/(m-f)pdm2,o>0,
H

where H = {z : = -& > 0} and & is any unit vector. Assume that hpayx
is attained at the north pole. By convexity we have h(z) > hmax®n+1 for

ZTpy1 > 0. Therefore
/ hPdm > phb .. .
O

Let h be a solution of (1) or (3) with m € NCH. By Proposition 1.3 we

have the volume estimate

1
‘/(X):?’L—l-l/nhd'u

_ ! / hPdm (1.4)
TL+]. Sn

P_ap
n+1 max*

10



§2. The Positive Case: p > n + 1

We shall give two proofs of Theorem A. The first one, which is based on the
method of continuity, works for continuous f’s. The second proof by gradient
flow works for the general case. It also gives a variational characterization to

the solution, which will be used in the next section.

Let’s consider (1) where f > 0 in C%(S™) and h is a C%-solution of (1). At
h(z0) = hmax (Amin Tesp.), D*h(zg) <0 (= 0 resp.) Using this in the equation,
we obtain

(inf )77 < b~ () < (sup f)7T (2.1)

immediately. Let
7 ={te[0,1]: (1) is solvable in C* for f; =tf + (1 —1t)} .

Clearly 0 € 7 and 7 is closed by (2.1) and Proposition 1.2. To show that 7 is

open we look at the linearized problem
Lu = cij[h](uij + uéw) - (p - 1)hp_2u =ge(C®

where ¢;;[h] is the (i, j)-entry of the cofactor matrix of (hi; + hdi;). As is well-
known, ¢;j[h]; = 0 and hence L is self-adjoint. To show its invertibility one
needs to show kerL = 0. But this follows from an inequality of Hilbert and
Aleksandrov. We refer to Lutwak-Oliker[LO] for details. Since Z is both open
and closed, Z = [0, 1]. In particular, (1) is solvable for ¢ = 1.

To show uniqueness let’s first note that A~ = 1 is the unique solution (see
(2.1)) when f is identically 1. Now, let h; and hg be two solutions of (1).
We may connect each of them to 1 by line segments. Along the segments the
linearized problem is invertible. As h = 1 is the only solution to f = 1, we

conclude hi = hs.

Equation (1) has a natural variational structure. In fact, Minkowski solved
the case p = 0 in the non-smooth category by a variational argument. See
Pogorelov[P] and Schneider [S]. In [CW2] we use the gradient flow to furnish a
variational proof of the Minkowski problem in the smooth category. Variational
argument is also used for the L,-Minkowski problem in [L] when the given
measure m is even. For the present situation we shall use the gradient flow to

solve (1) for more general nonlinearities. More specifically, let f € C*(S™ x

11



(0,00)), « € (0,1), be a positive function, increasing in z and satisfying

im L83 (2.2)
2—00 zn

limsup 15 <1 | (2.3)
z—0t z"

uniformly on S™.

Proposition 2.1 Let f be given as above. Then the equation
det(hij + h(S,-j) = f(z,h) (2.4)

has a solution in ST NS>*. It is unique if in addition f(x,z)z~™ is increasing

m z.

In the following proof we shall further assume f to be smooth so that the
flow (2.5) is solvable. This additional regularity can be removed by an approx-

imation argument easily. Let’s consider the functional

1

I(h) = n+1

/ h det(hij +h5ij) —/ F(x,h),
Sn n

where F' is the primitive function of f satisfying F'(0) = 0 on the space C*°NS™.
We consider the Cauchy problem for the flow

% = log det(hlj + héij) — log f(% h)

h(z,0) = hg € STt Nno™.

(2.5)

Along this flow,

T h = /S (det(hi; + o) — F(. 1)y
- et(hs - he) — Fla 1)) log €0 +00i5)  (2.6)
_/Sn(dt(hZ]Jrh(Szg) £, 1)) log ===
>0,

and equality holds if and only if (2.4) holds. We shall show that (2.4) has a

solution A’ which satisfies
IZ(h) =max{Z(h): he St} .

We proceed in three steps.

12



STEP 1 Z is bounded from above. Let h € § and X its associated
hypersurface. Suppose that the maximum of h is attained at the north pole xy.

By convexity h(z) > h(xo)zp+1. Hence,

fh(xo))

fawz [ g

{va+1>%}

P Mh(x())n 3

Sn

where M — oo as h(xg) — oo by (2.2). On the other hand,
/ det(hij + hé,-j) < wnh"(:co) ,

as the right hand side is the area of X. Therefore, Z(h) becomes negative
outside the set {h : hmax < ho} for some large constant hg.

STEP 2 A priori estimate for the solution of the flow. According to the
C?-estimate in [CW2] and C%-and higher regularity results of Krylov (here
Ck is the parabolic Holder space), the estimates

‘|h||ék+2,a(snx[07m)) g c ) k 2 2 )
follow from the uniform estimates
0<Ci <h(x,t) <Cy, (x,t) € 8" x [0,00) . (2.7)

So it suffices to prove (2.7). Let h(zo,%o) = minh in S™ x [0,7]. When ¢, > 0,

we've

det(hij + hél])
f(x.h)

> log @

T

at this point. It follows from (2.3) that the first inequality in (2.7) holds.

Similarly, using (2.2) one gets the other estimate.

OEhtzlog

STEP 3 Existence of a maximiser for Z. The a priori estimates in Step
2 enable us to solve (2.5) using a maximizing sequence {h?} as initial data to
obtain a family of {h;} in ST NC>(S™ x [0,)). By (2.6) and Step 2, for each
J, one may extract a sequence h;(z,t;) which converges smoothly to a solution
of (2.4) as t; — oo. In this way we obtain a sequence of solutions {h}} which is
again maximizing. Applying the maximum principle to (2.4), just like the way
we derived (2.1), we obtain uniform two-sided bounds on h}. Hence it contains a

subsequence converging to a maximizer of Z among all smooth functions in S*.

13



Observe that the first term in the functional 7 is simply the volume enclosed
by the hypersurface determined by h, and hence it is continuous on §. So this

maximizer is in fact a maximizer in ST.

To complete the proof of Proposition 2.1 we prove the uniqueness of solution
when f/z" is increasing. Let hy and ho be two solutions of (2.4). Suppose
G(x0) = Gmax, where G = hy/hs. Then at xg,

hi)hy — h1Vh
0= v = (Pt~ Iuhs
h
2
and ho(D%hy) — hi(D%h
D2hy) — hy(D
0> {Gi} = 2(D7) 2 1 2)7
h’2
ie.,
D?%h, D2hs
< .
G <5
Hence 2y
D
f(@o, hn(20)) = B} (o) det ( : L)
D?h
< W (wo) det (5= + 1)
ho
h7 i)
= higxoif(xoahﬂivo)) :
2

Since f/z™ is increasing, hi(zo) < ha(zo), i.e., hi(xz) < ho(z). Similarly one
can show that hy > hs.

We remark that the solution may not be unique if f/z" is not increasing. A
simple example is f = az"™' + 3, a, 3 > 0. One can easily show that it admits

two spherical solutions.

Returning to the proof of Part (b) in Theorem A, let m be a finite Borel

measure not concentrating on hemisphere.

Let {m;}, dm; = f;(x)dz, f; positive and smooth, be a sequence of measures
converging weakly to m and let {h;} be the solution of (1) for f = f;. By
Proposition 2.1, each h; can be taken to be the maximizer of the corresponding

functional 7;.

The area of the hypersurface determined by h;, A;, satisfies

wnh” 2 Aj

J max

= [ fi@)h? lda (2.8)



by Proposition 1.3. As here p — 1 > n, a uniform bound on h;yax comes out.
On the other hand, by the variational characterization of the solution,
Zj(hy) = sup I;(R)
R>0

p_
1 1 wi

-

p_
1, 1 1 wptt

Z2T e

AL P (s

for sufficiently large j. By Proposition 2.1, {h;} subconverges to a solution in

ST of (1) which determines a non-degenerate convex body.

To show that h is in fact positive when f is bounded from above we claim
dj =infh;(z) >0 >0.
x

For, if not, we may suppose d; — 0 and the infimum is attained at the south
pole. Then u; = (1+ |$|2)%h(x1, -+ xp, —1) satisfies

det D*uj = uP~'gi(z), = €R"
where
z,—1 )

V1+ |z

and u;(0) = infu; — 0 as j — oo. Since all X;’s have bounded diameters and
T

gi(x) = (L+ |2*) 7377 fj

their inradii are positively bounded from below, there exists R > 0 such that
uj(z) > 1 for |z| > R. Letting j — oo, we conclude that {u;} subconverges
to a convex function w such that u(z) > 1 for |z| > R and u(0) = infu. It

satisfies, in the generalized sense of Aleksandrov,
det D?u < AuP™t |

for some positive A.

Consider the zero set Z = {u = 0} and Z; = {u < §}. If |Z] = 0, then
|Zs| — 0 as 0 — 0. By comparing the normal image of u over Zs, N,,(Zs), with
the normal image of the cone whose base is Z5 x {0} and whose vertex is (0, 0),

we have
co™

Nu(Zs)| =2 15—
|Nu(Zs)| Zs]
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On the other hand, we have

IN.(Zs)| = / det D*udx
Zs

< A/ uP~dz
Zs

< A(Sp_l‘Z(5’ .

Therefore,
5n—p+1 < C|Z(§’2 )

Letting § — 0 we have a contradiction.

If |Z| > 0, we take xg € 0Z5 so that (x — z¢) - e, > 0 for all z € Zs. Let
Zse =A{x 1 u(x) < u(zg) — e(x — x0) - €n}. One can select § — 0 and £(5) — 0
such that

1
inf {u(z) — (u(zo) —e(x — x0) - €n) : @ € Zs. } < —55
and |Zs .| — 0. Similarly as above, we can derive
0" < C\ 25|

and the same contradiction holds.

§3. An Eigenvalue Problem

In this section we prove Theorem B. We shall first prove it for a positive, Holder
continuous f. Let he, € € (0, 1), be the unique solution of (1) forp =n+1+¢
and let X, be the associated hypersurface. We dilate X. to a hypersurface

X, whose enclosed volume is the same as the unit ball. Its support function,

). o~ 1w
he = [MV(XE) " h., satisfies

n

det(haij + haéij) = )\gthrEf(I), (31)

where \. = V(X.)¢/"t1. Here and below we also denote by V(X) or V(h) the
volume of the associate convex body K. Consider ho(z9) = hemax- At zp we

have
AhZTe (20) f(20) < B2 (20) ,
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SO

1
A < ha_rilax T
T f(zo) (o)
< b
= fwo)
since V(X;:) = wy,/(n + 1). Similarly one gets a lower bound for A\.. We have
1 1
—— <A< — . 2
sup f © = inf f (3:2)
It follows that w
" = V(X
n+1 ()
Ae
= potl 3.3
g L (33)
> chZmax

by Proposition 1.3. Hence {h.} is uniformly bounded in S*. By passing to a
subsequence we may assume that {(he, \:)} converges uniformly to (hg, Ag) as
€ | 0. One can check that the proof of positivity of the support function in the
last section still works for h.. Hence hg € ST.

By the variational characterization of h. we have

Zo(he) =max{Z.(h) :he ST} > 0.

Letting € | 0, hq satisfies
Io(ho) = max {Io(h) :he S+} >0

But Io(tho) = tn—HI()(hD). So Zo(ho) =0, i.e.,
Sup{/ [hdet(hij + hdij) — )\0/ fr = 0. (3.4)
Sn Sn

We have proved Part (a) of Theorem B. Now Part (b) can be established

by an approximation argument. Note that (6) follows from (3.4).

As pointed out in the introduction, the uniqueness of the solution pair has
already proved in [L]. When f is positive and continuous, an analytic proof can
be given as follows. First, suppose that (Aj, hy) and (A2, he) are two solutions
of (1) for p = n+1. By multiplying hs with a suitable constant, we may assume
X5 is contained inside X7, with some point touching X;. At this point, say, g,
we have

Alf($0)h7f(xo) = det(hh‘j + hléij)
> det(hgi]’ + hgéi]—)

= X2 f (z0)h3 (x0) -

17



Hence A1 > A2. By symmetry we get A\ = Ao.

Next, assume hj and hg are two different solutions of (1) with the same \.
By multiplying he with a suitable constant we may assume the set F = {x €
S™ : hi(xz) > he(z)} is an open set in the south hemisphere. We can always
do this when hs is not a constant multiple of ;. Now, let u; and us be the
restriction of hy and ho respectively on the tangent hyperplane of S™ at the
south pole. Then both u; and wuo satisfy

det D*u; = g(x)ul in Q
u1 = ug on Of)

u1 > ug in

But this is impossible by the comparison principle.

§4. The Positive Case: 1 < p<n+1

In this section we prove Theorem C as well as its generalization. First of all,

we consider an approximation problem to (1) : For any € € (0, 1),
det(hij + hdij) = f(x)¢e(h), (4.1)

where f is positive, in C* for some « € (0,1) and ¢, is a smooth, strictly
increasing function satisfying ¢. > § and ¢.(z) = 2?71 + & when z > 0. The
assumptions that f € C* and ¢. > £ imply that the solution is C** by [C2].
By the estimates (4.2), (4.5), and the volume estimate thereafter, the Holder

continuity of f can be removed by approximation.

We shall show that the sup-norm of any classical solution of this equation
admits positive bounds from both sides independent of €. Indeed, at h(zg) =

hmax > 0, we have
AP e = det(hij(z0) + h(z0)di)

= f(x0)(e + Phrr) -
Hence
1
hmax = (inf f)»+1=p = C4 (4.2)

for all e. On the other hand, the area and enclosed volume of X, the hypersur-
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face associated to h, satisfy
A(X) = / det(hij + hdij)

<elfllus + / et
{

P

and )
VX) = / h det(hi + ho;)
Sn

n+1
1

> £ h+/ e+ hP~Haf
”+1[ /{h<0}f {h>0}( ) ]

respectively. By the isopermetric inequality,

n+1 1

(@t [, o) zaile [ [ crwing] a

By Holder and Young’s inequalities,

n+1 p—1_ nt1l

(/{h>0} fhpil) s K /{h>o} f> ; ( /{h>o} fhp> T} "

n+1

<o wpro([ )T
{h>0} {h=0}

By choosing § small, the first term on the right hand side can be absorbed to
the right hand side of (4.3). Hence we have

n+1
C(1A+ I fllp) =7 2/ fhp+a/ hf, (4.4)
0} {h<0}

for some constant C' depending only on p and n. Using p > 1 and Proposition

2

1.3 we conclude that
hmax < 02 ) (45)

where C depends on p,n and ||f||z1. From (4.2) and (4.5), we have from
Proposition 1.3 that
V(X) > Cy > 0.

Now, we use a degree-theoretic argument to solve (4.1).

Lemma 4.1 For each h € C(S™), there exists a unique vector § = &, depend-

g continuously on h, such that

f@)pe(h+& x)r; =0, i=1,--- ,n+1. (4.6)
S’ﬂ
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Proof Let
F(¢) = . f@)®(h+¢ - x)dz, (4.7)

where ® is a primitive function of ¢. By our assumption on ¢ it is clear that
F tends to infinity uniformly in z as || — oo. Hence the minimum of F' is
attained and it satisfies (4.6). By the strictly increasing of ¢ we know that F'

is strictly convex, so there are no other critical points. [l
Given h € C(S™), by (4.6) we can solve
det(uij + udij) = f(x)¢e(h + & - 2) (4.8)

to obtain a generalized solution v in & which is unique up to translation. We

can fix it by requiring

By doing this we have defined a map T from C(S™) to S given by u = Th.
Since the inclusion S — C(S™) is compact by the Blaschke selection theorem,
T is a compact map. By replacing the f in (4.7) by fi = (1 — A) + Af, we
obtain in the same way a continuous family of compact mappings Ty, A € [0, 1].
Any fixed point h of Ty is a generalized solution of (4.1) with fy¢. on its
right. By the regularity results in [C1] and [C2] h belongs to C?# for some
B. Therefore, it satisfies (4.2) and (4.5) where C; and Cs can be chosen to
be independent of A. So the Leray-Schauder degree deg(id — Ty, M,0), where
M ={h € C(S"): C1 < hpmax < O3}, are well-defined and all equal.

We shall show that deg(id—Ty, M,0) = 1. To prove this we consider another
homotopy family of compact mapping S,,, by solving

det(uij + ué,]) = (1 — ,U,) + M¢a(h +&n - x)a

and requiring the solution to satisfy the above integrability condition.

When p = 0, we define S,,h = 1.
Lemma 4.2 Let h be a fized point of Sy, p € (0,1]. Then h is positive.

Proof Suppose hmin is attained at the south pole. For any z € S7, let
T = x — 2ep41, the reflection of x with respect to the hyperplane x,+; = 0.
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When hpin < 0, it is clear that h(Z) > h(z). Since ¢ is strictly increasing,
¢(h(Z)) > ¢(h(x)). Hence

J

contradicting our definition of S,,. Hence h must be positive. O

(1=t o) > [ (1= ot o)

n
+

By this lemma, the integrals over {h < 0} in (4.3) are vacuous. Hence the
constant Cy in (4.5) can be chosen to be independent of y and A. On the other
hand, it is readily seen that C can be also chosen independent of p and \. As

a result,

deg(id — T1, M, 0) = deg(id — Ty, M, 0)
= deg(id — S1, M, 0)
= deg(id — Sy, M, 0)
=1.
We have shown that (4.1) admits a solution h.. Using the uniform bounds
(4.2) and (4.5), we can extract a sequence {he,} which converges uniformly to
a generalized solution h of (1).
The volume estimate
V(X)> / he, (e + h2~Y) + 51/ he
n+1 {he, >0} J n+1 {he, <0}

> C(hgj max 5jhsj max)

implies that the convex hypersurface determined by h is non-degenerate. More-

Wn, 2/ Ksjds
Xe;N{he, <6}

-/ 621 71 ()ds

> Cl(ej 4+ 6" )T "HM{ X, he, < 0} .

over, we've

So,
H'Y{X:h<6} < limH"{X,, : he, <6}

j—oo
<Cost.
Letting § tend to 0T, we conclude that h is non-negative and

H'{X :h=0}=0. (4.9)
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For a finite Borel measure m not concentrating on hemisphere, we take
dm;j = fj(x)dx, {m;} converges weakly to m, and let h; be the corresponding
non-negative solutions. By (4.4), h; are uniformly bounded by a constant
depending on the L'- norm of f;, which in terms are controlled by the total
measure of m. On the other hand, by integrating the equation and using
Proposition 1.3, {hjmax} is uniformly bounded below by a positive constant.
Hence {h;} subconverges to a non-trivial solution of (3) for m. From the volume
formula we see that it determines a non-degenerate convex body. The proof of

Theorem C is complete.

Next we consider the more general equation (2.4). We shall take f to be a

non-negative function in C*(S™ x R) increasing in z and satisfying either

f(z,2) >0, (x,2) € S" xR, (4.10)
. f(z,2)
z, 2
liminf =~ > 1 0)=0. 4.11
im inf == > 1, f(x,0) (4.11)
It also satisfies
lim &nz) =0 (4.12)
2—00 A
and
lim f(z,z) =00, (4.13)

uniformly in S™.

Proposition 4.1 (a) Assume that (4.10), (4.12) and (4.13) hold. Then (2.4)
has a solution in S>°.
(b) Assume that (4.11), (4.12) and (4.13) hold. Then (2.4) has a non-negative

generalized solution in S.

We shall discuss the proof of (b) only. Part (a) can be proved by a similar

way.

Instead of f let’s consider (2.4) with f. = f +¢e. Let h = h. be a classical
solution of (2.4) for f = f.. From the above degree argument, it suffices to
derive two-sided uniform bounds for hy.x = sup k.. A lower positive bound for
hmax can be obtained in the same way as in (4.2). In the following we give an

upper bound for hyax.
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Let F be the minimum ellipsoid of X, the hypersurface determined by h.

Without loss of generality we may assume
E={z:%z; —2?%/a? =1},

where a1 < ag < --- < apt1. Recall that by John’s lemma[C1]

1
n—+1

(F-2)CK—-2CE—-a".

Let Q be the projection of X onto the hyperplane x1 = 0 and let z be the center
of the minimum ellipsoid of Q. Let Q; = {z +t(z — 2) : # € Q}. The subset of
X, F = {z € X : z projects into €2y 9, } consists of two disjoint pieces, F and
F5, one of which satisfies h < Cay. Taking it to be F}, say, we note that its n-
dimensional Hausdorff measure > Cas - ant1. Using fe(z,h) < fo(z,Cay) <
C(1+ a}), we have

Kds= [ f7'(z,h)ds
B £ (4.14)
az - Gpyl

1+a?

=

To obtain an upper bound on the left hand side, we represent F; as a graph

r1=u(y), ¥y = (Y2, ,Yn+1), € . By convexity |[Vu| < C on £y /9,. So

det D?
de:/ (L + [Vul?) Ry
i Q2 (14 [Vul?) 2
<C det D?udy

Q1/2'n,
< CINu(Q41)20)] 5

where Ny (§21/2,) is the normal image of u over £y /5,. By Lemma 4.3 below,

we have
Kds < Cal'/|Q 4 |
F1 2n
< Ca? .
as - - an+1
Putting this estimate into (4.14), we get
(14 aP)a?™ > C(ay...ant1)? (= CV(X)?). (4.15)

Using (4.13) in

1 5
V(X)) > / hf. + / h
) n+1 />0y n+1 /<oy
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we have

V(X)hy,

max — 9

as hyax — 00. In view of (4.15), it implies Ca; > a,41 for large a,,4+1. Denoting
the maximal width of X by

w(X) = sgp % (h(z) + h(—z)),
we have
V(X) > Cw(X)" . (4.16)

Lemma 4.3 Let Q be a convexr domain whose center of its minimum ellipsoid
1s the origin. Let u be a convex function whose boundary value are non-positive
and let ® = {(z,p(x)) : © € Q} be the convex cone with vertex at (0,u(0)) and
o(x) =0 on Q. Then for any 0 <t < 1, there exists a constant C = C(n,t)
such that

Nu() € Now(9),

where Q0 = {tx : x € Q}.

Proof For any ¢t > 0, there is some C such that u < Cp = 0 on 02 and
u > Cyp on Q. Letting Q' = {u < Cp}, we have

Nu(Q) C Ny ()
- NC@(Q/)
- NCcp(Q> .

Returning to the proof, now we relate the maximal width to hpax.

Lemma 4.4 There exists a constant C depending on f and n, independent of
€, such that

if hmax = C.

Proof We have

Wy = / Kds
{h<0}

> e "HY{X :h <0} .
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—_

Hence H"{X : h < 0} S wy, foralle € (0,1). Ifwx <

geometric argument,

thax, by an elementary
V(X) Can{X th< O}hmax

<
< C) hinax -

However, this is impossible for large hmax because V(X)h 1 becomes large

with Amax. U

So, by (4.16) we have
V(X) > Chil (4.17)

max

when hpay is large. However, on the other hand, by (4.12)
V(X) < Chpax sup fe (377 hmax)
= o(ht})

as hmax — 00, contradiction holds. We have derived an upper bound on h.

independent of €.

§5. The Subcritical Case q € (0, + 2)

In this section we prove Theorem D. Letting ¢ = —(p — 1) € (0,n + 2), we

consider the functional

1
e T gt
_fsnflogh7 q:17

for h € ST. We shall use the Blaschke-Santalo inequality

J(h) =

1 w2
inf V(h < n
sup il V() [ Gy <

where K = K}, is the convex body determined by h and the infimum is taken
over all ¢ satisfying h—¢-x € ST. Note that the left hand side of this inequality
is invariant under all affine transformations. It is known that equality in this

inequality if and only if K is a centered ellipsoid.

To find a solution of (1) in this case, we consider the maximization problem

sup { inf J(h—¢-2):V(h)= 1} (5.1)

heS+ EEK),
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To verify that a maximizer h satisfies the corresponding Euler equation, one
will need its positivity. However, when 0 < ¢ < n, a maximizer of (5.1) may
fail to be positive. Therefore, we consider instead an approximation problem
first. For € > 0 small, let ¢ = . be a positive, convex, monotone decreasing

function on (0, c0) such that

1
= 1zl_q(q #1), —logz(g=1), forz>1
q_

p(2){>1 O<z<e

n

1
1 1—¢
Sﬁz q, O<Z<Z,

where € € (0,1/4) and ¢’ € [n+1,n+2) is a fixed constant. For ¢ € [n+1,n+2),

we can take

for all z > 0. Let
g = [ fen.

For any h € St it is clear that J(h — & - ) — oo as £ € Kp, and & — 0K},
By the convexity of ¢, we conclude that there exists a unique ¢ € K° which
attains inf{J(h — € -z): € € K}. Let

c= sup {inf j(h—g-x);V(h):1}. (5.2)

hes+ EeXK

We estimate the critical value c as follows. First, taking h = 1, we’ve

> inf J(1—-¢-
c §1€nB1j( £ x)

> . fe(2) (5.3)

Cip(2) >0, qe(l,n+2)
_Cia q€(071]7

since |£ - z| < 1 and ¢ is monotone decreasing. On the other hand, using
©0(2) < C + 2z 1 for z > 0 and the Blaschke-Santalo inequality,

e : f
_ £, < — = <
gléllf(j(h 1 x)_c+§lglf;/(h—§-x)”+l_c
for all h € ST, V(h) = 1. Hence
c< Oy (5.4)

where the constants in (5.3) and (5.4) are independent of ¢.
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Lemma 5.1 The mazimization problem (5.2) has a solution.

Proof  Let {h;} C ST, V(h;) =1 be a maximizing sequence. We claim
d; <C (5.5)

for some constant C' > 0 independent of e, where d; is the diameter of X,
the convex hypersurface determined by h;. Observe that inf{J(h — ¢ - 2):
¢ € Ky} is invariant under any translation of X}, we may assume the minimium
ellipsoid of X, Ej, is centered at the origin. Then %HE]- C X; C Ej and

n%rlth < h;j < hg;. Suppose on the contrary that d; — oo as j — oco. We set

S™ = S7 U Sy U S3 where
S1=8"N {hE]. < (5}
Sy = Snﬁ{é < th < 1/(5} , and
S3 = S"N{hg, >1/0},

where ¢ € (0,1/4) is a fixed small constant. Then

giergjj(hj —&-x) < T(hy)

1
hg.
n+1 E”)

= [ fol ", )

< J(

by the monotonicity of ¢. As d; — oo, we have, for any fixed d,

hE.
L)< 56
S1 n+1 S thf
J
a~1

1 it n+2—q
<o figm) o

Ej

/

n+2—q
n+1

< Ol5]

_>O,

by the Blaschke-Santalo inequality. Noting that we also have |Sa| — 0 as

d; — oo, we have

e (2 =+ [ e (22




In other words,

inf j(hj_g.x)go(l)—i—CgO ((n—i—ll)5> )

€EK;
when C is independent of j, § and . Sending j — oo we obtain ¢ < Cp(671).
As p(671) tends to 0 (1 < g <n+2) or to —oo (0 < g < 1), this inequality is
in conflict with (5.3). Hence (5.5) holds.

Now, by passing to a converging subsequence we conclude that {h;} con-
verges to a maximizer h of (5.2), whose diameter satisfies the bound (5.5). By
a translation we may suppose that infecg, 7 (h—¢-x) is attained at £ = 0. Our
assumption of ¢ implies that A > 0 on S™. O

Next, we consider the variation of the volume functional. Since the hyper-
surface detemined by the maximizer may not be strictly convex, one must be

cautious about the variation. For any h € ST and any n € C*°(S"), let
Ki={p:p-z<(h+n)(x), z€S5"}

X; = 0K, ,and h; the support function of X;. Note that hg = h, Xy = X and
Ky=K.

Lemma 5.2 Suppose that X is C' at p. Then

. hi(wo) — (o)
l _— =
t—l>%l+ t n(@o)

where xq s the unit outer normal of X at p.

Proof Choose a coordinate system so that p is the origin and X C {z,4+1 >

0}. Then {z,4+1 = 0} is the tangent plane at p and xg is the south pole.
Since X at C! at p, h(z) > 0 for all  # x9. Therefore, for any x # xg
for sufficiently small ¢t. By the definition of h; and (5.6), there exists z; € S™
such that h(zg) = (h + tn)(z;) with z; — 2o as t — 0. Hence
@ ht(wo) — h(l’o)
t—0+ t
On the other hand, by definition we have hy < h +tn. So

m ht(xo) — h(l’o)
t—0+ t

> (o) -

< (o) -
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Corallary 5.3 We have

iEggi(“Thﬂ—-VUﬂ)zh/nndu,

where p is the area measure of X.

Proof Choose an interior point of X as the origin and represent X as a
radial graph. Then X is C! a.e.. So,

nm1W@ww%»=An

t—0+ ¢
:/ ndp.

Corallary 5.4 Let h = h., X = X},_ be the mazimizer in Lemma 5.1.
If X is O, then h is a generalized solution of

1
det(hij + héij) = —Xftpl(h) ,

where by V(X) =1,
1
A=— he' >0 .

Proof For any given n € C*°(S"), let Ky, X;,he as in Lemma 5.2. Let
a(t) > 0 be such that
V(a(t)hy) =1 .

-1
a'(0) = / ndp .
Sn

n+1

Then

Since X in C', it follows from Lemma 5.2 that

5 hy —h
im =
t—0+ t K
As h is a maximizer, _ B
lim M <0
Ifj—)()7L t]

for any convergent subsequence {htj}, where

J(t) = inf [ fola®h ¢ ) .

Sn
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Suppose the infimum is attained at £(¢). From the assumption on ¢ we know
that & is Lipschitz continuous. Without loss of generality, let’s assume
£(ty) —€00)

lim ————"——= =qa".
t;—0 t;

Therefore,
/fcp’ (/(0)h+n+a*-z)<0.

Recall that the infimum of [, fo(h — & - z) is attained at £ = 0. We have

fori=0,i=1,--- ,n+1
Sn

Therefore,

. fo (o/(O)h + 77) <0.

It follows that

A ndu+/fs0’n<0-
Sn

Replacing n by —n we see that

A/ndqu/st’n:O
for all n € C*(S™). O

It remains to show that the maximizer X is a C'-hypersurface.

Lemma 5.5 The Gauss curvature of X s bounded below in the generalized

sense by a positive constant C'.

Proof By a proper rotation of axes, we may assume a fixed point p on X is
located on the negative x,1-axis. Near p, X is the graph of a convex function
u. Let D be the projection of X onto {x,41 = 0}. For any closed convex
set 2 CC D containing the origin, let w C X be the graph of u over . Let
w* = G(w), where G is the Gauss mapping of X. Then w* is a closed subset in
S

Let K be the convex body bounded by X and K; the convex hull of KUN;(w)
where Ny(w) = {p : dist(p,w) < t}. Then, X; = 0K, and its support function
he, satisfy
V(h) = V(1)
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and

lim MZl,VIEW*.
t—0+ t
Observe that for y & w*, hi(y) = h(y) for sufficiently small t. Hence
he(y) — h
lim M:o, Vy e SM\w* .
t—0t+ t

Denote n(x) =1 for x € w* and n(z) = 0 for z € S™"\w*. We have

(@) = h(z)
L

Let «(t) be defined as before. Then

' (0) = lim

X

where the limit can be taken for any convergent subsequence. Since h is maxi-

mizing, we have
fe' (@ (0)h+n) <0,
SYL

as before. In other words,

1
_ 12_ Ihw,
/Mﬂ/J n+1/5nfso||

and so .
|w*]
jw] ’
where C' depends on the bounds on h, |¢'| and f, and hence on e. ]

Lemma 5.6 The Gauss curvature of X is bounded above in the generalized

sense by some constant C.

Proof  Let X' = {p € X : G(p) lies in the open south hemisphere} and
X" = X\X'. Then X’ is the graph of a convex function u defined inside some
D as described in the previous lemma. Let u*(z) = h(x,—1), where h is the
support function of X, be the Legendre transform of u. Denote its graph by
X*. First we prove

det D*u* > C', (5.7)
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in the generalized sense.

For any closed convex set C* C R", let C' = Ny» (%), w = {(z,u(x)) : z €
C}, and uj = sup/ where the supremum is taken among all linear functions ¢
satisfying £/ < u* in R"” and £ < u* —t in C*. Let u; be the Legendre transform
of uf and X] its graph, and let K} be the convex body bounded by X; and X",
and denote X; = 0Ky, hy = hx,. Since C* is closed, we have

w(zr) =u(z)+t, Ve el

and

u(x) =u(zx), Ve & C

for sufficiently small ¢. Hence

hy) —V(h
t—0t+ t
Let w* = G(w),i.e.,
w'={pesS": ———(p1,~--,pn) €C"},
Pn+1
such that C* is the radial projection of w* onto {z,+1 = —1}. We have

. hy(p) — h(p) o up(p) —ur ()
lim ———= = — lim ———~=
t—1>%1+ t P t—1>r(])a+ t
= Pn+1
for any p € C* and p’ = (p1,- - , pn). By our construction, h; is non-increasing
in . Hence ha(p) — hip)
. p) — h(p
lim —
o0+ t <),

where 7(p) = pp41 if p € C* and vanishes if p € S"\C*.

Let a(t) be defined as above. Hence,

0> lim J(t) - j(O)
t—0t
yhe(p) — h
/ f¢h+ lim, o (p) — h(p)
n Sn t
C] / , /
> e fe'n+ [ fe'n.
It follows that
IC] = Ch|w™| = Co|C7 (5.8)
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for some constants C7 and Cs, so (5.7) holds.

Now, the lemma follows from (5.7). Indeed, for any p on X, by a rotation
we bring it to the negative x,1-axis, and represent X as the graph of some
convex function u over D. As before, let u* be the Legendre transform of u

and X* its graph.

Let Q2 CC D be a closed convex set containing the origin and w C X be the
graph of u over . Let Q* = N, () and w* the graph of u* over Q*. Then Q*
and w* are both closed sets. Let ) = Ny+(2%). Then Q is closed and Q C Q.
Let = {z € Q\Q : wis not C' at 2} and O’ = {z € N\Q : w is C! at x}.
By convexity and a lemma of Aleksandrov, ' is of measure zero and N, (£2")
is also of measure zero since u is not strictly convex at any z € Q”. It follows
that |Q”| = 0 by (5.8). Hence |Q| = |Q|. So, by (5.7),

2 _ 19
= >C.
Q|
Hence det D?u < C in the generalized sense. (I

Now, we can prove Theorem D. Let ¢ = (. be chosen as above. We may

further assume that ¢ satisfies

lim .(2) = o) = {11

and

lim () = 27,

e—0
uniformly on every compact subset of (0,00). Let h = h. be the maximizer
in Lemma 5.1. By Lemmas 5.5 and 5.6, the Gauss curvature of X = X, is

pinched between two positive constants. By [C1], X, is C! and strictly convex.

By Corollary 5.4, h. satisfies the equation

1
det(hij + hdij) = == fel(h) , (5.9)
when .
Ae = — heo .
nil e fhewe >0

The definition of ¢, implies that h. is positive, and hence the full regularity of

he follows from the general theory.
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By passing to subsequences, we may suppose that A\. — A\g and h. — hg
as € — 0. Obviously, the volume enclosed by Xj, the hypersurface deter-
mined by hg, is equal to 1 and Xy has bounded diameter. Also we know that
inf [q. feo(ho — & - x) is attained at & = 0.

We claim )y < co. For, if Ay = 0o, then
det(h()ij + ho(i,j) =0 on {ho > 0} .

In other words, the area measure vanishes on {hg > 0}. This is impossible. On

the other hand, A\g > 0. For, otherwise we’ll have

- / ol (he) = A / det(hes; + hediy)
Sn Sn
= )\€|X5]

— 0.
Again this is impossible.

Finally, to show that hy solves (1) we look at the Gauss curvature of X¢,

which is given by
oA 1

K.=——F————.
: [ eL(he)
By the weak convergence of the curvature measure, the Gauss curvature of X
satisfies

A
K =22t (5.10)

f
Hence, after a suitable scaling ahg solves (1) where a = A, Yatn,

When ¢ € [n,n + 2), hy > 0; this follows by taking integration of (5.9) and
observing that the integral of det(hg;; + hod;j) over S™ is uniformly bounded.
The proof of Theorem D is completed.

We remark that the solution in this case is in general not unique. Let’s take

n =1, p <3 and close to 3, and
f(x) =2+ cosdx , z € [0,2n)

Then f has strict maxima at x = 0, 7/2, m, 37/2. If h solves (1), so does

h(z + 7/2). Consider the maximizer of

. 1 1
Pa = e, {H&lf/(h—g.g;)q—l Vi) = n+1w"}
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By the Blaschke-Santalo inequality
lim 3, =sup f =3 .
q—3

By Lemma 5.1, the supremum is attained by hy. Let X, be the corresponding
convex curve. We have X, C {|z| < 0} or X, C {|ly| < é} with § — 0 as
q — n+ 2. Hence hy(x) # hq(x + m/2). So there are at least two solutions.
When ¢ > n + 2, interesting non-uniqueness examples for (1), in the special

case f =1, can be found in Andrews[A4].

When g > n+2, 3, is unbounded. Instead one may consider the minimiza-

tion problem

heS+

inf {/Sn % V(h) = 1}. (5.11)
We have
V(h)/ L (5.12)

Therefore it is easy to prove there is a minimizer. However a minimizer may not
be a solution of (1). Indeed it is known that when n = 1, the best constant in

this inequality is attained by any triangles containing the origin (see Schneider

[S])-

§6. Proof of Theorem E

When —n+1 < p < n+1and p # 1, the solution of (1) may become zero
somewhere. In this case the Monge-Ampere equation (1) is either degenerate
or singular, and the solution may not be smooth even for smooth and positive
f, see [GL]. Indeed, let u be the restriction of h on the tangent hyperplane of
the n-sphere at the south pole. Then w satisfies the equation

det D*u = g(z)uP ™1, (6.1)

in the Euclidean space IR™ in the generalized sense, with
T, —1 )
V1 [z

Let u(z) = |2[**, a = n/(n — p+ 1). Then u satisfies equation (6.1) for some

g(a) = (L+[2*) 7277 f(

positive, smooth g. Namely h satisfies (1) for some positive, smooth f near
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the south pole. By a suitable extension of A and hence f one obtains a global

solution of (1) with some positive, smooth f on the entire sphere.

In the following we prove Theorem E. Technically our proof of part (a) is
inspired by [C1]. First we consider the case 1 < p < n+1 of part (a). Let h be
a nonnegative solution of (1). Assume h = 0 and h is not C'* at the south pole.
Let u be the restriction of h on the tangent space of S™ at the south pole. Then
u is not C! at the origin. It follows that 3 =: mxﬁoﬁ(u(x) —u(0)) > 0. By
a rotation of axes we may assume that x,+1 = Oz is a supporting hyperplane

of u at the origin. Let
ue=u—((B—€)r1+¢e), Qe={reR": u(x)<0}. (6.2)
where ¢, ¢’ are small positive constants, ¢ < e. Hence €2, is bounded.

Let E. be the minimum ellipsoid of Q.. By John’s lemma [C1], %EE C Q. C
E., where tE denotes the t-dilation of F¥ with respect to its center. Denote the
right hand side of (6.1) by u and regard it as a Borel measure. Then we have,

u(3E2) > Cu(E.) (6.3)

for some positive C' independent of ¢.

Let T be the linear transformation such that 7 (F;) is the unit ball, and

let w. = e 'u.. Then w, = 0 on dD,, infw, = —1, and
det D*w, = Lhes

for some measure p. satisfying

1

M5(§Ds) > Cpe(De)

where D, = T.(Q.).

By infw. = —1 and w. = 0 on dD,., we have us(%DE) < C. On the other
hand, we have w.(0) = —1 and that dist(0,0D.) — 0 as ¢ — 0 by choosing
¢’ > 0 sufficiently small. Hence the normal image of w. over D, has unbounded
area when ¢ — 0. Namely p.(D;) is not uniformly bounded in e. We have

arrived at a contradiction. So h must be C! near the set Z = {h = 0}.

Next we show that h is locally strictly convex in {h > 0}, namely w is locally
strictly convex in {u > 0}. Indeed, if this is not true, then the graph of u, M,, is
not strictly convex in {u > 0}. Therefore there exists a point py € M, N{u > 0}
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such that the contact set C = P N M, where P is the supporting plane of M,
at po, contains a line segment. Since v is C! near {u = 0}, there is no extreme
points of C in {u = 0}. By the convexity of C, this means that C N {u = 0} is
empty, and so all extreme points of C lies in {. > 0}. On the other hand, from
the argument in [C1], there is no extreme point of C at which the right hand
side of (6.1) is positive. We reach a contradiction. Hence h is locally strictly
convex in {h > 0}. By Proposition 1.2 it follows that h € C17({h > 0}) when
f is a bounded positive function and h € C**({h > 0}) when f is Holder

continuous.

In the case —n+ 1 < p < 1, we want to prove that the convex hypersurface
X determined by the solution h is C'. This is equivalent to showing that the
set {u = 0} contains at most one single point, where u is the restriction of h of
any tangent plane of the n-sphere. The proof in this case is in the same spirit

as above except the definition of u. and €2 in (6.2) should be replaced by
ue =u—e, Q={u <0},

so that (6.3) holds. As above we also have pc(3D.) < C. If the set {u = 0}
contains more than one points, by convexity it contains a line segment (note
that by the equation, the set {u = 0} must have measure zero). Hence there
is a point z. € D, such that dist(z.,0D.) — 0 as ¢ — 0, which implies that

e (De) is not uniformly bounded in . We also reach contradiction.

Next we show that h is locally strictly convex in {h > 0}. By the C!
smoothness of X, for any supporting plane P of M, the contact set C = PNM,,
must be bounded. If C contains more than one point, by convexity it contains
at least two extreme points. From the last paragraph, {u = 0} contains the
origin only. Hence there must be an extreme point of C at which v > 0. But

this is impossible from the argument in [C1]. This completes the proof of part

().

Before proceeding to the proof of parts (b) and (c¢), we remark that when
1 <p < 3(n+ 1), the radial function
(12l - 1), Jal
T| —r)nti-p T >r
u(z) = ’ ’ (6.4)
0, x| <,
where 7 > 0 is a positive constant, is a generalized solution to (6.1) for some
positive constant g. Note that v = 0 in B, (0). Hence the corresponding convex

hypersurface may not be C! when 1 < p < %(n +1).
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We also remark that the function w in (6.4) is not C? when 1 < p < 3(n+1).
Hence the the second order derivative estimate in Theorem E(c) cannot be
extended to p € (1,1(n+1)).

Next we prove part (b). First we consider the case 1 < p <n+ 1.

Lemma 6.1 Let u be a nonnegative solution of (6.1) with u(0) = 0. Suppose

g is Lipschitz and positive. Then for any 0 < 1,0 € (O,n2—f1), we have the
estimate | ‘2
Du
=5 < C nearO. (6.5)

Proof  Denote Q = {u < 1}. Suppose supq, z is attained at some point zg.
If g € 01, z is bounded. If z( is an interior point, by a rotation of axes we

suppose |Du| = uy at xg. Then by the approximation at the end of the section,

we have,
2uiul; ulu;
0=z = 9 L 0 11 Z,
U U +0
0> oy > MM Ul gl Uit gy g U
2 2l _
Y w0 ulto ulto w2+t
at xg. From the first formula we have
0 u? )
U11:§f1, uy =0 1>1
U

Hence by a rotation of axes we may suppose furthermore that the Hessian
matrix {u;;} is diagonal at zy. Differentiating equation (6.1) gives
D utug = g?k + (- 1)% at o, (6.6)
i

where {u*} is the inverse of {u;;}. Hence

2 4
ui 91 u1 U1l uy uj
=2—(= —1)=)+2— — 40— +0(1+0)———

ue(g +(p )u)+ 0 (n+4) e 1+ )u2+9u11
U1l g1 1
=2 —g + g (2p — (n+1)6),

2
uy

L. When 0 < (0, nQ—fl), we obtain
z(xg) < C. O

where we have used the estimate w11 = g
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Let h(r) = sup{u(z) : |z| = r}. From Lemma 6.1 we have h/ < Ch?/?2.
Hence by h(0) = 0 we have h(r) < Cr?/ (=9 namely

u(z) < Clx|>/ 9, (6.7)
It follows that when p > 0, the solution u is C1*® smooth near Z for a € (0, %).
If p > ”TH, we can choose 6 = 1.

Next we consider the case —n +1 < p < 1. Let K be the convex body
determined by h and D the projection of K on {z,4+1 = 0}. Let v be the
Legendre transform of u. Then v is defined in D, and the graph of v is the

lower part of K. Furthermore v satisfies the equation
det D*v = §(Dv)(Z; zv; — v) 7P, (6.8)

where g = 1/g. By choosing proper axes we may also suppose that v > 0, and
that v = 0 at the origin. When —n+1 < p < 1, we have a similar C1“ estimate

for v.

Lemma 6.2 Let v be a nonnegative solution of (6.8) with v(0) = 0. Assume

g 1is Lipschitz and positive. Then for any < 1, 8 € (0, n%rp), we have the
estimate | |2
Dv
=% <C nearO. (6.9)
Proof The proof is similar to that of Lemma 6.1. Suppose z attains its

maximum at some point xg € ). Then at xyp we have by choosing a proper
2
coordinate system that vi; = g%, vy; = 0 for i > 1, and (D?%v) is diagonal at
xo. Instead of (6.6), we have
i ~ TEU1k
Zvuviil = (logg)1 + (1 —p)———— at o,

- ;U3 — U
7

where
Ov?

(logg)r = Y _(logg)u;v1; = (10g G)w, S0

Hence at xo,
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Hence we have

0 Z Z Uiizii

v ~ 'U2 i 'U2
= 0% (Qogdn "4 (1= ) )

v(zv; — v)
s D0-"L 4 a1 4 0yt
+ 20— (D0 00+ 0) g
Tr1v1 U% ’U%

=0(1—p) (2= (n+1)0 + Ovi(log §)o, )-

ziv; —voltl  pltl
Note that at zg, x1v1 = (z;v; — v) + v. We obtain

O(1 — p)v v? v? -
L4 vlié) (2 — (n+p)f + v (log g)vl)

0>
= xv; — v vitt
vf

> —i4g (2= (n+p)0 + Ov1(log §)u,)

as p < 1 and v > 0. Hence z must attains its maximum on the boundary 02 if

we first choose 6 > 0 small. It follows that v is C1'® smooth for some « € (0, 1).

To prove (6.9) for any 6 € (0, %er

mum sup z(x) in the domain {v < d} for some § > 0 small, such that v,

), 0 < 1, it suffices to consider the supre-

is sufficiently small. We again conclude that z attains its maximum on the
boundary 9{v < §}. Hence Lemma 6.2 holds. O

Finally we prove part (c).

Lemma 6.3 Let u be as in Lemma 6.1. Suppose g € CY1 and is positive . If
p€ (B, n+1), then

|D*u| < C near 0. (6.10)
Proof  Let z = loguge + %. Suppose sup{z(z) : £ € "L x € Q} is
attained at xg and £ = (1,0,---,0). If xg € 99, we have z < C. Otherwise at

zo we have

2

U1y | 2UpUg UG

0 = Zi = + —_ k2
Uil u u

2 2 2 2,2
_ Uini Uy . 2u, . 2U g Ui _ dupuiU; Ui . 2uju;

U1l u?; U U u? u2 u3

By a rotation of axes we may suppose (D?u) is diagonal at xq. Differentiating

equation (6.1) we have

2
. L U1 u
Zuzzum’n — wuiud, + (log ) + (p — 1)(7 — u—;).
i
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Hence we obtain

1 uf ) 2w

0> Zu"zu ZC + (p — 1)(

u ulugg U
2uy, gk U ui 2uiu2
TRk L (p— 1)Ky — (- 4)k i
2 (= 1)) — ()
By Lemma 6.1, u3 /u is bounded. Hence we obtain u11(zg) < C. O

For estimate (6.10), one may also work on equation (1) and use the auxiliary
function z = log(hee + h) + @, so that the proof of parts (b) and (c) is
independent of part (a).

In the above proofs one needs to use approximation by smooth solutions.
For this purpose one chooses a small constant § > 0 and consider the unique

smooth, positive solution ug of

det D%*v = (1 — &) g(z)vP~ 1,
v=1 on o{u<1}.

Note that in the above proofs, the assumption «(0) = 0 is not needed, rather one
just needs to assume the domain {u < 1} is bounded. Therefore the estimates
(6.5) and (6.10) holds for us. Letting § — 0, one obtains (6.5) and (6.10) for wu.
For estimate (6.9), let us be as above and let vs be the Legendre transformation

of us. Then (6.9) holds for vs. Sending 6 — 0 we obtain (6.9) for v = lims_,o vs.
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§7. The Centroaffine Minkowski Problem

In his Erlangen programme F. Klein pointed out that geometry is the study of
properties invariant under a group of transformations on the space. Thus for
any transformation group acting on the space there is a corresponding geometry.
We shall use this point of view to develop centroaffine geometry and interpret
(1), p= —n — 1, that is,

det(hij + 0;5h) = }’:ﬁfl (7.1)

as the equation describing the Minkowski problem in centroaffine geometry.

To begin with let’s examine the classical differential geometry of hyper-
surfaces. It is the Klein geometry associated to the Euclidean group of rigid
motions in R"™!. Let f : U — R"! where U is an open set in R” be an
immersion of a hypersurface and let v be a chosen continuous unit normal
vector field on the hypersurface. The immersion and the normal vector field
induce the Levi-Civita connection V and the second fundamental form b on the

hypersurface by the Gauss formula
DxY =VxY -bX,Y)v, X,Y €TU, (7.2)

where D is the flat connection in R™t!. Notice that we have identified X with

f«X. We also have the Weingarten equation
Dxv=-5X, (7.3)

where S defines the shape operator. It is well-known that the Levi-Civita con-
nection is uniquely determined by the first fundamental form, g;;, as written
in local coordinates, and S = gikbkj. We may take the first and second funda-
mental forms as the basic geometric data in classical differential geometry. By
cross differentiating (7.2) and (7.3) we obtain the following two compatibility

conditions, namely, Gauss Equation and Codazzi-Mainardi equation,
R(X,Y)Z =b(Y,Z)SX —b(X,Z)SY ,
(va)(Y; Z) = (va)(X¢ Z) )
where R(X,Y) = VxVy — VyVyx — [X,Y] is the Riemann curvature tensor.
A classical theorem of Bonnet states that any symmetric tensors g;; and b;;
on U, where g;; is positive definite, satisfying these two compatibility condi-
tions, must be locally the first and second fundamental forms of an immersion.

Furthermore, the immersion is uniquely determined up to a rigid motion.
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In [NS] Nomizu describes a new approach to affine geometry which is in
many ways parallel to the above description of classical differential geometry. It
also works well for centroaffine geometry. To describe it again let f : U — R+
be an immersion of a hypersurface X. Such an immersion may be called a
parametrization of the hypersurace X. The crux is to choose a suitable vector
field on X to play the role of the Euclidean normal. In a general setting, let G be
a Lie group of transformations acting linearly on R"*!. We call a transversal
vector field & a G-normal vector field if (1) it is defined intrinsically, i.e.,

independent of the parametization, and (2) it is invariant in the sense

Er(f(x) =Egor(gf(x)) , VgeEG .

In centroaffine geometry the transformation group is SL(n + 1), which con-
sists of all unimodular transformations acting linearly on R"*!, and its natural
objects are star-shaped hypersurfaces. For any star-shaped hypersurface we
can take the centro-affine normal vector field to be the negative of the position
vector, —X. As in (7.2) we use it to induce the centroaffine connection Vv and

centroaffine fundamental form h
DxY =vxY +h(X,)Y), E=-X. (7.4)
One can check that the Weingarten equation becomes
Dx§=-X,

so the shape operator is the identity. Since we do not have a first fundamental
form, we may take V and h as our basic geometric data. The compatibility

conditions are
RX,Y)Z=hY,2)X — h(X,2)Y ,

(7.5)
(vxh)(Y,Z) = (Vyh)(X,Z) .
An additional quantity is the volume form w given by
W(Xl) T 7Xn) = det(f*le e 7f*XTL)_X) .
One can verify that V is torsion-free, and this is equivalent to
Vw =0 . (7.6)

It turns out that the triple (V,h,w) completely characterizes the immersion
up to a unimodular transformation. More precisely, let V be a torsion-free

connection, h be a symmetric tensor, and w a volume form on U so that (7.5)
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and (7.6) are satisfied. Then there locally exists an immersion f : U — R+
and a parallel volume form @ in R™*! so that V and h are respectively the

centroaffine connection and fundamental form of this immersion, and
WX, Xn) = 0(feXa, -, fu X, —X)
Moreover, the immersion is unique up to a unimodular transformation.

Having characterized centroaffine geometry locally, we consider its curva-
ture. Recall that in classical differential geometry of hypersurfaces the curva-
ture of a hypersurface is, roughly speaking, a function defined intrinsically on
the hypersurface whose values do not change under rigid motions. Furthermore,
the expression defining the curvature involves derivatives of the immersion up
to second order. In general, let’s call a function defined intrinsically on the
hypersurface a G-differential invariant if (1) its values remain unchanged under
any g € G, and (2) it is defined by an expression which depends on the deriv-
atives of the immersion up to some finite order. So, all elementary symmetric
functions of the principal curvatures, as well as those functions obtained by
covariant differentiating these functions and taking contractions are differen-
tial invariants for the Euclidean group. We understand that a curvature is a
differential invariant which has the least order in the derivatives. The order
of derivatives in the curvature usually depends on the dimension of G, and
it increases with the dimension. For example, the order of derivatives in the
Euclidean curvature function is 2, but it is 4 for affine curvature functions. The
dimension of SL(n+1) is n?+n, larger than the Euclidean group which is equal
to %(n +1)(n+2) +n+ 1. It is remarkable that it has a curvature function of

order 2.

Proposition 7.1 Let f: U — R™! be a star-shaped immersion. Then

i deth(XZ-,Xj) o 0
_U)(Xl,"' ,Xn) ) Xl_f* <61’1) 9

is an SL(n + 1)-differential invariant.

C

Proof  From (7.2) and (7.4) we have
bis
hi; = Y
X v

Letting g;; be the first fundamental form of X, we have

det hi_j = o det 9ij >

K
(X -v)
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where K is the Gauss curvature of X. On the other hand,

w(Xy, -, X)) =det (Xq,--+, Xp, X)
= (X v)| X1 x--xXp| .

Recall that X7 x - -+ x X, is defined by
(X1 X+ x Xp,v) =det(Xyq,- -+, Xp,v),

for all v. We may also assume

X1><-~-><Xn
V= .
|X1><‘~-><Xn‘

Using the formula
det gy = | X1 x -+ x X%,
we obtain K
C= W . (7.7)
This formula shows that C' is intrinsic on the hypersurface. Now, under a

unimodular transformation A, X goes over to X = AX. We have, in obvious

notation,
bl] = _<I;7XZ]>
= — ——det (X1, , Xn, X,
| X7 x - x X, (X1 n Xiy)
(|X1 X - X Xn‘>
| X1 X -0 X Xn\ E
|X1 X XX,A)Q
det g;; = - - det g;; ,
Jig (|X1 X x Xy 9
and X ¥
N.,;:‘lx' X "‘X-y
|X1 X oo X Xn‘
Therefore C' = C. ]

Formula (7.7) shows C is equal to K/h"™"2 where h is the support function
of X. The centroaffine invariance of C' was first discovered by Tzitzéica [T
in 1908, and rediscovered by Loewner-Nirenberg in [LN]. In texts on affine
geometry, for example, [NS], usually it is called the affine distance. However,
in the context of centroaffine geometry, we prefer to call it the centroaffine

Gauss curvature.
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Now, we can formulate the centroaffine Minkowski problem as the exact

analog of the Euclidean Minkowski problem.

Given a positive function f on S™, find necessary and sufficient conditions
on f so that it is the centroaffine Gauss curvature of a convex, closed hyper-

surface containing the origin as a function of its centroaffine normal direction.

In fact, from the above discussion the natural objects in this Minkowski
problem are star-shaped hypersurfaces containing the origin in their interiors.
However, to avoid working on an equation with mixed type (see (7.8) below)
and to link the problem to (1) for critical p we restrict ourselves to convex
hypersurfaces. To write down the equation for this problem we let X = {p(x)x :

x € S™} be the solution hypersurface. Then we have

1 .
V=————o(pr — e V;pV;x),
VP +1Vpl?
X -v=px)z- v

0

gij = P’eij + VipVip

and .
bij = ——=——=(—pViV;p+ 2V;pV;p + p’ei;) .

MRV

where e;; is the standard metric on the sphere. So p satisfies the equation

det (—pViVjp+2VipVjp+ p°eij) o 4p
27 _ iy (7.8)
et e;;

To compare (7.8) with (7.1) we let h(z) = p~'(z) be the support function
of the polar body of X. By a straightfoward computation we have

Vithh + hQGij
ht ’

9ij =

and )
bjj = ——=(ViVjh + he;;
Z]le+WW(Z] )
So, in terms of h, (7.8) becomes (7.1). We conclude that the polar body of
the convex body determined by the solution of (7.1) solves the centroaffine
Minkowski problem. Hence in the convex category the centroaffine Minkowski

problem is equivalent to the solvability of (7.1)
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Now, we study the invariance properties of this equation. First of all, any
unimodular transformation gives a projective transformation on S™. Indeed,
let g € SL(n + 1), we define ¢, : S — S™ by

gx
909(33) = w .

Since det g = 1, it is clearly that the correspondence between g and ¢, is one-
to-one. We call the Lie group {¢, : g € SL(n+1)} the projective group on S™.
One can easily verify that it is isomorphic to SL(n + 1), i.e., ©g, 090 = Pg1go-
The Lie algebra of the projective group, when regarded as vector fields on S,
are of the form
0
(Aaﬁxﬂ - A)\ux)\x,uxa) a. > 0‘;/8’)\;# = 17 Y 1 )
0%y

where the matrix (A,g) € sf(n+1), i.e., trA = 0. Unimodular transformations
also induce projective transformations on R™ when it is viewed as a tangent
space of S™. Let’s focus on R" = {(z1, - ,Zp, Tnt1) : Tny1 = —1}. For any
g € SL(n+ 1), we set

Qi — b
2 p e R,

Yg(z) =

d— Ci Xy
where g = (aqg), and ajn+1 = bj, ant1; = ¢ and apy1 ng1 = d. Its Lie algebra

consists of vector fields of the form

0
(Aijxj — B; + Cj{L‘jl’i — sz)aixl R ZA“ +D=0.

Let 7w be the sterographic projection from the south hemisphere to R"
"y

m(x;) = ——
|Tn1]
One can easily verify that ¢, = 14 o 7.

The projective group also acts on functions defined in S™ and R". Let f be

a function on R**1. We let

fo(z) = f(gz) , g€ SL(n+1) .

For any function f in S™ we extend it to be a function of homogeneous degree
1in R™1. So

fo(x) = flg)
= lgz|f(pg) ,
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is the rule of transformation on S™. Similarly, when restricted to R” = {x,,11 =

—1} we have

fo(x) = (cjz; — d) f(1hg) .

Let p be any positive function on S™. Proposition 7.1 and (7.7) show that,

for any projective transformation ¢,

=2 det(—pViV;p + 2VipVp + peij)
det €ij
_ an—2det(=pViV;p + 2VipV;p + pPeij (1))
det €ij (i‘)

where Z = @ o and p = py(Z). Letting h = 1/p, we then have
R T2 det(hij + (5ijh) = pnt2 det(ilij + (5@%) .

So, we have the following invariance properties of (7.1): Let h be a solution of
(7.1). Then h = hy(#) solves

det(hij + d;5h) = f(o; 7)™ 2.
Now, we prove Proposition F.

Lemma 7.3 For any function u defined in R™,

9*Q 2 : 2
MCWU + Qdet D*u + div(§udet D*u) =0 , (7.9)

where fk = le'jmk + (Ak] — 5ij)$j — By, Ay + D =0, 0 = ijj - D,
Q = ou — &Fuy, and cij 1s the (i,7)-entry of the cofactor matriz of D?u.

Proof Keep using the divergence free property c;;; = 0 and cjpur; = 655,
we have
827(020 u+ Qdet D*u + div(§u det D*u)
a’L‘ial‘j *
= (oiju + oyuj + oju; + ouij — ffjuk - &kukj - 5;'6%@' - fkukij)UCij
+ (ou — *uy) det D?*u + (divé)u det D?u + 'u; det Du
+ §kucijuijk
= noudet D*u — (divé)udet D*u + ou det D*u
=0.
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Integrating (7.9) over B = {|z| < R} we have

/ (Qijciju + Q det D?u + div(&u det DQU)) dr = 0.

Br

Using ¢;;,; = 0 we obtain, after performing integration by parts,

(n+1) Q det D*u = —/ (€-v)udet D*u+ Qcijujw;—/ Qicijvju.
O0BRr OBRr OBRr

Br
(7.10)
When h satisfies (7.1), its restriction to {zn4+1 = —1}, u, satisfies the equation
u" 2 det D?u = f(x) ,
where f is regarded as a function of homogeneous degree 0. We have
f(z) divg, f & 1
/ (ou = ékuk)m = (o0 — )T nt1
Br U Br n+1"u Bpn+tlu
+/ o f()
opp M+ Lunt?’
Hence
& fr L _ / (€-v)udet D>u+ Qc'-u'u—/ Q-c~v-u+/ (&v) /
- 1, (3 11, .
Br untt OBg OBr 7 OBg 7 OBg unt?
(7.11)

Using the sterographic projection the integral on the left hand side of this

1

where Br = {2 € ", |x(z)| < R}, and the boundary integrals are over circles

identity becomes

on S™. As R — oo, these circles tend to the equator.

Similar consideration can be applied to the tangent space of S™ at the north
pole, and the resulting identity is similar to (7.10). By adding up these two

identities and then let R — oo, the left hand side becomes

1
/Sn(vﬁf)hnﬂ

and the right hand side would become zero. To see how the boundary terms

cancel out each other let’s look at

/ (€ - v)udet D*uds .
OBR
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we have

5 = Aijl’jl‘i — Bzmi + Cj$j|l"2 — D|33|2
||

_ Aypipi(1+ 2|?) + Bipipni1 (1 + |z|*) — Any1ppnia (1 + |z]?)|z|* — Dlx]?

|z

where 7(p) = z,

wdet D*u = (1 + |z[2) "% hdet(hi; + hdy;)

and
ds(x) = (1+ |2*)"F ds(p) .
Therefore,
: f(p)
lim (€ - v)udet D*uds = —/ Api1ipi ———ds(p) .
R—c0 Jopy, fanamoy T (p)

On the other hand, the sterographic projection from S™ to {x,+1 = 1} is given
by m(p) = pi/pn+1. Hence

lim (€ - v)udet D*uds = / An+1jpj}w{r(ﬁ)

ds(p) .
R—oo 8BR {In+1:0} p)

So they cancel each other. Similar cancellations hold for other boundary inte-

grals. The proof of the proposition is completed.

From the discussion of the subcritical case in Section 5 one can show by
approximation that (7.1) is solvable when f is invariant under certain discrete
groups of rotations on the sphere. For example, when the orbit of some point
under the group actions has non-empty intersection with any open hemisphere,
any subcritical approximation cannot collapse or concentrate, and so it must
subconverge to a solution of the critical case. When n = 1, some sufficient
conditions for solvability without symmetry conditions on f can be found in
[ACW]. In this paper one can also find some further discussion on the obstruc-

tion.
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