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Faculté des Sciences et

Techniques de St.-Jérome
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Abstract

We prove the Kato conjecture for elliptic operators on Rn. More
precisely, we establish that the domain of the square root of a uni-
formly complex elliptic operator L = −div (A∇) with bounded mea-
surable coefficients in Rn is the Sobolev space H1(Rn) in any dimen-
sion with the estimate ‖

√
Lf‖2 ∼ ‖∇f‖2.

1 Introduction, history and statement of the

main results

Let A = A(x) be an n×n matrix of complex, L∞ coefficients, defined on Rn,
and satisfying the ellipticity (or “accretivity”) condition

(1.1) λ|ξ|2 ≤ ReAξ · ξ∗ and |Aξ · ζ∗| ≤ Λ|ξ||ζ|,

for ξ, ζ ∈ Cn and for some λ,Λ such that 0 < λ ≤ Λ < ∞. Here, u · v =
u1v1+· · ·+unvn and u∗ is the complex conjugate of u so that u·v∗ is the usual
inner product in Cn and, therefore, Aξ · ζ∗ ≡

∑
j,k aj,k(x)ξk ζj. We define a

second order divergence form operator

(1.2) Lf ≡ − div(A∇f),
∗supported by NSF
†supported by NSF
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which we interpret in the usual weak sense via a sesquilinear form.
The accretivity condition (1.1) enables one to define a square root L1/2 ≡√
L (see [23]), and a fundamental question is to determine whether one can

solve the “square root problem”, i.e. establish the estimate

(1.3) ‖
√
Lf‖2 ∼ ‖∇f‖2,

where ∼ is the equivalence in the sense of norms, with constants C depending
only on n, λ and Λ, and ‖f‖2 = (

∫
Rn
|f(x)|2H dx)1/2 denotes the usual norm

for functions on Rn valued in a Hilbert space H. We answer here this question
in the affirmative.

Theorem 1.4. For any operator as above the domain of
√
L coincides with

the Sobolev space H1(Rn) and ‖
√
Lf‖2 ∼ ‖∇f‖2.

This has been a long-standing open problem, essentially posed by Kato
[23], and refined by McIntosh [28, 27]. Kato actually formulated this ques-
tion for a more general class of abstract maximal accretive operators. A
counterexample to the abstract problem was found by Lions [25] and, for
the maximal accretive operators arising from a form by McIntosh [26]. How-
ever, it has been pointed out in [28] that, in posing the problem, Kato had
been motivated by the special case of elliptic differential operators, and by
the applicability of a positive result, in that special case, to the perturba-
tion theory for parabolic and hyperbolic evolution equations. For example,
the application to hyperbolic equations depends on the validity of (1.3) in a
complex L∞-neighborhood of real and symmetric matrices.

The problem has a long history, and a number of people have contributed
to its solution. First, Coifman, McIntosh and Meyer [12] proved Theorem 1.4
in one dimension, simultaneously with their proof of the L2-boundedness of
the Cauchy integral along a Lipschitz curve. In fact, the two results are
known to be equivalent, see [24] or [6].

The first positive results in higher dimensions exploited the same tech-
nique as had been used in one dimension, namely that of multilinear opera-
tors. Independently, Coifman, Deng and Meyer [11], and Fabes, Jerison and
Kenig [18] established the square root estimate (1.3) provided ‖A − I‖∞ ≤
ε(n). Clearly, their methods allowed one also to replace the identity matrix
I by any constant accretive matrix (see [19]). David and Journé gave a dif-
ferent proof using the T(1) theorem [14]. Sharper bounds for the constant

ε(n) on the order of n−
1
2 were obtained by Journé [22].
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The multilinear expansion method also may be extended to operators with
smooth (i.e., locally near constant) coefficients; in this case, one obtains an
equivalence of inhomogeneous norms: McIntosh in [29] considered coefficients
being multipliers in some Sobolev space Hs, s > 0, Fabes, Jerison, and Kenig,
uniformly continuous coefficients (unpublished), and Escauriaza VMO coef-
ficients (unpublished). In addition, Alexopoulos [1] used homogenisation
techniques for real Hölder continuous coefficients with periodicity, obtaining
a homogeneous estimate.

In [9], two of us proposed another method to attack the problem. This
initially led to some improvement of earlier results (such as VMO improved
to a bigger subspace of BMO called ABMO) and the observation that one
could get away from the perturbation cases at the expense of imposing some
structure on the matrix A. The key notes of this method are 1) the use of
functional calculus and, in particular, pointwise estimates on the heat kernel
2) the reduction to a Carleson measure estimate, and 3) the introduction
of a “T(b) theorem for square roots” in the spirit of the T(b) theorems for
singular integrals of McIntosh and Meyer [30], and of David, Journé and
Semmes [15], and based on the alternative proof of Semmes [32]. We note
that those T(b) theorems were motivated by the Cauchy integral.

The control of the Carleson measure in point 2) above has been achieved
very recently in two ways both exploiting the T(b) theorem for square roots.
Auscher, Lewis, Hofmann and Tchamitchian [5] use an extrapolation tech-
nique for Carleson measures involving a stopping-time decomposition of the
Carleson region to prove the Kato conjecture for perturbations of real sym-
metric operators in any dimension, which was, as mentioned earlier, one
of Kato’s original motivations. By a different stopping-time argument, Hof-
mann, Lacey and McIntosh [21] prove the Kato conjecture under a restriction
of sufficient pointwise decay of the heat kernel.

Pointwise decay is available for real operators by results of Aronson [2]
and in some cases for complex operators: in two dimensions by a result
of Auscher, McIntosh and Tchamitchian [7] and for perturbations of real
operators or even for small coefficients in BMO-norm by results of Auscher
[3]. Hence, [21] solves the conjecture in two dimensions and includes, in
particular, the result of [5].

But heat kernel decay may fail for complex operators: counterexamples
are due to Auscher, Coulhon and Tchamitchian [4]. Thus, to solve the Kato
conjecture in all dimensions it remains to remove the pointwise upper bound
assumption in [21]. This is the main new contribution of this article. It turns
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out, as we will show, that there is enough decay in some averaged sense
to carry out the reduction to a Carleson measure estimate, to develop an
appropriate version of the T(b) theorem for square roots of [9] and to adapt
the stopping-time argument of [21]. This decay is akin to that first proved
by Gaffney [20] for the Laplace-Beltrami operator of a complete Riemannian
manifold, and is valid for complex operators as in (1.1) and (1.2).

The proof of Theorem 1.4 (Sections 2-5) will be essentially self-contained
assuming the basic background on functional calculus for accretive operators
and on Littlewood-Paley theory. While having the added virtue of improv-
ing the paper’s readability, this degree of completeness is for the most part
required, as we are forced to redevelop material from [9] and [21] under nec-
essarily weaker hypotheses. We note that the proof works for n ≥ 1.

We shall conclude this article in Section 6, by stating some miscellaneous
results concerning perturbations by lower order terms, and extensions to Lp

results.
We note that the Kato conjecture for higher order operators on Rn can

also be solved. For systems on Rn, the Kato conjecture remains open in
full generality, yet the extrapolation method is extendable to perturbations
of self-adjoint systems. Also the Kato conjecture for second order elliptic
operators on domains with boundary conditions can be obtained. These
results will be presented elsewhere.

Acknowledgments The second named author is grateful to T. Toro, and
the fourth author to M. Christ, for pointing out to us that the stopping
time construction of Proposition 5.7 is similar in spirit to that of [10]. We
also thank X. Duong and Lixin Yan for helpful comments concerning the
statement of Proposition 6.2 below.

2 Estimates for elliptic operators on Rn

We are given an elliptic operator as in (1.2) with ellipticity constants λ
and Λ in (1.1). An observation of constant use in this paper is that the
operators (1 + t2L)−1, t∇(1 + t2L)−1, (1 + t2L)−1tdiv and t2∇(1 + t2L)−1div
are uniformly L2 bounded with bounds depending only on n, λ and Λ. Here
and in the rest of the paper, ||T ||op denotes the operator norm of an operator
acting from L2(Rn;Cp) into L2(Rn;Cq) for p, q integers depending on the
context. Also, we shall consistently use boldface letters to denote vector-
valued functions.
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In this section, we record some technical lemmata. We begin with an
estimate which expresses the decay of the resolvent kernel “in the mean.”

Lemma 2.1. Let E and F be two closed sets of Rn and set d = dist(E,F ),
the distance between E and F . Then∫

F

|(1 + t2L)−1f(x)|2 dx ≤ Ce−
d
ct

∫
E

|f(x)|2 dx, Supp f ⊂ E,

∫
F

|t∇(1 + t2L)−1f(x)|2 dx ≤ Ce−
d
ct

∫
E

|f(x)|2 dx, Supp f ⊂ E,∫
F

|(1 + t2L)−1tdiv f (x)|2 dx ≤ Ce−
d
ct

∫
E

| f (x)|2 dx, Supp f ⊂ E,

where c > 0 depends only on λ and Λ, and C on n, λ and Λ.

Proof. It suffices to obtain the inequalities for d ≥ t > 0. The argument uses
a Caccioppoli type inequality. Set ut = (1 + t2L)−1f . For all v ∈ H1(Rn),∫

Rn

utv + t2
∫
Rn

A∇ut · ∇v =

∫
Rn

fv.

Taking v = utη
2 with η ∈ C∞0 (Rn) supported outside of E with η positive

and ‖η‖∞ = 1 and using that supp f ⊂ E, we have∫
Rn

|ut|2η2 + t2
∫
Rn

A∇ut · ∇ut η2 = −2t2
∫
Rn

A(η∇ut) · ut∇η.

Using (1.1) and the inequality 2|ab| ≤ ε|a|2 + ε−1|b|2 , we obtain for all ε > 0∫
Rn

|ut|2η2 + λt2
∫
Rn

|∇ut|2 η2 ≤ Λεt2
∫
Rn

|∇ut|2 η2 + Λε−1t2
∫
Rn

|ut|2|∇η|2.

Choosing ε = λ
Λ

leads to∫
Rn

|ut|2η2 ≤ Λ2t2

λ

∫
Rn

|ut|2|∇η|2.

Replacing η by eαη − 1 with α =
√
λ

2Λt‖∇η‖∞ yields∫
Rn

|ut|2|eαη − 1|2 ≤ 1

4

∫
Rn

|ut|2|eαη|2

6



so that a simple triangle inequality gives us∫
Rn

|ut|2|eαη|2 ≤ 4

∫
Rn

|ut|2 ≤ 4

∫
E

|f |2.

Assuming furthermore η = 1 on F , we have

|eα|2
∫
F

|ut|2 ≤
∫
Rn

|ut|2|eαη|2

and it remains to impose ‖∇η‖∞ ∼ 1/d to conclude for the first inequality.
Next, choose ε = λ

2Λ
and η as before to obtain∫

F

|t∇ut|2 ≤
∫
Rn

|t∇ut|2η2 ≤ 2Λ2t2

λ

∫
Rn

|ut|2|∇η|2 ≤ Ct2d−2e−
d
ct

∫
E

|f |2,

which gives us the second inequality.
The third inequality is obtained by duality from the second one applied

to L∗ = −div (A∗∇) and exchanging the roles of E and F .

Remark. Using complex times t and a Cauchy integral, we can obtain

‖e−tLf‖L2(F ) ≤ Ce−
d2

ct ‖f‖L2(E), Supp f ⊂ E.

When L is a Laplace-Beltrami operator, this is Gaffney’s estimate [20] (See
also Davies [16] for an argument which adapts to our situation).

Lemma 2.2. For any Lipschitz function f and t > 0,

||[(1 + t2L)−1, f ]||op ≤ Ct‖∇f‖∞

and
||∇[(1 + t2L)−1, f ]||op ≤ C‖∇f‖∞

where C depend only on n, λ and Λ. Here, f denotes the operator of pointwise
multiplication by f and [, ] is a commutator.

Proof. Write

[(1 + t2L)−1, f ] = −(1 + t2L)−1[(1 + t2L), f ](1 + t2L)−1

= −(1 + t2L)−1t2(div b + b̃ · ∇)(1 + t2L)−1,
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where we have set b = A∇f , b̃ = AT∇f considered as operators of pointwise
multiplication, so that their operator norms are controlled by C‖∇f‖∞. The
uniform L2 boundedness of (1 + t2L)−1, t∇(1 + t2L)−1 and (1 + t2L)−1tdiv
imply the first commutator estimate. Using also the L2 boundedness of
t2∇(1 + t2L)−1div yields the second one.

By cube in Rn, we mean a cube with sides parallel to the axes. If Q is
a cube, then |Q| and `(Q) denote respectively its measure, its sidelength.
We use also the notation cQ to denote the concentric cube with Q having
sidelength c `(Q).

Lemma 2.3. For some C depending only on n, λ and Λ, if Q is a cube in
R
n, t ≤ `(Q) and f is Lipschitz function on Rn then we have∫

Q

|(1 + t2L)−1f − f |2 ≤ Ct2‖∇f‖2
∞|Q|,

∫
Q

|∇((1 + t2L)−1f − f)|2 ≤ C‖∇f‖2
∞|Q|.

Proof. The argument will make clear that (1 + t2L)−1f is defined as
∑

(1 +
t2L)−1(fXk) with convergence in L2

loc(R
n), where the Xk is a partition of

unity. It is an easy matter to verify that this definition does not depend on
the particular choice of the partition.

By rescaling, there is no loss of generality to assume that `(Q) = 1
and that ‖∇f‖∞ = 1. Pick a partition (Qk) of Rn by cubes of sidelengths
2 and with Q0 = 2Q. Let Xk be the indicator function of Qk. The off-
diagonal estimates imply that (1+t2L)−1(1) = 1 in the sense that limR→∞(1+
t2L)−1(ηR) = 1 in L2

loc(R
n) where ηR(x) = η(x/R) and η is a smooth bump

function with η ≡ 1 near 0. Hence, we may write

(1 + t2L)−1f(x)− f(x) =
∑
k∈Zn

(1 + t2L)−1((f − f(x))Xk)(x) ≡
∑
k∈Zn

gk(x).

The term for k = 0 is nothing but [(1 + t2L)−1, f ](X0)(x). Hence, its L2(Q)-
norm is controlled by Ct‖X0‖2 by the first commutator estimate. The terms
for k 6= 0 are treated using the further decomposition

gk(x) = (1 + t2L)−1((f − f(xk))Xk)(x) + (f(xk)− f(x))(1 + t2L)−1(Xk)(x)
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where xk is the center of Qk. Using the off-diagonal estimates for (1 + t2L)−1

on sets E = Qk and F = Q and the fact that f is Lipschitz, we get∫
Q

|gk|2 ≤ Ct2e−
|xk|
ct ‖Xk‖2

2 = Ct2e−
|xk|
ct 2n|Q|.

The desired bound on the L2(Q)-norm of (1 + t2L)−1f −f follows from these
estimates, Minkowski’s inequality and the fact that t ≤ 1.

The proof of the second inequality uses a similar argument and is left to
the reader.

3 Reduction to a quadratic estimate

We are given an elliptic operator as in (1.2) with ellipticity constants λ and
Λ in (1.1). We wish to prove a priori that

(K) ‖
√
Lf‖2 ≤ C‖∇f‖2,

for f in some dense subspace of H1(Rn) with C depending only on n, λ and
Λ. Then (K) also holds for L∗ as the hypotheses are stable under taking
adjoints. Eventually, we conclude by a theorem of J.L. Lions [25] that the
domain of

√
L is H1(Rn) and that for f ∈ H1(Rn),

‖
√
Lf‖2 ∼ ‖∇f‖2.

We remark that to prove (K), we may and do assume that the coefficients
are C∞ as long as we do not use this quantitatively in our estimates. This
is why we shall make clear the dependance of constants. Then, one removes
this assumption using a slight variant of [9, Chapter 0, Proposition 7].

To begin, we use the following resolution of the square root:

√
Lf = a

∫ +∞

0

(1 + t2L)−3t3L2f
dt

t
,

where a−1 is the value of
∫∞

0
(1 + u2)−3u2 du, and the integral converges

normally in L2(Rn) for f ∈ C∞0 (Rn) (as C∞0 (Rn) ⊂ H4(Rn) = D(L2) under
the smoothness assumption). Take g ∈ C∞0 (Rn) with ‖g‖2 = 1. By duality
and the Cauchy-Schwarz inequality

(3.1) |〈
√
Lf, g〉|2 ≤ a2

∫ +∞

0

‖(1 + t2L)−1tLf‖2
2

dt

t

∫ +∞

0

‖Vtg‖2
2

dt

t

9



where Vt = t2L∗(1 + t2L∗)−2. There are several ways to see that∫ +∞

0

‖Vtg‖2
2

dt

t
≤ C‖g‖2

2 ≤ C.

One way is to appeal to the quadratic estimates of McIntosh and Yagi [31]
since L∗ has H∞-functional calculus. Another way is to use the standard
orthogonality arguments of Littlewood-Paley theory. As we shall use this
again later, let us recall the method. Pick any ψ ∈ C∞0 (Rn) with ψ real-
valued and

∫
ψ = 0 and define Qs as the operator of convolution with 1

sn
ψ(x

s
)

for s > 0 normalized so that∫ +∞

0

‖Qsg‖2
2

ds

s
= ‖g‖2

2.

Lemma 3.2. Let Ut : L2(Rn) → L2(Rn), t > 0, be a family of bounded
operators with ||Ut||op ≤ 1. If ||UtQs||op ≤

(
inf( t

s
, s
t
)
)α

, α > 0, for a family
Qs, s > 0, as above, then for some constant C depending only on α,∫ +∞

0

‖Utg‖2
2

dt

t
≤ C‖g‖2

2.

Proof. The argument is quite standard and follows from Schur’s lemma. De-
tails are left to the reader.

Let us apply this to the operators Vt above which have uniform (in t)
bounded extension to L2(Rn). Since VtQs = −(1 + t2L∗)−2t2divA∗∇Qs, we
have

||VtQs||op ≤ ||(1 + t2L∗)−2t2divA∗||op||∇Qs||op ≤ cts−1,

with c depending only on n, λ and Λ. Choose ψ = ∆φ with φ ∈ C∞0 (Rn),
radial, so that, in particular, ψ = div h. This yields Qs = s div Rs with Rs

uniformly bounded, hence

||VtQs||op ≤ ||t2L∗(1 + t2L∗)−2div ||op||sRs||op ≤ ct−1s,

with c depending only on n, λ and Λ.
Thus, the second integral in the right hand side of (3.1) is bounded, so

we are reduced to proving

(3.3)

∫ +∞

0

‖(1 + t2L)−1tLf‖2
2

dt

t
≤ C

∫
Rn

|∇f |2.
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4 Reduction to a Carleson measure estimate

We next reduce matters to checking a Carleson measure estimate. Let us first
introduce some notation used throughout. Define for Cn-valued functions
f = (f1, . . . , fn),

θt f = −(1 + t2L)−1t∂j(aj,kfk).

We use the summation convention for repeated indices. In short, we write
θt = −(1 + t2L)−1tdivA. With this notation, (3.3) rewrites

(4.1)

∫ +∞

0

‖θt∇f‖2
2

dt

t
≤ C

∫
Rn

|∇f |2.

Define also

γt(x) = (θt1)(x) = (−(1 + t2L)−1t∂jaj,k)(x))1≤k≤n

where 1 is the n×n−identity matrix, the action of θt on 1 being columnwise.
Borrowing an idea from [13], the reduction to a Carleson measure estimate

and the T(b) argument will require the inequality

(4.2)

∫
Rn

∫ +∞

0

|γt(x) · (P 2
t ∇g)(x)− (θt∇g)(x)|2 dxdt

t
≤ C

∫
Rn

|∇g|2,

where C depends only on n, λ and Λ. Here, Pt denotes the operator of
convolution with 1

tn
p(x

t
) where p is a smooth real-valued function supported

in the unit ball of Rn with
∫
p = 1. The notation u · v for u, v ∈ Cn is the

one in the Introduction. To prove this, we need to handle Littlewood-Paley
theory just outside the classical setting.

Lemma 4.3. Let Ut : L2(Rn) → L2(Rn), t > 0, be a measurable family of
bounded operators with ||Ut||op ≤ 1. Assume that

(i) Ut has a kernel, Ut(x, y), that is a measurable function on R2n such
that for some m > n and for all y ∈ Rn and t > 0,∫

Rn

(
1 +
|x− y|
t

)2m

|Ut(x, y)|2 dx ≤ t−n.

(ii) For any ball B(y, t) with center at y and radius t, Ut has a bounded
extension from L∞(Rn) to L2(B(y, t)) and for all f and y ∈ Rn,

1

tn

∫
B(y,t)

|Utf(x)|2 dx ≤ ‖f‖2
∞.
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(iii) Ut(1) = 0 in the sense that Ut(XR) converges to 0 in L2(B(y, t)) as
R → ∞ for any y, where XR stands for the indicator function of the
ball B(0, R).

Let Qs, Pt, be as above. Then for some α > 0 and C depending on n and m,

||UtPtQs||op ≤ C

(
inf

(
t

s
,
s

t

))α
.

Proof. We first remark that U∗t Ut has a kernel satisfying

|Kt(x, y)| ≤ 1

tn

(
1 +
|x− y|
t

)−m
.

Indeed Kt(x, y) is given by

Kt(x, y) =

∫
Rn

Ut(z, x)Ut(z, y) dz

so that the formula (1 + a+ b) ≤ (1 + a)(1 + b) for positive a, b gives us that(
1 + |x−y|

t

)m
|Kt(x, y)| is bounded by∫

Rn

(
1 +
|x− z|
t

)m
|Ut(z, x)||Ut(z, y)|

(
1 +
|z − y|
t

)m
dy ≤ t−n

from the Cauchy-Schwarz inequality and (i). Hence U∗t Ut is bounded on all
Lp, 1 ≤ p ≤ +∞ and in particular for p = 2, we recover the boundedness of
Ut (thus, one can drop from the hypotheses the L2 boundedness of Ut).

For s ≤ t, by ||Ut||op ≤ 1 and standard Fourier analysis we have that

||UtPtQs||op ≤ ||PtQs||op ≤ C
(s
t

)α
.

Next, we consider t ≤ s. Since Pt has a nice kernel, Wt = U∗t UtPt also has
an L1 kernel. If we prove that Wt(1) = 0 then we can deduce from standard
arguments that

||WtQs||op ≤ C

(
t

s

)α
,

for 0 < α < m−n, which gives us the result as ||UtPtQs||2op ≤ C||U∗t UtPtQs||op.
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We have that Wt(1) = U∗t Ut(1). If ϕ ∈ L2(Rn) is compactly supported
(thus in L1(Rn)) then

〈U∗t Ut(1), ϕ〉 = lim
R→∞
〈U∗t Ut(XR), ϕ〉 = lim

R→∞
〈Ut(XR), Ut(ϕ)〉.

Now

〈Ut(XR), Ut(ϕ)〉 =

∫∫
Ut(XR)(x)Ut(x, y)ϕ(y) dydx

which is, in modulus, less than a constant times(
t−n
∫∫ (

1 +
|x− y|
t

)−2m

|Ut(XR)(x)|2|ϕ(y)|dydx

)1/2

‖ϕ‖1/2
1

by (i) and the Cauchy-Schwarz inequality for the measure |ϕ(y)|dydx. Using
a covering in the x variable by a lattice of balls B(y + ckt, t), k ∈ Zn, we
obtain a bound

C

(∑
k∈Zn

∫
Rn

(1 + |k|)−2mcR(y, k)|ϕ(y)|dy

)1/2

‖ϕ‖1/2
1

with cR(y, k) = t−n
∫
B(y+ckt,t)

|Ut(XR)(x)|2dx. It remains to apply the domi-

nated convergence theorem by invoking (ii) and (iii) as R tends to ∞.

Lemma 4.4. Let Pt be as in Lemma 4.3. Then the operator Ut defined by
Ut f (x) = γt(x) · (Pt f )(x)− (θtPt f )(x) satisfies∫ +∞

0

‖UtPt f ‖2
2

dt

t
≤ C‖ f ‖2

2

where C depends only on n, λ and Λ. Here the action of Pt on f is compo-
nentwise.

Proof. By the off-diagonal estimates of Lemma 2.1 for θt and the fact that
p has support in the unit ball, it is easy to show that there is a constant C
depending on n, λ and Λ such that for all y ∈ Rn

1

tn

∫
B(y,t)

|γt(x)|2 dx ≤ C

and that the kernel of C−1Ut satisfies the hypotheses in Lemma 4.3. The
conclusion follows from Lemma 3.2 applied to UtPt.
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We can now prove (4.2). We begin by writing

γt(x) · (P 2
t ∇g)(x)− (θt∇g)(x) = (UtPt∇g)(x) + (θt(P

2
t − I)∇g)(x).

The first term is taken care of by the above lemma. As Pt commutes with
partial derivatives, we may use that ||θt∇||op = ||(1 + t2L)−1tL||op ≤ Ct−1,
so that we obtain for the second term∫

Rn

∫ +∞

0

|(θt(P 2
t − I)∇g)(x)|2 dxdt

t
≤ C2

∫
Rn

∫ +∞

0

|((P 2
t − I)g)(x)|2 dt

t3
dx

≤ C2c(p)‖∇g‖2
2

by the Plancherel theorem with C depending only on n, λ and Λ. This
concludes the proof of (4.2).

Lemma 4.5. The inequality (K) follows from the Carleson measure estimate

(4.6) sup
Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)|2 dxdt
t

<∞,

where the supremum is taken over all cubes in Rn.

Proof. Indeed, (4.6) and Carleson’s inequality imply∫
Rn

∫ +∞

0

|γt(x) · (P 2
t ∇g)(x)|2 dxdt

t
≤ C

∫
Rn

|∇g|2,

and together with (4.2) we deduce that (4.1) holds.

Remark. We shall not need the easy converse that (K) implies (4.6).

To finish this section, let us state a technical lemma for later use. Let Q
be a cube in Rn, consider a collection of dyadic cubes of Rn that contains Q
and let SQt be the corresponding dyadic averaging operator:

SQt f(x) =
1

|Q′|

∫
Q′

f(y) dy

for x in the dyadic cube Q′ and 1
2
`(Q′) < t ≤ `(Q′).

Lemma 4.7. For some C depending only on n, λ and Λ, we have∫
Q

∫ `(Q)

0

|γt(x) · ((SQt − P 2
t ) f )(x)|2 dxdt

t
≤ C

∫
Rn

| f |2.

14



Proof. Of course, integration can be performed on Rn × (0,+∞). We may
adapt the proof of Lemma 4.3, given the following two observations. First,
the operator Ut = (γt · SQt ) is L2 bounded from the U∗t Ut argument and the
condition (i). Second, SQt is an orthogonal projection. Hence,

||(γt · SQt )Qs||op = ||(γt · SQt )SQt Qs||op ≤ C||SQt Qs||op ≤ C
(s
t

)α
.

The last inequality follows from the well-known fact that, for any α ∈ (0, 1/2),
the dyadic averaging operator maps L2(Rn) into the homogeneous Sobolev
space Ḣα(Rn) with norm Ct−α (See [9, Appendix C] for a proof). Further
details are left to the reader.

5 The T(b) argument

To obtain (4.6), we adapt the construction of [21] to verify a variant of the
T(b) theorem for square roots [9, Chapter 3, Theorem 3]. Fix a cube Q,
ε ∈ (0, 1), a unit vector w in Cn and define a scalar-valued function

(5.1) f εQ,w = (1 + (ε`(Q))2L)−1(ΦQ · w∗)

where, denoting by xQ the center of Q,

ΦQ(x) = x− xQ ∈ Rn.

Let us record some estimates that follow straightforwardly from Lemma 2.3
as the reader may check.

(5.2)

∫
5Q

|f εQ,w − ΦQ · w∗|2 ≤ C1ε
2`(Q)2|Q|

and

(5.3)

∫
5Q

|∇(f εQ,w − ΦQ · w∗)|2 ≤ C2|Q|

where C1, C2 depend on n, λ, Λ and not on ε, Q and w. It is an important
fact that the constants C1, C2 above are independent of ε.

The proof of (4.6) follows immediately from the combination of the next
two lemmata and the rest of this section is devoted to their proofs.
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Lemma 5.4. There exists an ε > 0 depending on n, λ, Λ, and a finite set
W of unit vectors in Cn whose cardinality depends on ε and n, such that

sup
1

|Q|

∫
Q

∫ `(Q)

0

|γt(x)|2 dxdt
t
≤

C
∑
w∈W

sup
1

|Q|

∫
Q

∫ `(Q)

0

|γt(x) · (SQt ∇f εQ,w)(x)|2 dxdt
t

where C depends only on ε, n, λ and Λ. The suprema are taken over all
cubes Q.

Lemma 5.5. For C depending only on n, λ, Λ and ε > 0, we have

(5.6)

∫
Q

∫ `(Q)

0

|γt(x) · (SQt ∇f εQ,w)(x)|2 dxdt
t
≤ C|Q|.

Proof of Lemma 5.5. We follow [9, Chapter 3]. Pick a smooth cut-off function
X = XQ localized on 4Q and equal to 1 on 2Q with ‖X‖∞ + `(Q)‖∇X‖∞ ≤
c = c(n). By Lemma 4.3 and (4.2), the left hand side of (5.6) is bounded by

C

∫
Rn

|∇(X f)|2 + 2

∫
Q

∫ `(Q)

0

|γt(x) · (P 2
t ∇(X f))(x)|2 dxdt

t

≤ C

∫
Rn

|∇(X f)|2 + 4

∫
Q

∫ `(Q)

0

|(θt∇(X f))(x)|2 dxdt
t
.

Our task is, therefore, to control by C|Q| the last expression, where to sim-
plify the exposition, we have set f = f εQ,w.

First, it follows easily from (5.2) and (5.3) that
∫
Rn
|∇(X f)|2 ≤ C|Q|

with C independent of Q and w (it may depend on ε which we allow).
Next, we write

θt∇(X f) = (1 + t2L)−1t(XLf − div (Af∇X )− A∇f · ∇X ),

and treat each term in the right hand side by separate arguments.
To handle the first term, observe that Lf =

f−ΦQ·w∗
ε2`(Q)2 , so that

∫
Rn
|XLf |2 ≤

C|Q|(ε`(Q))−2 from (5.2) with C independent of Q and w. Using the L2(Rn)
boundedness of (1 + t2L)−1, we obtain∫

Q

∫ `(Q)

0

|(1 + t2L)−1t(XLf))(x)|2 dxdt
t
≤
∫ `(Q)

0

C|Q| t2

(ε`(Q))2

dt

t
≤ C|Q|

ε2
.
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To handle the second term, use the off-diagonal estimates for the operator
(1 + t2L)−1tdiv with sets F = Q and E = supp(f∇X ) ⊂ 4Q \ 2Q to obtain

for
∫
Q

∫ `(Q)

0
|((1 + t2L)−1tdiv (Af∇X )(x)|2 dxdt

t
a bound

C

∫ `(Q)

0

e−
`(Q)
ct

dt

t

∫
4Q\2Q

|Af∇X|2 ≤ C|Q|,

where the last integral is treated using (5.2) and ‖∇X‖∞ ≤ C`(Q)−1, and C
depends only on n, λ and Λ.

To handle the last term, use the L2-boundedness of (1 + t2L)−1 to obtain

for
∫
Q

∫ `(Q)

0
|(1 + t2L)−1t(A∇f · ∇X )(x)|2 dxdt

t
a bound∫ `(Q)

0

t2
dt

t

∫
4Q\2Q

|A∇f · ∇X |2 ≤ C|Q|,

where again the last integral is treated using (5.3) and the bound on ∇X ,
and C depends only on n, λ and Λ. This proves Lemma 5.5.

Proof of Lemma 5.4. The main ingredient is the following result whose proof
is delayed for a moment. We note that, in retrospect, the proof of this lemma
is similar in spirit to a previous argument of M. Christ [10].

Proposition 5.7. There exists a small ε > 0 depending on n, λ and Λ, and
η = η(ε) > 0 such that for each unit vector w in Cn and cube Q, one can
find a collection S ′w = {Q′} of non-overlapping dyadic sub-cubes of Q with
the following properties

(i) The union of the cubes in S ′w has measure not exceeding (1− η)|Q|

(ii) If Q′′ ∈ S ′′w, the collection of all dyadic sub-cubes of Q not contained in
any Q′ ∈ S ′w, then

(5.8)
1

|Q′′|

∫
Q′′

Re(∇f εQ,w(y) · w) dy ≥ 3

4

and

(5.9)
1

|Q′′|

∫
Q′′
|∇f εQ,w(y)|2 dy ≤ (4ε)−2.
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A second ingredient of a purely geometrical nature is needed.

Lemma 5.10. Let w be a unit vector in a Hilbert space H, u, v be vectors in
H and 0 < ε ≤ 1 be such that

(i) |u− (u · w∗)w| ≤ ε |u · w∗|,

(ii) Re(v · w) ≥ 3
4
,

(iii) |v| ≤ (4ε)−1.

Then |u| ≤ 4|u · v|.

Proof. First, we deduce from (ii) that 3
4
|u ·w∗| ≤ |(u ·w∗)(v ·w)|. Moreover,

(i) and the triangle inequality imply that |u| ≤ (1 + ε)|u · w∗| ≤ 2|u · w∗|.
Also, by (i) and (iii), we have that |(u − (u · w∗)w) · v| ≤ 1

4
|u · w∗|. Hence,

again by the triangle inequality, we obtain that

|u · v| ≥ |(u · w∗)(v · w)| − |(u− (u · w∗)w) · v| ≥ (
3

4
− 1

4
)|u · w∗| ≥ 1

4
|u|.

Let us continue the proof of Lemma 5.4 admitting Proposition 5.7. Let
ε > 0 to be chosen later and cover Cn with a finite number depending on ε
and n of cones Cw associated to unit vectors w in Cn and defined by

(5.11) |u− (u · w∗)w| ≤ ε |u · w∗|.

It suffices to argue for each w fixed and to obtain a Carleson measure estimate
for γt,w(x) ≡ 1Cw(γt(x))γt(x), where 1Cw denotes the indicator function of Cw.
Therefore, define

(5.12) A ≡ Aw ≡ sup
Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt,w(x)|2 dxdt
t

where the supremum is taken over all cubes Q. By truncating γt,w(x) for t
small and t large we may consider that this quantity is qualitatively finite.
Once an a priori bound independent of the truncation is obtained, we can
pass to the limit by monotone convergence. In order not to introduce further
notation we ignore this easy step and assume that A < +∞.
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Now, fix a cube Q and let Q′′ ∈ S ′′w as defined in Proposition 5.7. Set

v =
1

|Q′′|

∫
Q′′
∇f εQ,w(y) dy ∈ Cn.

Clearly, (5.8) and (5.9) in Proposition 5.7 yield (ii) and (iii) in Lemma 5.10.
If x ∈ Q′′ and 1

2
`(Q′′) < t ≤ `(Q′′), then v = (SQt ∇f εQ,w)(x), hence

(5.13) |γt,w(x)| ≤ 4
∣∣∣γt,w(x) · (SQt ∇f εQ,w)(x)

∣∣∣ ≤ 4|γt(x) · (SQt ∇f εQ,w)(x)|

from Lemma 5.10 with u = γt,w(x) and the definition of γt,w(x).
The next observation is that the Carleson box Q× (0, `(Q)] can be par-

titioned into the Carleson boxes Q′ × (0, `(Q′)] for Q′ describing S ′w and the
Whitney rectangles Q′′ × (1

2
`(Q′′), `(Q′′)] for Q′′ describing S ′′w. Hence,∫

Q

∫ `(Q)

0

|γt,w(x)|2 dxdt
t

=
∑
Q′∈S′w

∫
Q′

∫ `(Q′)

0

|γt,w(x)|2 dxdt
t

+
∑
Q′′∈S′′w

∫
Q′′

∫ `(Q′′)

1
2
`(Q′′)

|γt,w(x)|2 dxdt
t
.

The first term in the right hand side is controlled by∑
Q′∈S′w

A|Q′| ≤ A(1− η)|Q|.

Using (5.13), the second term is dominated by

16
∑
Q′′∈S′′w

∫
Q′′

∫ `(Q′′)

1
2
`(Q′′)

|γt(x) · (SQt ∇f εQ,w)(x)|2 dxdt
t

≤ 16

∫
Q

∫ `(Q)

0

|γt(x) · (SQt ∇f εQ,w)(x)|2 dxdt
t
.

Altogether, we have obtained that
∫
Q

∫ `(Q)

0
|γt,w(x)|2 dxdt

t
is bounded by

A(1− η)|Q|+ 16

∫
Q

∫ `(Q)

0

|γt(x) · (SQt ∇f εQ,w)(x)|2 dxdt
t
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so that dividing out by |Q|, taking the supremum over cubes and using the
definition and the finiteness of A yield the bound

A ≤ 16 η−1 sup
Q

1

|Q|

∫
Q

∫ `(Q)

0

|γt(x) · (SQt ∇f εQ,w)(x)|2 dxdt
t
.

Proof of Proposition 5.7. We begin with a key estimate. We have

(5.14)

∣∣∣∣∫
Q

1− (∇f εQ,w(x) · w) dx

∣∣∣∣ ≤ Cε1/2|Q|,

where C depends on n, λ and Λ, but not on ε, Q and w. Indeed, we observe
that (∇(ΦQ · w∗)(x) · w) = |w|2 = 1, so that

1− (∇f εQ,w(x) · w) = (∇g(x) · w),

where g(x) = ΦQ(x) · w∗ − f εQ,w(x). Hence, (5.14) follows immediately from
(5.2) and (5.3) and the application to g of the next lemma, the proof of which
will be postponed to the end of this section.

Lemma 5.15. There exists C = C(n) such that for all h ∈ H1(Q),∣∣∣∣∫
Q

∇h
∣∣∣∣ ≤ C`(Q)

n−1
2

(∫
Q

|h|2
)1/4(∫

Q

|∇h|2
)1/4

.

Continuing the proof of Proposition 5.7, we deduce from (5.14) that

1

|Q|

∫
Q

Re(∇f εQ,w(x) · w) dx ≥ 7

8

provided ε is small enough. We also observe as a consequence of (5.3) that

1

|Q|

∫
Q

|∇f εQ,w(x)|2 dx ≤ C3,

with C3 independent of ε. Now, we perform a stopping-time decomposition
to select a collection S ′w of dyadic sub-cubes of Q which are maximal with
the property that one of

(5.16)
1

|Q′|

∫
Q′

Re(∇f εQ,w(x) · w) dx ≤ 3

4
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or

(5.17)
1

|Q′|

∫
Q′
|∇f εQ,w(x)|2 dx ≥ (4ε)−2

holds (that is, subdivide dyadically Q and stop the first time that one of
the inequalities hold). By construction, we obtain (ii) in the statement of
Proposition 5.7.

It remains to establish (i). To this end, let B = ∪Q′∈S′wQ′. We have to
show that |B| ≤ (1− η)|Q|. Let B1 (resp. B2) consist of the union of those
cubes in S ′w for which (5.16) (resp. (5.17)) holds. We have |B| ≤ |B1|+ |B2|.

The fact that the cubes in S ′w do not overlap yields

|B2| ≤ (4ε)2

∫
Q

|∇f εQ,w(x)|2 dx ≤ (4ε)2C3|Q|.

Setting b(x) = 1− Re(∇f εQ,w(x) · w), we also have

|B1| ≤ 4
∑∫

Q′
b(x) dx = 4

∫
Q

b(x) dx− 4

∫
Q\B1

b(x) dx

where the sum was taken over the cubes Q′ that compose B1. The first term
in the right hand side is bounded above by Cε1/2|Q| by (5.14). The second
term is controlled in absolute value by

4|Q \B1|+ 4|Q \B1|1/2(C3|Q|)1/2 ≤ 4|Q \B1|+ 4C3ε
1/2|Q|+ ε−1/2|Q \B1|.

Since |Q \B1| = |Q| − |B1|, we obtain

(5 + ε−1/2)|B1| ≤ (4 + Cε1/2 + ε−1/2)|Q|

which gives us |B1| ≤ (1 − ε1/2 + o(ε1/2))|Q| if ε is small enough. Hence
|B| ≤ (1−η(ε))|Q| with η(ε) ∼ ε1/2 for small ε. We have proved Proposition
5.7 modulo the truth of Lemma 5.15 which we show now.

Proof of Lemma 5.15. For simplicity, assume that Q is the unit cube [−1, 1]n,

the general case following by homogeneity. Set M =
(∫

Q
|h|2
)1/2

and M ′ =(∫
Q
|∇h|2

)1/2

. If M ≥M ′, there is nothing to prove, so we assume M < M ′.

Take t ∈ (0, 1) and ϕ ∈ C∞0 (Q) with ϕ(x) = 1 when dist(x, ∂Q) ≥ t (here
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take the distance in the sup norm in Rn) and 0 ≤ ϕ ≤ 1, ‖∇ϕ‖∞ ≤ C/t,
C = C(n). Then ∫

Q

∇h =

∫
Q

(1− ϕ)∇h−
∫
Q

h∇ϕ

and the Cauchy-Schwarz inequality gives us∣∣∣∣∫
Q

∇h
∣∣∣∣ ≤ C(M ′t1/2 +Mt−1/2).

It remains to choose t = M/M ′ to conclude the proof.
The proof of Theorem 1.4 is complete.

6 Miscellani

As far as the Kato conjecture is concerned, lower order terms do not affect the
domain of square roots by a result in [8]. See also [9, Chapter 0, Proposition
11] for a different proof. This gives us the following result.

Theorem 6.1. Consider complex bounded measurable coefficients aαβ on
R
n such that the form Q(f, g) =

∑
|α|,|β|≤1

∫
Rn
aαβ(x)∂βf(x)∂αḡ(x) dx satis-

fies |Q(f, g)| ≤ Λ̃‖f‖H1(Rn)‖g‖H1(Rn) and ReQ(f, f) ≥ λ̃‖f‖2
H1(Rn). Then the

square root of the associated maximal-accretive operator L has domain equal
to H1(Rn) and ‖

√
Lf‖2 ∼ ‖f‖H1(Rn) for all f ∈ H1(Rn), with constants

depending only on n, λ̃, and Λ̃.

We turn to Lp estimates for homogeneous elliptic operators L = −div (A∇)
on Rn with ellipticity constants λ and Λ.

Proposition 6.2. For any such L with (1+t2L)−1, t > 0, uniformly bounded
on Lρ(Rn) for some ρ ∈ [1, n

n−1
), we have for f ∈ C∞0 (Rn),

‖L1/2f‖H1 ≤ c1‖∇f‖H1

hence
‖L1/2f‖p ≤ cp‖∇f‖p,

for all p ∈ (1, 2]. The constant cp depends only on n, λ, Λ, p and the uniform
bound above.
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Here, H1 denotes the classical Hardy space. This inequality was obtained
in [9, Chapter 3] under the Gaussian upper bound hypothesis for the kernel of
e−tL and (K) now valid. The converse H1-inequality was proved, assuming
(K) for L∗, the Gaussian upper bound and Hölder regularity of the heat
kernel in [9]. The converse Lp-inequality, 1 < p < 2, was obtained by Duong
and McIntosh [17] without regularity through a weak (1,1) estimate. Putting
together these results and [9, Chapter 1] yields

Theorem 6.3. Let L be as above. If the heat kernel Wt(x, y) of e−tL satisfies
the pointwise upper bound

(6.4) |Wt2(x, y)| ≤ Ct−n e−( |x−y|ct )
2

,

for almost every (x, y) ∈ R
2n and all t > 0, then there exists an ε =

ε(n, λ,Λ) > 0 such that for f ∈ C∞0 (Rn), if 1 < p < 2 + ε,

‖L1/2f‖p ∼ ‖∇f‖p

and if p ≥ 2 + ε,
‖L1/2f‖p ≤ C‖∇f‖p.

In particular, such estimates hold for real operators and their complex pertur-
bations, for any complex operator whose coefficients have small BMO-norm
depending on dimension and ellipticity.

We mention that the existence of ε and the sharpness of the range of p’s
is explained in [9], as well as the density argument to allow more general f .

Proof of Proposition 6.2. We begin with the same resolution of
√
L as before

√
Lf = a

∫ +∞

0

t2L(1 + t2L)−3tLf
dt

t
,

which is now valid for any f ∈ H1(Rn) and we further decompose it as

√
Lf = a

∫ ∞
0

θ̃tP
2
t (∇f)

dt

t
+ a

∫ ∞
0

θ̃t(I − P 2
t )(∇f)

dt

t
.

= a

∫ ∞
0

θ̃tP
2
t (∇f)

dt

t
+ a

∫ ∞
0

t2L(1 + t2L)−3t2LQt
dt

t
(
√
−∆f)

≡ T1(∇f) + T2(
√
−∆f)
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with the following notation: θ̃t = −t2L(1 + t2L)−3tdivA, Pt is as in Section
3, and Qt = (t

√
−∆ )−1(I − P 2

t ).
Using the boundedness of the Riesz transforms on H1 we have ‖∇f‖H1 ∼

‖
√
−∆f‖H1 so that it suffices to establish the H1 boundedness of T1 and T2.
First, observe that T1 and T2 are L2-bounded. For T2, this follows from

duality, the Cauchy-Schwarz inequality and the basic Littlewood-Paley esti-
mates for Qt by the Fourier transform and for t2L∗(1 + t2L∗)−3t2L∗ by the
same argument as in Section 3. For T1, we use the same method by splitting
θ̃tP

2
t as t2L(1 + t2L)−2θtP

2
t and using the Littlewood-Paley estimate for the

adjoint of t2L(1+t2L)−2 and for θtP
2
t , the latter being a byproduct of Lemma

4.4 and Lemma 4.5.
By [9, Chapter 4, Lemma 11], duality and T ∗1 (1) = 0 = T ∗2 (1), the H1-

boundedness of T1 and T2 rely on an improved version of Hörmander’s in-
equality for their kernels, namely

(6.5)

(∫
r≤|x−y|≤2r

|K(x, y + h)−K(x, y)|p dx
)1/p

≤ c

rn(1−1/p)

(
|h|
r

)µ
for some p > 1, µ > 0 where y, h ∈ Rn and 4|h| ≤ r.

Let us prove (6.5) with p = 2 for K1(x, y) the kernel of T1. First, observe
that

θ̃t = t2L(1 + t2L)−2θt = (1 + t2L)−1θt − (1 + t2L)−2θt.

We know that (1+ t2L)−1 and θt satisfy separately the off-diagonal estimates
of Lemma 2.1 valid for all closed sets E, F and t > 0. It is easy to show that
such estimates are preserved by the operator product (with different constant

C and c not depending on the sets E, F and t > 0). Hence, θ̃t satisfies the

off-diagonal estimates. If Ut(x, y) is the kernel of θ̃tP
2
t , then we have

Ut(x, y + h)− Ut(x, y) = θ̃t

(
1

tn
p̃

(
· − (y + h)

t

)
− 1

tn
p̃

(
· − y
t

))
(x)

where p̃ = p ∗ p, and it follows from the off-diagonal estimates, supp p̃ ⊂
B(0, 2) and the regularity of p̃ that∫

r≤|x−y|≤2r

|Ut(x, y + h)− Ut(x, y)|2 dx ≤ Ce−
(r−2(t+|h|))+

ct t−2−n|h|2.

Hence, (6.5) with p = 2 follows immediately from the integral Minkowski
inequality.
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Next, we prove (6.5) with some p ∈ (ρ, n/(n − 1)) for K2(x, y). Remark
that from the hypothesis the operator t2L(1+t2L)−3t2L is uniformly bounded
on Lρ(Rn) while it satisfies the L2 off diagonal estimates. By interpolation, it
satisfies the Lp off diagonal estimates for any p ∈ (ρ, n/(n− 1)) (in which Lp

norms replace L2 norm). Now Qt is the convolution operator with t−nψ(x/t)
where for any µ ∈ (0, 1) and some C ≥ 0,

|ψ(x)| ≤ C

|x|n−1(1 + |x|)2

and

|ψ(x+ h)− ψ(x)| ≤ C|h|µ

|x|n−1+µ(1 + |x|)2
, |h| ≤ |x|/2.

Using this together with a further chopping of ψ by a smooth partition of
unity associated to a covering by ball of radius 1, it can be shown that the
kernel, Vt(x, y), of t2L(1 + t2L)−3t2LQt satisfies∫

r≤|x−y|≤2r

|Vt(x, y + h)− Vt(x, y)|p dx ≤ C inf(1, e−
r
ct )t−n(p−1)−pη|h|pη.

for some η > 0 and the desired inequality for K2(x, y) follows readily.
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[14] G. David and J.-L. Journé. A boundedness criterion for generalized
Calderón-Zygmund operators. Ann. Math., 120:371–398, 1984.
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