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Abstract. This is the first of three papers in which we construct the second flip in
the log minimal model program for Mg. In this paper, we define the moduli stacks
appearing in the second flip and describe the natural maps between them. In our
second paper, we prove that these stacks admit proper good moduli spaces. In our
third paper, we prove that these good moduli spaces are log canonical models of Mg.
Taken together, our methods give a uniform self-contained construction of the first
three steps of the log minimal model program for Mg and Mg,n.
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1. Introduction

In an effort to understand the canonical model of Mg, Hassett and Keel introduced the

log minimal model program (LMMP) for Mg. For any α ∈ Q∩ [0, 1] such that KMg
+αδ

is big, Hassett defined

(1.1) Mg(α) := Proj
⊕
m≥0

H0(Mg, bm(KMg
+ αδ)c),

and asked whether the spaces Mg(α) admit a modular interpretation [Has05]. In [HH09,
HH13], Hassett and Hyeon carried out the first two steps of this program by showing
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that:

Mg(α) =


Mg if α ∈ (9/11, 1]

M
ps
g if α ∈ (7/10, 9/11]

M
c
g if α = 7/10

M
h
g if α ∈ (7/10−ε, 7/10)

where M
ps
g , M

c
g , and M

h
g are the moduli spaces of pseudostable (see [Sch91]), c-

semistable, and h-semistable curves (see [HH13]), respectively. Additional steps of the
LMMP for Mg are known when g ≤ 5 [Has05, HL10, HL14, Fed12, CMJL12, CMJL14,
FS13]. In these works, new projective moduli spaces of curves are constructed using
Geometric Invariant Theory (GIT). Indeed, one of the most appealing features of the
Hassett-Keel program is the way that it ties together different compactifications of Mg

obtained by varying the parameters implicit in Gieseker and Mumford’s classical GIT
construction of Mg [Mum77, Gie82]. We refer the reader to [Mor09] for a detailed dis-
cussion of these modified GIT constructions.

This is the first paper in the trilogy in which we develop new techniques for con-
structing moduli spaces without GIT and apply them to construct the third step of the
LMMP for Mg, a flip replacing Weierstrass genus 2 tails by ramphoid cusps. In fact,

we give a uniform construction of the first three steps of the LMMP for Mg, as well as

an analogous program for Mg,n. To motivate our approach, let us recall the three-step

procedure used to construct Mg and establish its projectivity intrinsically:

(1) Prove that the functor of stable curves is a proper Deligne-Mumford stack Mg

[DM69].
(2) Use the Keel-Mori theorem to show that Mg has a coarse moduli space Mg →

Mg [KM97].

(3) Prove that some line bundle on Mg descends to an ample line bundle on Mg

[Kol90, Cor93].

This is now the standard procedure for constructing projective moduli spaces in al-
gebraic geometry. It is indispensable in cases where a global quotient presentation for
the relevant moduli problem is not available, or where the GIT stability analysis is in-
tractable, and there are good reasons to expect both these issues to arise in further
stages of the LMMP for Mg. Unfortunately, this procedure cannot be used to construct

the log canonical models Mg(α) because potential moduli stacks Mg(α) may include

curves with infinite automorphism groups. In other words, the stacks Mg(α) may be
non-separated and therefore may not possess a Keel-Mori coarse moduli space. The
correct fix is to replace the notion of a coarse moduli space by a good moduli space, as
defined and developed by Alper [Alp13, Alp12, Alp10, Alp14].

In the second paper of this trilogy, we prove a general existence theorem for good
moduli spaces of non-separated algebraic stacks ([AFS15a, Theorem 1.2]) that can be
viewed as a generalization of the Keel-Mori theorem [KM97]. This allows us to carry
out a modified version of the standard three-step procedure in order to construct moduli



LOG MINIMAL MODEL PROGRAM FOR Mg,n: THE SECOND FLIP 3

interpretations for the log canonical models1

(1.2) Mg,n(α) := Proj
⊕
m≥0

H0(Mg,n, bm(KMg,n
+ αδ + (1− α)ψ)c),

in the final part of this trilogy [AFS15b]. Specifically, for all α > 2/3−ε, where 0 < ε� 1,
we

(1) Construct an algebraic stack Mg,n(α) of α-stable curves (Theorem A).

(2) Construct a good moduli space Mg,n(α)→Mg,n(α) (Theorem B).

(3) Show that KMg,n(α) +αδ+(1−α)ψ onMg,n(α) descends to an ample line bundle

on Mg,n(α), and conclude that Mg,n(α) 'Mg,n(α) (Theorem C).

The moduli stack Mg,n(α) is defined in Definition 2.5. According to our definition,
the parameter α passes through three critical values, namely α1 = 9/11, α2 = 7/10,
and α3 = 2/3, and the definition of Mg,n(α) does not change in the open intervals
(9/11, 1), (7/10, 9/11), (2/3, 7/10) and (2/3−ε, 2/3). In this paper, we prove the following
theorem (see Theorem 2.7):

Theorem A. For α ∈ (2/3−ε, 1], the stack Mg,n(α) of α-stable curves is algebraic and

of finite type over SpecC. Furthermore, for each critical value αc ∈ {2/3, 7/10, 9/11}, we

have open immersions:

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc − ε).

In our second paper, we prove these stacks admit good moduli spaces (see [AFS15a,
Theorem 1.1]).

Theorem B. For every α ∈ (2/3−ε, 1], Mg,n(α) admits a good moduli space Mg,n(α)

which is a proper algebraic space over SpecC. Furthermore, for each critical value αc ∈
{2/3, 7/10, 9/11}, there exists a diagram

Mg,n(αc+ε)

��

� � //Mg,n(αc)

��

Mg,n(αc−ε)? _oo

��
Mg,n(αc+ε) // Mg,n(αc) Mg,n(αc−ε)oo

whereMg,n(αc)→Mg,n(αc),Mg,n(αc+ε)→Mg,n(αc+ε) andMg,n(αc−ε)→Mg,n(αc−ε)
are good moduli spaces, and where Mg,n(αc+ε)→Mg,n(αc) and Mg,n(αc−ε)→Mg,n(αc)

are proper morphisms of algebraic spaces.

In our third paper, we identify these good moduli spaces with the appropriate log canon-
ical models (see[AFS15b, Theorem 1.1]):

Theorem C. For α > 2/3−ε, the following statements hold:

(1) The line bundle KMg,n(α) + αδ + (1− α)ψ descends to an ample line bundle on

Mg,n(α).

1Note that the natural divisor for scaling in the pointed case is KMg,n
+ αδ + (1 − α)ψ = 13λ− (2 −

α)(δ − ψ) rather than KMg,n
+ αδ; see [Smy11, p.1845] for a discussion of this point.
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(2) There is an isomorphism Mg,n(α) 'Mg,n(α).

Putting this all together, we have the following result.

Main Theorem. There exists a diagram

Mg,n
� �

i+1

//

��

Mg,n( 9
11

)

φ1

��

Mg,n( 9
11

−ε) �
�

i+2

//

φ−
1

��

? _

i−1

oo Mg,n( 7
10

)

φ2

��

Mg,n( 7
10

−ε)? _

i−2

oo � �

i+3

//

φ−
2

��

Mg,n(2
3
)

φ3

��

Mg,n(2
3
−ε)? _

i−3

oo

φ−
3

��
Mg,n

j+1

$$

Mg,n( 9
11

−ε)
j+2

&&

j−1

xx

Mg,n( 7
10

−ε)
j+3

&&

j−2

xx

Mg,n(2
3
−ε)

j−3

xx
Mg,n( 9

11
) Mg,n( 7

10
) Mg,n(2

3
)

where:

(1) Mg,n(α) is the moduli stack of α-stable curves, and for c = 1, 2, 3:

(2) i+c and i−c are open immersions of algebraic stacks.

(3) The morphisms φc and φ−c are good moduli spaces.

(4) The morphisms j+
c and j−c are projective morphisms induced by i+c and i−c , re-

spectively.

When n = 0, the above diagram constitutes the steps of the log minimal model program

for Mg. In particular, j+
1 is the first contraction, j−1 is an isomorphism, (j+

2 , j
−
2 ) is the

first flip, and (j+
3 , j

−
3 ) is the second flip.

Remark 1.1. The theorem is degenerate in several special cases: For (g, n) = (1, 1),

(1, 2), (2, 0), the divisor KMg,n
+ αδ + (1 − α)ψ hits the edge of the effective cone at

9/11, 7/10, and 7/10, respectively, and hence the diagram should be taken to terminate

at these critical values. Furthermore, when g = 1 and n ≥ 3, or (g, n) = (3, 0), (3, 1),

α-stability does not change at the threshold value α3 = 2/3, so the morphisms (i+3 , i
−
3 )

and (j+
3 , j

−
3 ) are isomorphisms. Finally, for (g, n) = (2, 1), j+

3 is a divisorial contraction

and j−3 is an isomorphism.

Remark 1.2. As mentioned above, when n = 0 and α > 7/10−ε, these spaces have been

constructed using GIT. In these cases, our definition of α-stability agrees with the GIT

semistability notions studied in the work of Schubert, Hassett, Hyeon, and Morrison

[Sch91, HH09, HH13, HM10].

We should remark that the major work of the present paper is not simply a proof of
Theorem A, but also a precise local description of the maps between the stacksMg,n(α).
The key idea is that at each critical value αc ∈ {9/11, 7/10, 2/3}, the inclusions

Mg,n(αc+ε) ↪→Mg,n(αc)←↩Mg,n(αc−ε)
can be locally modeled by an intrinsic variation of GIT problem. This is made precise in
Definition 3.16 and Theorem 3.19, which is the main result of Section 3. This theorem
is also the key ingredient in our proof of Theorem B in [AFS15a].
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Geometry of the second flip. Let us conclude by briefly describing the geometry of
the second flip. At α3 = 2/3, the locus of curves with a genus 2 Weierstrass tail (i.e., a
genus 2 subcurve nodally attached to the rest of the curve at a Weierstrass point), or
more generally a Weierstrass chain (see Definition 2.2), is flipped to the locus of curves
with a ramphoid cusp (y2 = x5). See Figure 1. The fibers of j+

3 correspond to varying
moduli of Weierstrass chains, while the fibers of j−3 correspond to varying moduli of
ramphoid cuspidal crimpings.

g=2

Weierstrass
point

j+
3

=
y2=x5

j−3

Figure 1. Curves with a nodally attached genus 2 Weierstrass tail are
flipped to curves with a ramphoid cuspidal (y2 = x5) singularity.

Moreover, if (K, p) is a fixed curve of genus g − 2, all curves obtained by attach-
ing a Weierstrass genus 2 tail at p or imposing a ramphoid cusp at p are identified in
Mg,n(2/3). This can be seen on the level of stacks since, in Mg,n(2/3), all such curves
admit an isotrivial specialization to the curve C0, obtained by attaching a rational ram-
phoid cuspidal tail to K at p. See Figure 2.

g=2

Weierstrass
point

y2=x5

C0

y2=x5g=0

Figure 2. The curve C0 is the nodal union of a genus g−2 curve K and
a rational ramphoid cuspidal tail. All curves obtained by either attaching
a Weierstrass genus 2 tail to K at p, or imposing a ramphoid cusp on K
at p, isotrivially specialize to C0. Observe that Aut(C0) is not finite.

Outline of the paper. Let us now give a more detailed outline of the contents of this
paper. Section 2 is devoted to the notion of α-stability. Namely, in §2.1, we define α-
stable curves, and in §2.2 we show that α-stability is a deformation open condition and
conclude that the moduli stacks of α-stable curves are algebraic (Theorem 2.7). After
collecting some elementary facts about families of α-stable curves in §2.3, we give in
§2.4 a characterization of the closed points of the stack Mg,n(αc) at each critical value

αc ∈ {9/11, 7/10, 2/3}. We prove that the closed points ofMg,n(αc) are precisely the αc-
closed curves (Definition 2.22 and Theorem 2.23). In §2.5, we define the combinatorial



6 ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK

type of an αc-closed curve, mainly for the purpose of establishing the notation that will
be used to carry out the VGIT calculations of Section 3.

In Section 3, we develop the machinery of local quotient presentations and local vari-
ation of GIT: In §3.1, we recall some basic facts about variation of GIT quotients for the
action of a reductive group on an affine scheme. In §3.2, we define the VGIT chambers
associated to a local quotient presentation (Definition 3.15). In §3.3, we write out ex-
plicit coordinates for the deformation space Def(C) of an αc-stable curve C and describe
the natural action of Aut(C) on Def(C) in these coordinates. This sets us up for a
major invariant theory computation in §3.4, where we verify that the VGIT chambers
associated to the local quotient presentation [Def(C)/Aut(C)] → Mg,n(αc) do indeed

cut out the inclusions Mg,n(αc+ε) ↪→Mg,n(α)←↩Mg,n(αc−ε) (Theorem 3.19).

Notation. We work over a fixed algebraically closed field C of characteristic zero. An
n-pointed curve (C, {pi}ni=1) is a connected, reduced, proper 1-dimensional C-scheme C
with n distinct smooth marked points pi ∈ C. A curve C has an Ak-singularity at p ∈ C
if ÔC,p ' C[[x, y]]/(y2 − xk+1). An A1- (resp., A2-, A3-, A4-) singularity is also called a
node (resp., cusp, tacnode, ramphoid cusp).

We use the notation ∆ = SpecR and ∆∗ = SpecK, where R is a discrete valuation
ring with fraction field K; we set 0, η and η̄ to be the closed point, the generic point
and the geometric generic point respectively of ∆. We say that a flat family C → ∆ is
an isotrivial specialization if C ×∆ ∆∗ → ∆∗ is isotrivial.

Acknowledgments. We thank Brendan Hassett and Ian Morrison for their enthusiastic
and long-standing support of this project. In particular, we are grateful to Ian Morrison
for detailed comments and suggestions on the earlier version of this paper. We also
thank Joe Harris, David Hyeon, Johan de Jong, Seán Keel, and Ravi Vakil for many
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the Australian Research Council grant DE140101519. The second author was partially
supported by NSF grant DMS-1259226 and the Australian National University MSRVP
fund. The third author was partially supported by NSF grant DMS-0901095 and the
Australian Research Council grant DE140100259. The third and fourth author were also
partially supported by a Columbia University short-term visitor grant.

2. α-stability

In this section, we define α-stability (Definition 2.5) and show that it is an open
condition. We conclude that Mg,n(α), the stack of n-pointed α-stable curves of genus
g, is an algebraic stack of finite type over C (see Theorem 2.7). We also give a complete
description of the closed points of Mg,n(αc) for αc ∈ {2/3, 7/10, 9/11} (Theorem 2.23).

2.1. Definition of α-stability. The basic idea is to modify Deligne-Mumford stability
by designating certain curve singularities as ‘stable,’ and certain subcurves as ‘unstable.’
We begin by defining the unstable subcurves associated to the first three steps of the log
MMP for Mg,n.
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Definition 2.1 (Tails and Bridges).

(1) An elliptic tail is a 1-pointed curve (E, q) of arithmetic genus 1 which admits a

finite, surjective, degree 2 map φ : E → P1 ramified at q.

(2) An elliptic bridge is a 2-pointed curve (E, q1, q2) of arithmetic genus 1 which

admits a finite, surjective, degree 2 map φ : E → P1 such that φ−1({∞}) =

{q1 + q2}.
(3) A Weierstrass genus 2 tail (or simply Weierstrass tail) is a 1-pointed curve (E, q)

of arithmetic genus 2 which admits a finite, surjective, degree 2 map φ : E → P1

ramified at q.

We use the term αc-tail to mean an elliptic tail if αc = 9/11, an elliptic bridge if αc = 7/10,

and a Weierstrass tail if αc = 2/3.

q
g=1

q1

q2 g=1
q

g=2

Weierstrass point

Figure 3. An elliptic tail, elliptic bridge, and Weierstrass tail.

Unfortunately, we cannot describe our α-stability conditions purely in terms of tails
and bridges. As seen in [HH13], one extra layer of combinatorial description is needed,
and this is encapsulated in our definition of chains.

Definition 2.2 (Chains). An elliptic chain of length r is a 2-pointed curve (E, p1, p2)

which admits a finite, surjective morphism

γ :

r∐
i=1

(Ei, q2i−1, q2i)→ (E, p1, p2)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r.

(2) γ is an isomorphism when restricted to Ei \ {q2i−1, q2i} for i = 1, . . . , r.

(3) γ(q2i) = γ(q2i+1) is an A3-singularity for i = 1, . . . , r − 1.

(4) γ(q1) = p1 and γ(q2r) = p2.

A Weierstrass chain of length r is a 1-pointed curve (E, p) which admits a finite, surjec-

tive morphism

γ :
r−1∐
i=1

(Ei, q2i−1, q2i)
∐

(Er, q2r−1)→ (E, p)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r− 1, and (Er, q2r−1) is a Weier-

strass tail.

(2) γ is an isomorphism when restricted to Ei \ {q2i−1, q2i} (for i = 1, . . . , r− 1) and

Er \ {q2r−1}.
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(3) γ(q2i) = γ(q2i+1) is an A3-singularity for i = 1, . . . , r − 1.

(4) γ(q1) = p.

An elliptic (resp., Weierstrass) chain of length 1 is simply an elliptic bridge (resp., Weier-

strass tail).

(A)

p1 p2

1111

(B)

p

2111

Weierstrass point

Figure 4. Curve (A) (resp., (B)) is an elliptic (resp., Weierstrass) chain

of length 4.

When describing tails and chains as subcurves, it is important to specify the singu-
larities along which the tail or chain is attached. This motivates the following pair of
definitions.

Definition 2.3 (Gluing morphism). A gluing morphism γ : (E, {qi}mi=1)→ (C, {pi}ni=1)

between two pointed curves is a finite morphism E → C, which is an open immersion

when restricted to E − {q1, . . . , qm}. We do not require the points {γ(qi)}mi=1 to be

distinct.

Definition 2.4 (Tails and Chains with Attaching Data). Let (C, {pi}ni=1) be an n-

pointed curve. We say that (C, {pi}ni=1) has

(1) Ak-attached elliptic tail if there is a gluing morphism γ : (E, q) → (C, {pi}ni=1)

such that

(a) (E, q) is an elliptic tail.

(b) γ(q) is an Ak-singularity of C, or k = 1 and γ(q) is a marked point.

(2) Ak1/Ak2-attached elliptic chain if there is a gluing morphism γ : (E, q1, q2) →
(C, {pi}ni=1) such that

(a) (E, q1, q2) is an elliptic chain.

(b) γ(qi) is an Aki-singularity of C, or ki = 1 and γ(qi) is a marked point

(i = 1, 2).

(3) Ak-attached Weierstrass chain if there is a gluing morphism γ : (E, q)→ (C, {pi}ni=1)

such that

(a) (E, q) is a Weierstrass chain.

(b) γ(q) is an Ak-singularity of C, or k = 1 and γ(q) is a marked point.

Note that this definition entails an essential, systematic abuse of notation: when we say

that a curve has an A1-attached tail or chain, we always allow the A1-attachment points

to be marked points.

We can now define α-stability.
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Definition 2.5 (α-stability). For α ∈ (2/3− ε, 1], we say that an n-pointed curve

(C, {pi}ni=1) is α-stable if ωC(Σn
i=1pi) is ample and:

For α ∈ (9/11, 1): C has only A1-singularities.

For α = 9/11: C has only A1, A2-singularities.

For α ∈ (7/10, 9/11): C has only A1, A2-singularities, and does not contain:

• A1-attached elliptic tails.

For α = 7/10: C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails.

For α ∈ (2/3, 7/10): C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails,

• A1/A1-attached elliptic chains.

For α = 2/3: C has only A1, A2, A3, A4-singularities, and does not contain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains.

For α ∈ (2/3−ε, 2/3): C has only A1, A2, A3, A4-singularities, and does not con-

tain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains,

• A1-attached Weierstrass chains.

A family of α-stable curves is a flat and proper family whose geometric fibers are

α-stable. We let Mg,n(α) denote the stack of n-pointed α-stable curves of arithmetic

genus g.

Remark. Our definition of an elliptic chain is similar, but not identical to, the definition

of an open tacnodal elliptic chain appearing in [HH13, Definition 2.4]. Whereas open

tacnodal elliptic chains are built out of arbitrary curves of arithmetic genus one, our

elliptic chains are built out of elliptic bridges. Nevertheless, it is easy to see that our

definition of (7/10−ε)-stability agrees with the definition of h-semistability in [HH13,

Definition 2.7].

It will be useful to have a uniform way of referring to the singularities allowed and
the subcurves excluded at each stage of the LMMP. Thus, for any α ∈ (2/3−ε, 1], we use
the term α-stable singularity to refer to any allowed singularity at the given value of α.
For example, a 7

10 -stable singularity is a node, cusp, or tacnode. Similarly, we use the
term α-unstable subcurve to refer to any excluded subcurve at the given value of α. For
example, a 7

10 -unstable subcurve is simply an A1 or A3-attached elliptic tail. With this
terminology, we may say that a curve is α-stable if it has only α-stable singularities and
no α-unstable subcurves. Furthermore, if αc ∈ {2/3, 7/10, 9/11} is a critical value, we
use the term αc-critical singularity to refer to the newly-allowed singularity at α = αc
and αc-critical subcurve to refer to the newly disallowed subcurves at α = αc− ε. Thus,
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(A)

A3 1

g − 2

Weierstrass
point

(B)

2

g − 2

(C)

A3

g − 3

1 1 p

(D)

1

A4

g − 3

Figure 5. Curve (A) has an A3-attached elliptic tail; it is never α-stable.
Curve (B) has an A1-attached Weierstrass tail; it is α-stable for α ≥ 2/3.
Curve (C) has an A1/A1-attached elliptic chain of length 2; it is α-stable
for α ≥ 7/10. Curve (D) has an A1/A4-attached elliptic bridge; it is never
α-stable.

a 7
10 -critical singularity is a tacnode, and a 7

10 -critical subcurve is an elliptic chain with
A1/A1-attaching.

Before plunging into the deformation theory and combinatorics of α-stable curves
necessary to prove Theorem 2.7 and carry out the VGIT analysis in Section 3, we take a
moment to contemplate on the features of α-stability that underlie our arguments and to
give some intuition behind the items of Definition 2.5. The following are the properties
of α-stability that are desired and that we prove to be true for all α ∈ (2/3−ε, 1]:

(1) α-stability is deformation open.
(2) The stack Mg,n(α) of all α-stable curves has a good moduli space, and

(3) The line bundle KMg,n(α) +αδ+ (1−α)ψ onMg,n(α) descends to an ample line

bundle on the good moduli space.

We will verify (1) in Proposition 2.16 (see also Definition 2.8) and deduce Theorem
2.7. Note that we disallow A3-attached elliptic tails at α = 7/10, so that A1/A1-attached
elliptic bridges form a closed locus in Mg,n(7/10).

The existence of good moduli space in (2) requires that the automorphism of every
closed α-stable curve is reductive. We verify this necessary condition in Proposition 2.6,
and turn around to use it as an ingredient in the proof of existence for the good moduli
space in [AFS15a].

Statement (3) implies that the action of the stabilizer of any point on the fiber of the
line bundle KMg,n(α) + αδ + (1− α)ψ is trivial. As explained in [AFS14], this condition

places strong restrictions on what curves with Gm-action can be α-stable: For example,
the α-invariant of a nodally attached A3/2-atom (i.e., the tacnodal union of a smooth
rational curve with a cuspidal rational curve) does not equal 7/10. This computation
provides another heuristics for why we disallow A3-attached elliptic tails at α = 7/10.
Similarly, the computation of the α-invariant for a nodally attached A3/4-atom (i.e.,
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the tacnodal union of a smooth rational curve with a ramphoid cuspidal rational curve)
explains why we disallow A1/A4-attached elliptic chains at α = 2/3.

Proposition 2.6. Aut(C, {pi}ni=1)◦ is a torus for every α-stable curve (C, {pi}ni=1). Con-

sequently, Aut(C, {pi}ni=1) is reductive.

Proof. For an α-stable curve, the only irreducible components with a positive dimen-

sional automorphism group are rational curves with two special points. The connected

component of the automorphism group of such a component is either {1} or Gm. �

Remark. We should note that Proposition 2.6 uses features of α-stability that hold only

for α > 2/3−ε. We expect that for lower values of α, the yet-to-be-defined, α-stability will

allow for α-stable curves with non-reductive stabilizers. For example, the automorphism

group of the union of two unpointed P1’s along the A2g+1-singularity with trivial crimping

is the affine group of A1. However, we believe that for a correct definition of α-stability,

it will still hold to be true that the stabilizers of all closed points in Mg,n(α) will be

reductive.

2.2. Deformation openness. Our first main result is the following theorem.

Theorem 2.7. For α ∈ (2/3−ε, 1], the stackMg,n(α) of α-stable curves is algebraic and

of finite type over SpecC. Furthermore, for each critical value αc ∈ {2/3, 7/10, 9/11}, we

have open immersions:

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc − ε).

Let Ug,n(A∞) be the stack of flat, proper families of curves (π : C → T, {σi}ni=1),
where the sections {σi}ni=1 are distinct and lie in the smooth locus of π, the line bundle
ωC/T (Σn

i=1σi) is relatively ample, and the geometric fibers of π are n-pointed curves of
arithmetic genus g with only A-singularities. Since Ug,n(A∞) parameterizes canonically
polarized curves, Ug,n(A∞) is algebraic and finite type over C. Let Ug,n(A`) ⊂ Ug,n(A∞)
be the open substack parameterizing curves with at worst A1, . . . , A` singularities. We
will show that eachMg,n(α) can be obtained from a suitable Ug,n(A`) by excising a finite
collection of closed substacks. As a result, we obtain a proof of Theorem 2.7.

Definition 2.8. We let T Ak ,BAk1/Ak2 ,WAk denote the following constructible subsets

of Ug,n(A∞):

T Ak := Locus of curves containing an Ak-attached elliptic tail.

BAk1/Ak2 := Locus of curves containing an Ak1/Ak2-attached elliptic chain.

WAk := Locus of curves containing an Ak-attached Weierstrass chain.
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With this notation, we can describe our stability conditions (set-theoretically) as fol-
lows:

Mg,n(9/11+ε) = Ug,n(A1)

Mg,n(9/11) = Ug,n(A2)

Mg,n(9/11−ε) =Mg,n(9/11)− T A1

Mg,n(7/10) = Ug,n(A3)−
⋃

i∈{1,3}

T Ai

Mg,n(7/10−ε) =Mg,n(7/10)− BA1/A1

Mg,n(2/3) = Ug,n(A4)−
⋃

i∈{1,3,4}

T Ai −
⋃

i,j∈{1,4}

BAi/Aj

Mg,n(2/3−ε) =Mg,n(2/3)−WA1

Here, when we writeMg,n(9/11)−T A1 , we mean of courseMg,n(9/11)−
(
T A1∩Mg,n(9/11)

)
,

and similarly for each of the subsequent set-theoretic subtractions.
We must show that at each stage the collection of loci T Ak , BAk1/Ak2 , and WAk that

we excise is closed. We break this analysis into two steps: In Corollaries 2.11 and 2.12,
we analyze how the attaching singularities of an α-unstable subcurve degenerate, and
in Lemmas 2.13 and 2.14, we analyze degenerations of α-unstable curves. We combine
these results to prove the desired statement in Proposition 2.16.

Definition 2.9 (Inner/Outer Singularities). We say that an Ak-singularity p ∈ C is

outer if it lies on two distinct irreducible components of C, and inner if it lies on a single

irreducible component. (N.B. If k is even, then any Ak-singularity is necessarily inner.)

Suppose C → ∆ is a family of curves with at worst A-singularities, where ∆ is the
spectrum of a DVR. Denote by Cη̄ the geometric generic fiber and by C0 the central
fiber. We are interested in how the singularities of Cη̄ degenerate in C0. By deformation
theory, an Ak-singularity can deform to a collection of {Ak1 , . . . , Akr} singularities if and
only if

∑r
i=1(ki + 1) ≤ k+ 1. In the following proposition, we refine this result for outer

singularities.

Proposition 2.10. Let p ∈ C0 be an Am-singularity, and suppose that p is the limit of an

outer singularity q ∈ Cη̄. Then p is outer (in particular, m is odd) and each singularity of

Cη̄ that approaches p must be outer and must lie on the same two irreducible components

of Cη̄ as q. Moreover, the collection of singularities approaching p is necessarily of the

form {A2k1+1, A2k2+1, . . . , A2kr+1}, where
∑r

i=1(2ki + 2) = m + 1, and there exists a

simultaneous normalization of the family C → ∆ along this set of generic singularities.

Proof. Suppose q is an A2k1+1-singularity. We may take the local equation of C around

p to be

y2 = (x− a1(t))2k1+2
r∏
i=2

(x− ai(t))mi , where 2k1 + 2 +
r∑
i=2

mi = m+ 1.



LOG MINIMAL MODEL PROGRAM FOR Mg,n: THE SECOND FLIP 13

By assumption, the general fiber of this family has at least two irreducible components.

It follows that each mi must be even. Thus, we can rewrite the above equation as

(2.1) y2 =
r∏
i=1

(x− ai(t))2ki+2,

where k1, k2, . . . , kr satisfy
∑r

i=1(2ki + 2) = m+ 1. It now follows by inspection that Cη̄

contains outer singularities {A2k1+1, A2k2+1, . . . , A2kr+1} joining the same two irreducible

components of Cη̄ and approaching p ∈ C0. Clearly, the normalization of the family (2.1)

exists and is a union of two smooth families over ∆. �

Using the previous proposition, we can understand how the attaching singularities of
a subcurve may degenerate.

Corollary 2.11. Let (π : C → ∆, {σi}ni=1) be a family of curves in Ug,n(A∞). Suppose

that τ is a section of π such that τ(η̄) ∈ Cη̄ is a disconnecting A2k+1-singularity of the

geometric generic fiber. Then τ(0) ∈ C0 is also a disconnecting A2k+1-singularity.

Proof. By assumption, τ(η̄) is outer and joins two irreducible components that do not

meet elsewhere. By Proposition 2.10, τ(0) cannot be a limit of any singularities of Cη̄
other than τ(η̄) and so must remain an A2k+1-singularity. The normalization of C along

τ now separates C into two connected components. Thus τ(0) is disconnecting. �

Corollary 2.12. Let (π : C → ∆, {σi}ni=1) be a family of curves in Ug,n(A∞). Sup-

pose that τ1, τ2 are sections of π such that τ1(η̄), τ2(η̄) ∈ Cη̄ are A2k1+1 and A2k2+1-

singularities of the geometric generic fiber. Suppose also that the normalization of Cη̄
along τ1(η̄) ∪ τ2(η̄) consists of two connected components, while the normalization of Cη̄
along either τ1(η̄) or τ2(η̄) individually is connected. Then we have two possible cases

for the limits τ1(0) and τ2(0):

(1) τ1(0) and τ2(0) are distinct A2k1+1 and A2k2+1-singularities, respectively, or

(2) τ1(0) = τ2(0) is an A2k1+2k2+3-singularity.

Proof. Our assumptions imply that the singularities τ1(η̄) and τ2(η̄) are outer and are

the only two singularities connecting the two connected components of the normalization

of Cη̄ along τ1(η̄)∪τ2(η̄). By Proposition 2.10, these two singularities cannot collide with

any additional singularities of Cη̄ in the special fiber. If τ1(η̄) and τ2(η̄) themselves do

not collide, we have case (1). If they do collide, then, applying Proposition 2.10 once

more, we have case (2). �

Lemma 2.13 (Limits of tails and bridges).

(1) Let (H → ∆, τ1) be a family in U1,1 whose generic fiber is an elliptic tail. Then

the special fiber (H, p) is an elliptic tail.

(2) Let (H → ∆, τ1, τ2) be a family in U1,2 whose generic fiber is an elliptic bridge.

Then the special fiber (H, p1, p2) satisfies one of the following conditions:



14 ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK

(a) (H, p1, p2) is an elliptic bridge.

(b) (H, p1, p2) contains an A1-attached elliptic tail.

(3) Let (H → ∆, τ1) be a family in U2,1 whose generic fiber is a Weierstrass tail.

Then the special fiber (H, p) satisfies one of the following conditions:

(a) (H, p) is a Weierstrass tail.

(b) (H, p) contains an A1 or A3-attached elliptic tail, or an A1/A1-attached

elliptic bridge.

Proof. (1) For every (H, p) ∈ U1,1, the curve H is irreducible, and |2p| defines a degree

2 map to P1 by Riemann-Roch. Hence U1,1 = T A1 .

For (2), the special fiber (H, p1, p2) is a curve of arithmetic genus 1 with ωH(p1 + p2)

ample. Since ωH(p1 + p2) has degree 2, H has at most 2 irreducible components. The

possible topological types of H are listed in the top row of Figure 6. We see immediately

that any curve with one of the first three topological types is an elliptic bridge, while

any curve with the last topological type contains an A1-attached elliptic tail.

Finally, for (3), the special fiber (H, p) is a curve of arithmetic genus 2 with ωH(p)

ample and h0(ωH(−2p)) ≥ 1 by semicontinuity. Since ωH(p) has degree three, H has

at most three components, and the possible topological types of H are listed in the

bottom three rows of Figure 6. One sees immediately that if H does not contain an

A1 or A3-attached elliptic tail or an A1/A1-attached elliptic bridge, there are only three

possibilities for the topological type of H: either H is irreducible or H has topological

type (A) or (B). However, topological types (A) and (B) do not satisfy h0(ωH(−2p)) ≥ 1.

Finally, if (H, p) is irreducible, then it must be a Weierstrass tail. Indeed, the linear

equivalence ωH ∼ 2p follows immediately from the corresponding linear equivalence on

the general fiber. �

Lemma 2.14 (Limits of elliptic chains). Let (H → ∆, τ1, τ2) be a family in U2r−1,2 whose

generic fiber is an elliptic chain of length r. Then the special fiber (H, p1, p2) satisfies

one of the following conditions:

(a) (H, p1, p2) contains an A1/A1-attached elliptic chain of length ≤ r.
(b) (H, p1, p2) contains an A1-attached elliptic tail.

Proof. We will assume (H, p1, p2) contains no A1-attached elliptic tails, and prove that

(a) holds. By Lemma 2.13, this assumption implies that if (E, q1, q2) is a genus one

subcurve of H, nodally attached at q1 and q2, and ωE(q1 + q2) is ample on E, then

(E, q1, q2) is an A1/A1-attached elliptic bridge.

To begin, let γ1, . . . , γr−1 be sections picking out the tacnodes in the general fiber at

which the sequence of elliptic bridges are attached to each other. By Corollary 2.11,

the limits γ1(0), . . . , γr−1(0) remain tacnodes, so the normalization of φ : H̃ → H along
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Figure 6. Topological types of curves in U1,2(A∞) and U2,1(A∞). For
convenience, we have suppressed the data of inner singularities, and we
record only the arithmetic genus of each component and the outer singu-
larities (which are either nodes or tacnodes, as indicated by the picture).
Components without a label have arithmetic genus zero.

γ1, . . . , γr−1 is well-defined and we obtain r flat families of 2-pointed curves of arithmetic

genus 1, i.e., we have

H̃ =
r∐
i=1

(Ei, σ2i−1, σ2i),

where σ1 := τ1, σ2r := τ2, and φ−1(γi) = {σ2i, σ2i+1}. The relative ampleness of

ωH/∆(τ1 + τ2) implies

(1) ωE1(p1 + 2p2), ωEr(2p2r−1 + p2r) is ample on E1, Er, respectively.

(2) ωEi(2p2i−1 + 2p2i) is ample on Ei for i = 2, . . . , r − 1.

It follows that for each 1 ≤ i ≤ r, either (Ei, p2i−1, p2i) is an elliptic bridge or one of the

following must hold:

(a) (Ei, p2i−1, p2i) = (P1, p2i−1, q
′
2i−1)∪(E′i, q2i−1, p2i)/(q

′
2i−1 ∼ q2i−1), where (E′i, q2i−1, p2i)

is an elliptic bridge.

(b) (Ei, p2i−1, p2i) = (E′i, p2i−1, q2i)∪ (P1, q′2i, p2i)/(q2i ∼ q′2i), where (E′i, p2i−1, q2i) is

an elliptic bridge.

(c) (Ei, p2i−1, p2i) = (P1, p2i−1, q
′
2i−1)∪(E′i, q2i−1, q2i)∪(P1, q′2i, p2i)/(q

′
2i−1 ∼ q2i−1, q2i ∼

q′2i), where (E′i, q2i−1, q2i) is an elliptic bridge.
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In the cases (a), (b), (c) respectively, we say that Ei sprouts on the left, right, or left and

right. Note that if E1 or Er sprouts at all, then E1 or Er contains an A1/A1-attached

elliptic bridge. Similarly, if Ei sprouts on both the left and right (2 ≤ i ≤ r − 1), then

Ei contains an A1/A1-attached elliptic bridge. Thus, we may assume without loss of

generality that E1 and Er do not sprout and that Ei (2 ≤ i ≤ r − 1) sprouts on the left

or right, but not both. We now observe that any collection {Es, . . . , Es+t} such that Es

sprouts on the left (or s = 1), Es+t sprouts on the right (or s+ t = r), and Ek does not

sprout for s < k < s+ t, contains an A1/A1-attached elliptic chain of length t. �

Lemma 2.15 (Limits of Weierstrass chains). Let (H → ∆, τ) be a family in U2r,1 whose

generic fiber is a Weierstrass chain of length r. Then the special fiber satisfies one of

the following conditions:

(a) (H, p) contains an A1-attached Weirstrass chain of length ≤ r
(b) (H, p) contains an A1/A1-attached elliptic chain of length < r.

(c) (H, p) contains an A1 or A3-attached elliptic tail.

Proof. As in the proof of Lemma 2.14, let γ1, . . . , γr−1 be sections picking out the attach-

ing tacnodes in the general fiber. By Corollary 2.11, the limits γ1(0), . . . , γr−1(0) remain

tacnodes, so the normalization φ : H̃ → H along γ1, . . . , γr−1 is well-defined. We obtain

r − 1 families of 2-pointed curves of arithmetic genus 1 and a single family of 1-pointed

curves of genus 2:

H̃ =
r−1∐
i=1

(Ei, σ2i−1, σ2i)
∐

(Er, σ2r−1)

where σ1 := τ and φ−1(γi) = {σ2i, σ2i+1}.
As in the proof of Lemma 2.14, we must consider the possibility that some Ei’s sprout

in the special fiber. If Er sprouts on the left, then Er itself contains a Weierstrass tail,

so we may assume that this does not happen. Now let s < r be maximal such that Es

sprouts. If Es sprouts on the left, then Es ∪Es+1 ∪ . . .∪Er gives a Weierstrass chain in

the special fiber. If Es sprouts on the right, then arguing as in Lemma 2.14 produces an

A1/A1-attached elliptic chain in E1 ∪ . . . ∪ Es. �

Proposition 2.16.

(1) T A1 ∪ T Am is closed in Ug,n(A∞) for any odd m.

(2) BA1/A1 is closed in Ug,n(A∞)−
⋃
i∈{1,3} T Ai.

(3) T Am is closed in Ug,n(Am) for any even m.

(4) BAm/Am and BA1/Am are closed in Ug,n(Am)− T A1 − BA1/A1 for any even m.

(5) WAm is closed in Ug,n(A∞)−
⋃
i∈{1,3} T Ai − BA1/A1 for any odd m.

Proof. The given loci are obviously constructible, so it suffices to show that they are

closed under specialization.
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For (1), let (C → ∆, {σi}ni=1) be a family in Ug,n(A∞) whose generic fiber lies in

T A2k+1 . Possibly after a finite base change, let τ be the section picking out the attaching

A2k+1-singularity of the elliptic tail in the generic fiber. By Corollary 2.11, the limit

τ(0) is also A2k+1-singularity. Consider the normalization C̃ → C along τ . Let H ⊂ C̃
be the component whose generic fiber is an elliptic tail and let α be the preimage of

τ on H. Then ωH((k + 1)α) is relatively ample. We conclude that either ωH0(α(0)) is

ample, or α(0) lies on a rational curve attached nodally to the rest of H0. In the former

case, (H0, α(0)) is an elliptic tail by Lemma 2.13, so C0 contains an elliptic tail with

A2k+1-attaching, as desired. In the latter case, H0 contains an A1-attached elliptic tail.

We conclude that C0 ∈ T A1 ∪ T A2k+1 , as desired.

For (2), let (C → ∆, {σi}ni=1) be a family in Ug,n(A∞) whose generic fiber lies in BA1/A1

Possibly after a finite base change, let τ1, τ2 be the sections picking out the attaching

nodes of a length r elliptic chain in the general fiber. By Proposition 2.10, τ1(0) and

τ2(0) either remain nodes, or, if r = 1, can coalesce to form an outer A3-singularity. In

either case there exists a normalization of C along τ1 and τ2. Since Cη̄ becomes separated

after normalizing along τ1 and τ2, we conclude that the limit of the elliptic chain is a

connected component of C0 attached either along two nodes, or, only when r = 1, along

a separating A3-singularity. In the former case, C0 has an elliptic chain by Lemma 2.14.

In the latter case, C0 has arithmetic genus 1 connected component A3-attached to the

rest of the curve, so that C0 ∈ T A1 ∪ T A3 .

For (3) and (4), we argue as in (1) and (2), respectively, making use of the observation

that in Ug,n(Am), the limit of an Am-singularity must be an Am-singularity. The proof of

(5) is essentially identical to that of (1), using Lemma 2.15 in place of Lemma 2.13. �

Proof of Theorem 2.7. To begin, for αc = 9/11, 7/10, 2/3, Proposition 2.16 implies that

Mg,n(αc) is obtained by excising closed substacks from Ug,n(A2), Ug,n(A3),Ug,n(A4),

respectively. Next, observe that the locus of curves with αc-critical singularities is closed

in Mg,n(αc). Using the fact that

Mg,n(αc + ε) =Mg,n(αc) \ {curves with αc-critical singularities},

we conclude that Mg,n(αc + ε) ↪→ Mg,n(αc) is an open immersion. Finally, applying

Proposition 2.16 once more, we see that eachMg,n(αc− ε) is obtained by excising closed

substacks from Mg,n(αc). �

2.3. Properties of α-stability. In this section, we record several elementary properties
of α-stability that will be needed in subsequent arguments. Recall that if (C, {pi}ni=1)
is a Deligne-Mumford stable curve and q ∈ C is a node, then the pointed normalization

(C̃, {pi}ni=1, q1, q2) of C at q is Deligne-Mumford stable. The same statement holds for
α-stable curves.
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Lemma 2.17. Suppose (C, {pi}ni=1) is an α-stable curve and q ∈ C is a node. Then the

pointed normalization (C̃, {pi}ni=1, q1, q2) of C at q is α-stable.

Proof. Follows immediately from the definition of α-stability. �

Unfortunately, the converse of Lemma 2.17 is false. Nodally gluing two marked points
of an α-stable curve may fail to preserve α-stability if the two marked points are both
on the same component, or both on rational components – see Figure 7. The following
lemma says that these are the only problems that can arise.

Lemma 2.18.

(1) If (C̃1, {pi}ni=1, q1) and (C̃2, {pi}ni=1, q2) are α-stable curves, then

(C̃1, {pi}ni=1, q1) ∪ (C̃2, {pi}ni=1, q2)/(q1 ∼ q2)

is α-stable.

(2) If (C̃, {pi}ni=1, q1, q2) is an α-stable curve, then

(C̃, {pi}ni=1, q1, q2)/(q1 ∼ q2)

is α-stable provided one of the following conditions hold:

• q1 and q2 lie on disjoint irreducible components of C̃,

• q1 and q2 lie on distinct irreducible components of C̃, and at least one of

these components is not a smooth rational curve.

(A)

q1
q2

q2q1

(B)

Figure 7. In (A), two marked points on a genus 0 tail (resp., two con-

jugate points on an elliptic tail) are glued to yield an elliptic tail (resp.,

a Weierstrass tail). In (B), two marked points on distinct rational com-

ponents are glued to yield an elliptic bridge.

Proof. Let C := (C̃, q1, q2)/(q1 ∼ q2), and let φ : C̃ → C be the gluing morphism

which identifies q1, q2 to a node q ∈ C. It suffices to show that if E ⊂ C is an α-

unstable curve, then φ−1(E) is an α-unstable subcurve of C̃. The key observation is that

any α-unstable subcurve E has the following property: If E1, E2 ⊂ E are two distinct

irreducible components of E, then the intersection E1∩E2 never consists of a single node.
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Furthermore, if one of E1 or E2 is irrational, then the intersection E1∩E2 does not contain

any nodes. For elliptic tails, this statement is vacuous since elliptic tails are irreducible.

For elliptic and Weierstrass chains, it follows from examining the topological types of

elliptic bridges and Weierstrass tails (see Figure 6). From this observation, it follows that

no α-unstable E ⊂ C can contain both branches of q. Indeed, the hypotheses of (1) and

(2) each imply that either the two branches of the node q ∈ C lie on distinct irreducible

components whose intersection is precisely q, or else that that the two branches lie on

distinct irreducible components, one of which is irrational. Thus, we may assume that

E ⊂ C is disjoint from q or contains only one branch of q.

If E ⊂ C is disjoint from q, then φ−1 is an isomorphism in a neighborhood of E and

the statement is clear. If E ⊂ C contains only one branch of the node q, then q must be

an attaching point of E. We may assume without loss of generality that E contains the

branch labeled by q1. Now φ−1(E) → E is an isomorphism away from q1 and sends q1

to the node q. Since an α-unstable curve with nodal attaching is also α-unstable with

marked point attaching, φ−1(E) is an α-unstable subcurve of C̃. �

Corollary 2.19.

(1) Suppose that (C, {pi}ni=1, q1) is 9
11 -stable and (E, q′1) is an elliptic tail. Then

(C ∪ E, {pi}ni=1)/(q1 ∼ q′1) is 9
11 -stable.

(2) Suppose (C, {pi}ni=1, q1, q2) is 7
10 -stable and (E, q′1, q

′
2) is an elliptic chain. Then

(C ∪ E, {pi}ni=1)/(q1 ∼ q′1, q2 ∼ q′2) is 7
10 -stable.

(3) Suppose (C1, {pi}mi=1, q1) and (C2, {pi}ni=m+1, q2) are 7
10 -stable and (E, q′1, q

′
2) is

an elliptic chain. Then (C1 ∪ C2 ∪ E, {pi}ni=1)/(q1 ∼ q′1, q2 ∼ q′2) is 7
10 -stable.

(4) Suppose (C, {pi}ni=1, q1) is 7
10 -stable and (E, q′1, q

′
2) is an elliptic chain.

Then (C ∪ E, {pi}ni=1, q
′
2)/(q1 ∼ q′1) is 7

10 -stable.

(5) Suppose that (C, {pi}ni=1, q1) is 2
3 -stable and (E, q′1) is a Weierstrass chain.

Then (C ∪ E, {pi}ni=1)/(q1 ∼ q′1) is 2
3 -stable.

Proof. (1), (3), (4), and (5) follow immediately from Lemma 2.18. For (2), one must

apply Lemma 2.18 twice: First apply Lemma 2.18(1) to glue q1 ∼ q′1, then apply Lemma

2.18(2) to glue q2 ∼ q′2, noting that if q2 and q′2 do not lie on disjoint irreducible com-

ponents of (C ∪ E, {pi}ni=1, q2, q
′
2)/(q1 ∼ q′1), then E must be an irreducible genus one

curve, so q′2 does not lie on a smooth rational curve. �

Next, we consider a question which does not arise for Deligne-Mumford stable curves:
Suppose (C, {pi}ni=1) is an α-stable curve and q ∈ C is a non-nodal singularity with

m ∈ {1, 2} branches. When is the pointed normalization (C̃, {pi}ni=1, {qi}mi=1) of C at q
α-stable? One obvious obstacle is that ω

C̃
(Σn

i=1pi + Σm
i=1qi) need not be ample. Indeed,

one or both of the marked points qi may lie on a smooth P1 meeting the rest of the curve
in a single node. We thus define the stable pointed normalization of (C, {pi}ni=1) to be the

(possibly disconnected) curve obtained from C̃ by contracting these semistable P1’s. This
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is well-defined except in several degenerate cases: First, when (g, n) = (1, 1), (1, 2), (2, 1),
the stable pointed normalization of a cuspidal, tacnodal, and ramphoid cuspidal curve is
a point. In these cases, we regard the stable pointed normalization as being undefined.

Second, in the tacnodal case, it can happen that (C̃, {pi}ni=1, {qi}mi=1) has two connected
components, one of which is a smooth 2-pointed P1. In this case, we define the stable
pointed normalization to be the curve obtained by deleting this component and taking
the stabilization of the remaining connected component.

In general, the stable pointed normalization of an α-stable curve at a non-nodal sin-
gularity need not be α-stable. Nevertheless, there is one important case where this
statement does hold, namely when αc is a critical value and q ∈ C is an αc-critical
singularity.

Lemma 2.20. Let (C, {pi}ni=1) be an n-pointed curve with ωC(
∑

i pi) ample, and suppose

q ∈ C is an αc-critical singularity. Then the stable pointed normalization of (C, {pi}ni=1)

at q is αc-stable if and only if (C, {pi}ni=1) is αc-stable.

Proof. Follows from the definition of α-stability by an elementary case-by-case analysis.

�

2.4. αc-closed curves. We now give an explicit characterization of the closed points of
Mg,n(αc) when αc ∈ {9/11, 7/10, 2/3} is a critical value (see Theorem 2.23).

Definition 2.21 (αc-atoms).

(1) A 9
11 -atom is a 1-pointed curve of arithmetic genus one obtained by gluing

SpecC[x, y]/(y2 − x3) and SpecC[n] via x = n−2, y = n−3, and marking the

point n = 0.

(2) A 7
10 -atom is a 2-pointed curve of arithmetic genus one obtained by gluing

SpecC[x, y]/(y2 − x4) and SpecC[n1]
∐

SpecC[n2] via x = (n−1
1 , n−1

2 ), y =

(n−2
1 ,−n−2

2 ), and marking the points n1 = 0 and n2 = 0.

(3) A 2
3 -atom is a 1-pointed curve of arithmetic genus two obtained by gluing

SpecC[x, y]/(y2 − x5) and SpecC[n] via x = n−2, y = n−5, and marking the

point n = 0.

We will often abuse notation by simply writing E to refer to the αc-atom (E, q) if

αc ∈ {2/3, 9/11} (resp., (E, q1, q2) if αc = 7/10).

Every αc-atom E satisfies Aut(E) ' Gm, where the action of Gm = SpecC[t, t−1] is
given by

(2.2)

For αc = 9/11: x 7→ t−2x, y 7→ t−3y, n 7→ tn.

For αc = 7/10: x 7→ t−1x, y 7→ t−2y, n1 7→ tn1, n2 7→ tn2.

For αc = 2/3: x 7→ t−2x, y 7→ t−5y, n 7→ tn.

In order to describe the closed points of Mg,n(αc) precisely, we need the following
terminology. We say that C admits a decomposition C = C1 ∪ · · · ∪Cr if C1, . . . , Cr are
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A3

q1 q2q

A2

q

A4

Figure 8. A 9
11 -atom, 7

10 -atom, and 2
3 -atom, respectively.

proper subcurves whose union is all of C, and either Ci∩Cj = ∅ or Ci meets Cj nodally.
When (C, {pi}ni=1) is an n-pointed curve, and C = C1 ∪ · · · ∪ Cr is a decomposition of
C, we always consider Ci as a pointed curve by taking as marked points the subset of
{pi}ni=1 supported on Ci and the attaching points Ci ∩ (C\Ci).

Definition 2.22 (αc-closed curves). Let αc ∈ {2/3, 7/10, 9/11} be a critical value. We

say that an n-pointed curve (C, {pi}ni=1) is αc-closed if there is a decomposition C =

K ∪ E1 ∪ · · · ∪ Er, where

(1) E1, . . . , Er are αc-atoms.

(2) K is an (αc+ε)-stable curve containing no nodally attached αc-tails.

(3) K is a closed curve in the stack of (αc+ε)-stable curves.

We call K the core of (C, {pi}ni=1), and we call the decomposition C = K ∪E1 ∪ · · · ∪Er
the canonical decomposition of C. Of course, we consider K as a pointed curve where

the set of marked points is the union of {pi}ni=1 ∩ K and K ∩ (C \K). Note that we

allow the possibility that K is disconnected or empty.

We can now state the main result of this section.

Theorem 2.23 (Characterization of αc-closed curves). Let αc ∈ {9/11, 7/10, 2/3} be a

critical value. An αc-stable curve (C, {pi}ni=1) is a closed point of Mg,n(αc) if and only

if (C, {pi}ni=1) is αc-closed.

To prove the above theorem, we need several preliminary lemmas.

Lemma 2.24.

(1) Suppose (E, q) is an elliptic tail. Then (E, q) is a closed point of M1,1(9/11) if

and only if (E, q) is a 9
11 -atom.

(2) Suppose (E, q1, q2) is an elliptic bridge. Then (E, q1, q2) is a closed point of

M1,2(7/10) if and only if (C, q1, q2) is a 7
10 -atom.

(3) Suppose (E, q) is a Weierstrass tail. Then (C, q) is a closed point of M2,1(2/3)

if and only if (C, q) is a 2
3 -atom.

Proof. Case (1) follows from the observation thatM1,1(9/11) ' [C2/Gm], where Gm acts

with weights 4 and 6. Case (2) follows from the observation thatM1,2(7/10) ' [C3/Gm],

where Gm acts with weights 2, 3, and 4. The proofs of these assertions parallel our

argument in case (3) below, so we leave the details to the reader.
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We proceed to prove case (3). First, we show that if (E, q) is any Weierstrass tail,

then (E, q) admits an isotrivial specialization to a 2
3 -atom. To do so, we can write any

Weierstrass genus 2 tail as a degree 2 cover of P1 given by the equation

y2 = x5z + a3x
3z3 + a2x

2z4 + a1xz
5 + a0z

6

where ai ∈ C, and the marked point q corresponds to y = z = 0. Acting by λ · (x, y, z) =

(x, λy, λ2z), we see that this cover is isomorphic to

y2 = x5z + λ4a3x
3z3 + λ6a2x

2z4 + λ8a1xz
5 + λ10a0z

6

for any λ ∈ C∗. Letting λ → 0, we obtain an isotrivial specialization of (E, q) to the

double cover y2 = x5z, which is a 2
3 -atom.

Next, we show that if (E, q) is a 2
3 -atom, then (E, q) does not admit any nontrivial

isotrivial specializations in M2,1(2/3). Let (E → ∆, σ) be an isotrivial specialization in

M2,1(2/3) with generic fiber isomorphic to (E, q). Let τ be the section of E → ∆ which

picks out the unique ramphoid cusp of the generic fiber. Since the limit of a ramphoid

cusp is a ramphoid cusp inM2,1(2/3), τ(0) is also ramphoid cusp. Now let τ : Ẽ → E be

the simultaneous normalization of E along τ , and let τ̃ and σ̃ be the inverse images of τ

and σ respectively. Then (Ẽ → ∆, τ̃ , σ̃) is an isotrivial specialization of 2-pointed curves

of arithmetic genus 0 with smooth general fiber. The fact that ωE/∆(σ) is relatively

ample on E implies that ωẼ/∆(3τ̃ + σ̃) is relatively ample on Ẽ , which implies that the

special fiber of Ẽ is irreducible. It follows that (Ẽ → ∆, τ̃ , σ̃) is trivial. Finally, since

the generic fiber of E has trivial crimping at the ramphoid cusp, we conclude that E is

isotrivial. �

Lemma 2.25. Suppose (C, {pi}ni=1) is a closed point of Mg,n(αc+ε). Then (C, {pi}ni=1)

remains closed in Mg,n(αc) if and only if (C, {pi}ni=1) contains no nodally attached αc-

tails.

Proof. We prove the case αc = 2/3 and leave the other cases to the reader. To lighten

notation, we often omit marked points {pi}ni=1 in the rest of the proof.

First, we show that if (C, {pi}ni=1) has A1-attached Weierstrass tail, then it does not

remain closed in Mg,n(2/3). Suppose we have a decomposition C = K ∪ Z, where

(Z, q) is an A1-attached Weierstrass tail. By Lemma 2.24, (Z, q) admits an isotrivial

specialization to a 2
3 -atom (E, q1). We may glue this specialization to the trivial family

K × ∆ to obtain a nontrivial isotrivial specialization C  K ∪ E, where E is nodally

attached at q1. By Lemma 2.18, K ∪ E is 2
3 -stable, so this is a nontrivial isotrivial

specialization in Mg,n(2/3).

Next, we show that if (C, {pi}ni=1) has no nodally attached Weierstrass tails, then

it remains closed in Mg,n(2/3). In other words, if there exists a nontrivial isotrivial

specialization C  C0, then C necessarily contains a nodally attached Weierstrass tail.
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To begin, note that the special fiber C0 of the nontrivial isotrivial specialization C → ∆

must contain at least one ramphoid cusp. Otherwise, (C → ∆, {σi}ni=1) would constitute

a nontrivial isotrivial specialization in Mg,n(2/3 + ε), contradicting the hypothesis that

(C, {pi}ni=1) is closed inMg,n(2/3+ε). For simplicity, let us assume that the special fiber

C0 contains a single ramphoid cusp q. Locally around this point, we may write C as

y2 = x5 + a3(t)x3 + a2(t)x2 + a1(t)x+ a0(t),

where t is the uniformizer of ∆ at 0 and ai(0) = 0. By [CML13, Section 7.6], after

possibly a finite base change, there exists a (weighted) blow-up φ : C̃ → C such that

the special fiber C̃0 is isomorphic to the normalization of C at q attached nodally to a

curve T , where T is defined by an equation y2 = x5 + b3x
3z2 + b2x

2z3 + b1xz
4 + b0z

5 on

P(2, 5, 2) for some [b3 : b2 : b1 : b0] ∈ P(4, 6, 8, 10) (depending on the ai(t)) and such that

T is attached to C at [x : y : z] = [1 : 1 : 0]. Evidently, T is a genus 2 double cover of P1

via the projection [x : y : z] 7→ [x : z] and [x : y : z] = [1 : 1 : 0] is a ramification point of

this cover. It follows that C̃0 has a Weierstrass tail.

Now let C̃ → C̃s be the stabilization morphism contracting all P1’s in the central fiber

that meet the rest of C̃0 in only two nodes. The central fiber of C̃s is now isomorphic

to the nodal union of the stable pointed normalization of C0 at q and the Weierstrass

tail T . By Lemma 2.20 and Corollary 2.19, (C̃s0, {pi}ni=1) is α-stable. Since it contains

no ramphoid cusps, it is also (αc+ ε)-stable. By hypothesis, (C, {pi}ni=1) is closed in

Mg,n(α+ ε), so the family (C̃s → ∆, {σi}ni=1) must be trivial. This implies that the

generic fiber (C, {pi}ni=1) must have a nodally attached Weierstrass tail. �

The following lemma says that one can use isotrivial specializations to replace αc-
critical singularities and αc-tails by αc-atoms.

Lemma 2.26. Let (C, {pi}ni=1) be an n-pointed curve, and let E be the αc-atom.

(1) Suppose q ∈ C is an αc-critical singularity. Then there exists an isotrivial spe-

cialization C  C0 = C̃ ∪ E to an n-pointed curve C0 which is the nodal union of E

and the stable pointed normalization C̃ of C at q along the marked point(s) of E and the

pre-image(s) of q in C̃.

(2) Suppose C decomposes as C = K ∪Z, where Z is an αc-tail. Then there exists an

isotrivial specialization C  C0 = K ∪ E to an n-pointed curve C0 which is the nodal

union of K and E along the marked point(s) of E and K ∩ Z.

Proof. We prove the case αc = 2/3, and leave the remaining two cases to the reader. For

(1), let C ×∆ be the trivial family, let C̃ → C ×∆ be the normalization along q ×∆,

and let C̃′ → C̃ be the blow-up of C̃ at the point lying over (q, 0). Let τ denote the

strict transform of q ×∆ on C̃′, and note that τ passes through a smooth point of the

exceptional divisor. A local calculation shows that there exists a finite map ψ : C̃′ → C′

such that ψ is an isomorphism on C̃′ − τ , so that C′ has a ramphoid cusp along ψ ◦ τ ,
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and the ramphoid cuspidal rational tail in the central fiber is an αc-atom, i.e., has trivial

crimping. Blowing down any semistable P1’s in the central fiber of C′ → ∆ (these

appear, for example, when q lies on an unmarked P1 attached nodally to the rest of the

curve), we arrive at the desired isotrivial specialization. For (2), note that there exists

an isotrivial specialization (Z, q1)  (E, q1) by Lemma 2.24. Gluing this to the trivial

family (K ×∆, q1 ×∆) gives the desired isotrivial specialization. �

Proof of Theorem 2.23. We consider the case αc = 2/3, and leave the other two cases

to the reader. First, we show that every 2
3 -closed curve (C, {pi}ni=1) is a closed point

of Mg,n(2/3). Let (C → ∆, {σi}ni=1) be any isotrivial specialization of (C, {pi}ni=1) in

Mg,n(2/3); we will show it must be trivial. Let C = K ∪ E1 ∪ · · · ∪ Er be the canonical

decomposition and let qi = K ∩ Ei. Each qi is a disconnecting node in the general fiber

of C → ∆, so qi specializes to a node in the special fiber by Corollary 2.11. Possibly

after a finite base change, we may normalize along the corresponding nodal sections

to obtain isotrivial specializations K and E1, . . . , Er. By Lemma 2.17, K is a family in

Mg−2r,n+r(2/3) and E1, . . . , Er are families inM2,1(2/3). Since K contains no Weierstrass

tails in the general fiber, it is trivial by Lemma 2.25. The families E1, . . . , Er are trivial

by Lemma 2.24. It follows that the original family (C → ∆, {σi}ni=1) is trivial, as desired.

Next, we show that if (C, {pi}ni=1) ∈Mg,n(2/3) is a closed point, then (C, {pi}ni=1) must

be 2
3 -closed. First, we claim that every ramphoid cusp of C must lie on a nodally attached

2
3 -atom. Indeed, if q ∈ C is a ramphoid cusp that does not lie on a nodally attached
2
3 -atom, then Lemma 2.26 gives an isotrivial specialization (C, {pi}ni=1)  (C0, {pi}ni=1)

in which C0 sprouts a nodally attached 2
3 -atom at q. Note that (C0, {pi}ni=1) is 2

3 -stable

by Lemma 2.20 and Corollary 2.19, so this gives a nontrivial isotrivial specialization in

Mg,n(2/3). Second, we claim that C contains no nodally attached Weierstrass tails that

are not 2
3 -atoms. Indeed, if it does, then Lemma 2.26 gives an isotrivial specialization

(C, {pi}ni=1)  (C0, {pi}ni=1) that replaces this Weierstrass tail by a 2
3 -atom. Note that

(C0, {pi}ni=1) is 2
3 -stable by Lemma 2.17 and Corollary 2.19, so this gives a nontrivial

isotrivial specialization in Mg,n(2/3). It is now easy to see that C is 2
3 -closed. Indeed,

if E1, . . . , Er are the nodally attached 2
3 -atoms of C, then the complement K has no

ramphoid cusps and no nodally attached Weierstrass tails. Since K is 2
3 -stable and has

no ramphoid cusps, it is (23 +ε)-stable. Furthermore, K must be closed in Mg,n(2/3+ε),

since a nontrivial isotrivial specialization of K inMg,n(2/3+ε) would induce a nontrivial,

isotrivial specialization of (C, {pi}ni=1) in Mg,n(2/3). We conclude that (C, {pi}ni=1) is
2
3 -closed as desired. �

2.5. Combinatorial type of an αc-closed curve. In the previous section, we saw that
every αc-stable curve which is closed inMg,n(αc) has a canonical decomposition C = K∪
E1∪· · ·∪Er where E1, . . . , Er are the αc-atoms of C. We wish to use this decomposition
to compute the local VGIT chambers associated to C. For the two critical values αc ∈
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{7/10, 9/11}, the pointed curve K does not have infinitesimal automorphisms and does
not affect this computation. However, if αc = 2/3, then K may have infinitesimal
automorphisms due to the presence of rosaries (see Definition 2.27), which leads us to
consider a slight enhancement of the canonical decomposition. Once we have taken care
of this wrinkle, we define the combinatorial type of an αc-closed curve in Definition 2.33.
The key point of this definition is that it establishes the notation that will be used in
carrying out the local VGIT calculations in Section 3.

Definition 2.27 (Rosaries). We say that (R, r1, r2) is a rosary of length ` if there exists

a surjective gluing morphism

γ :
∐̀
i=1

(Ri, q2i−1, q2i) ↪→ (R, r1, r2)

satisfying:

(1) (Ri, q2i−1, q2i) is a 2-pointed smooth rational curve for i = 1, . . . , `.

(2) γ is an isomorphism when restricted to Ri \ {q2i−1, q2i} for i = 1, . . . , `.

(3) γ(q2i) = γ(q2i+1) is an A3-singularity for i = 1, . . . , `− 1.

(4) γ(q1) = r1 and γ(q2`) = r2.

We say that (C, {pi}ni=1) has an Ak1/Ak2-attached rosary of length ` if there exists a

gluing morphism γ : (R, r1, r2) ↪→ (C, {pi}ni=1) such that

(a) (R, r1, r2) is a rosary of length `.

(b) For j = 1, 2, γ(rj) is an Akj -singularity of C, or kj = 1 and γ(rj) is a marked

point of (C, {pi}ni=1).

We say that C is a closed rosary of length ` if C hasA3/A3-attached rosary γ : (R, r1, r2) ↪→
C of length ` such that γ(r1) = γ(r2) is an A3-singularity of C.

Remark 2.28. An A1/A1-attached rosary of even length is an elliptic chain and thus can

never appear in a (7/10− ε)-stable curve.

p1 p2

000 0

0

0

0

(A) (B)

Figure 9. Curve (A) is a rosary of length 3. Curve (B) is a closed rosary

of length 4.
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Note that if (R, r1, r2) is a rosary, then Aut(R, r1, r2) ' Gm. Hassett and Hyeon
showed that all infinitesimal automorphisms of (7/10− ε)-stable curves are accounted for
by rosaries [HH13, Section 8]. In Proposition 2.29 and Corollary 2.30, we record a slight
refinement of their result.

Proposition 2.29. Suppose (C, {pi}ni=1) is (7/10−ε)-stable with Aut(C, {pi}ni=1)◦ ' Gd
m.

Then one of the following holds:

(1) There exists a decomposition C = C0∪R1∪· · ·∪Rd, where each Ri is an A1/A1-

attached rosary of odd length, and C0 contains no A1/A1-attached rosaries. Note

that we allow C0 to be empty.

(2) d = 1 and C is a closed rosary of even length.

Proof. Consider first the case in which C is simply a chain of rational curves, say

T1, . . . , Tk, where Ti meets Ti+1 in a single point, and Tk meets T1 in a single point.

These attaching points may be either nodes or tacnodes. If every attaching point is a

tacnode, then C is a closed rosary of length k, and so we are in case (2). Namely, if

k is even, then Aut(C, {pi}ni=1)◦ ' Gm and if k is odd, then Aut(C, {pi}ni=1)◦ is trivial.

If some of the attaching points are nodes, then the set of rational curves between any

two consecutive nodes in the chain are tacnodally attached and thus constitute A1/A1-

attached rosary. In other words, we are in case (1) with C0 empty.

From now on, we may assume that not all components of C are rational curves

meeting the rest of the curve in two points. In particular, there exist components on

which Aut(C, {pi}ni=1)◦ acts trivially. We proceed by induction on the dimension of

Aut(C, {pi}ni=1)◦, noting that if dimension is 0, there is nothing to prove.

Note that if Aut(C, {pi}ni=1)◦ acts nontrivially on a component T1 and T1 meets a

component S on which Aut(C, {pi}ni=1)◦ acts trivially, then their point of attachment

must be a node (and not a tacnode). This follows immediately from the fact that an

automorphism of P1 which fixes two points and the tangent space at one of these points

must be trivial. Now let T1, . . . , T` be the maximal length chain containing T1 on which

Aut(C, {pi}ni=1)◦ acts nontrivially; we have just argued that T1 and T` must be attached

to the rest of C at nodes. If each Ti is tacnodally attached to Ti+1, then R := T1∪· · ·∪T`
is an A1/A1-attached rosary in C. If some Ti is attached to Ti+1 at a node, then choosing

minimal such i, we see that R := T1 ∪ · · · ∪ Ti is an A1/A1-attached rosary. Thus, C

contains an A1/A1-attached rosary R, necessarily of odd length by Remark 2.28. If R is

not all of C, then the dimension of Aut(C \R, {pi}ni=1)◦ is one less than the dimension

of Aut(C, {pi}ni=1)◦, so we are done by induction. �

Corollary 2.30. Suppose (C, {pi}ni=1) is a closed (7/10−ε)-stable curve with Aut(C, {pi}ni=1)◦ '
Gd
m. Then there exists a decomposition C = C0∪R1∪· · ·∪Rd where each Ri is an A1/A1-

attached rosary of length 3.
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Proof. This follows immediately from Proposition 2.29 and two observations:

• If R is a rosary of odd length ` ≥ 5, then R admits an isotrivial specialization to

the nodal union of a rosary of length 3 and a rosary of length `− 2.

• A closed rosary of even length ` admits an isotrivial specialization to the nodal

union of `/2 rosaries of length 3 arranged in a closed chain.

�

In order to compute the local VGIT chambers for an αc-closed curve, it will be useful
to have the following notation.

Definition 2.31 (Links). A 7
10 -link of length ` is a 2-pointed curve (E, p1, p2) which

admits a decomposition

E = E1 ∪ · · · ∪ E` such that:

(1) qj := Ej ∩ Ej+1 is a node of E for j = 1, . . . , `− 1.

(2) q0 := p1 is a marked point of E1 and q` := p2 is a marked point of E`.

(3) (Ej , qj−1, qj) is a 7
10 -atom for j = 1, . . . , `.

A 2
3 -link of length ` is a 1-pointed curve (E, p) which admits a decomposition

E = R1 ∪ · · · ∪R`−1 ∪ E` such that:

(1) qj := Rj ∩Rj+1, for j = 1, . . . , `− 2, and q`−1 := R`−1 ∩ E` is a node of E.

(2) q0 := p is a marked point of R1.

(3) (Rj , qj−1, qj) is a rosary of length 3 for j = 1, . . . , `−1, and (E`, q`−1) is a 2
3 -atom.

When we refer to a 7
10 -link (E, p1, p2) (resp., 2

3 -link (E, p)) as a subcurve of a larger

curve, we always take it to be A1/A1-attached at p1 and p2 (resp., at p).

A3 A3A3

p1 p6

(A)

(B)
A4

p
A3 A3 A3 A3

Figure 10. Curve (A) (resp., (B)) is a 7
10 -link (resp., 2

3 -link) of length 3.

Each component above is a rational curve.
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Now let C = K ∪ E1 ∪ · · · ∪ Er be the canonical decomposition of an αc-closed curve
C, where K is the core and Ei’s are αc-atoms (see Definition 2.22). Observe that as long
as K 6= ∅, then each 7

10 -atom (resp., 2
3 -atom) Ei of a 7

10 -closed (resp., 2
3 -closed) curve is

a component of a unique 7
10 -link (resp., 2

3 -link) of maximal length. When αc = 2/3, we
make the following definition.

Definition 2.32 (Secondary core for αc = 2/3). Suppose C = K ∪ E1 ∪ . . . ∪ Er is the

canonical decomposition of a 2
3 -closed curve C. For each 2

3 -atom Ei, let Li be the maximal

length 2
3 -link containing Ei. We call K ′ := C \ (L1 ∪ · · · ∪ Lr) the secondary core of C,

which we consider as a curve marked with the points ({pi}ni=1 ∩ K ′) ∪ (K ′ ∩ (C \K ′).
The secondary core has the property that any A1/A1-attached rosary R ⊆ K ′, satisfies

R ∩ Li = ∅ for i = 1, . . . , r.

We can now define combinatorial types of αc-closed curves. We refer the reader to
Figure 11 for a graphical accompaniment of the following definition.

Definition 2.33 (Combinatorial Type of αc-closed curve).

• A 9
11 -closed curve (C, {pi}ni=1) has combinatorial type

(A) If the core K is nonempty. In this case,

C = K ∪ E1 ∪ · · · ∪ Er,

where each Ei is a 9
11 -atom with a cusp ξi, and Ei meets K at a single node qi.

(B) If (g, n) = (2, 0) and C = E1 ∪ E2 where E1 and E2 are 9
11 -atoms meeting each

other in a single node q ∈ C.

(C) If (g, n) = (1, 1) and C = E1 is a 9
11 -atom.

• A 7
10 -closed curve (C, {pi}ni=1) has combinatorial type

(A) If the core is nonempty. In this case, we have

C = K ∪ L1 ∪ · · · ∪ Lr ∪ Lr+1 ∪ · · · ∪ Lr+s

where

• For i = 1, . . . , r: Li =
⋃`i
j=1Ei,j is a 7

10 -link of length `i meeting K at two

distinct nodes. In particular, Ei,1 meets K at a node qi,0, Ei,`i meets K at

a node qi,`i , and Ei,j meets Ei,j+1 at a node qi,j .

• For i = r + 1, . . . , r + s: Li =
⋃`i
j=1Ei,j is a 7

10 -link of length `i meeting

K at a single node and terminating in a marked point. In particular, Ei,1

meets K at a node qi,0, and Ei,j meets Ei,j+1 at a node qi,j .

(B) If n = 2 and (C, p1, p2) is a 7
10 -link of length g, i.e. C = E1 ∪ · · · ∪Eg where each

Ej is a 7
10 -atom, Ej meets Ej+1 at a node qj ; and we have p1 ∈ E1 and p2 ∈ Eg.

(C) If n = 0 and C is a 7
10 -link of length g − 1, whose endpoints are nodally glued.

In other words, C = E1 ∪ · · · ∪Eg−1, where each Ej is a 7
10 -atom, Ej meets Ej+1

at a node qj , and E1 meets Eg−1 at a node q0.



LOG MINIMAL MODEL PROGRAM FOR Mg,n: THE SECOND FLIP 29

T
y
p

e
A

T
y
p

e
B

T
y
p

e
C

A3A3

Er

A3A3

E1

A3A3

Er+s

A3A3

Er+1

pjr+1

pjr+s

K

p1 pn

p1

pn

K

A4

E1

A4

E2

A4

Er

A3A3

p1 p2

A4

p1

A3

A3A3

E0

E1El−1

A4 A4

αc =
7
10 αc =

2
3

Figure 11. The left (resp. right) column indicates the combinatorial

types of 7
10 -closed (resp. 2

3 -closed) curves.

• A 2
3 -closed curve (C, {pi}ni=1) has combinatorial type

(A) If the secondary core K ′ is nonempty. In this case, we write

C = K ′ ∪ L1 ∪ · · · ∪ Lr

where for i = 1, . . . , r, Li =
⋃`i−1
j=1 Ri,j ∪Ei is a 2

3 -link of length `i. In particular,

Ei is a 2
3 -atom and each Ri,j is a length 3 rosary such that Ri,1 meets K ′ at a

node qi,0, Ri,j meets Ri,j+1 at a node qi,j , and Ri,`i−1 meets Ei in a node qi,`i−1.

We denote the tacnodes of the rosary Ri,j by τi,j,1 and τi,j,2, and the unique

ramphoid cusp of Ei by ξi.
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(B) If n = 1, g = 2` and (C, p1) is a 2
3 -link of length `, i.e. C = R1 ∪ · · · ∪R`−1 ∪E`,

where R1, . . . , R`−1 are rosaries of length 3 with p1 ∈ R1 and E` is a 2
3 -atom. For

j = 1, . . . , `− 1, we label the tacnodes of Rj as τj,1 and τj,2, the node where Rj

intersects Rj+1 as qj , the node where R`−1 intersects E` as q`−1 and the unique

ramphoid cusp of E` as ξ.

(C) If n = 0, g = 2`+ 2 and C is the nodal union of two 2
3 -links, i.e. C = E0 ∪R1 ∪

· · ·∪R`−1∪E`, where E0, E` are 2
3 -atoms, and R1, . . . , R`−1 are rosaries of length

3. For j = 1, . . . , ` − 2, Rj intersects Rj+1 at a node qj , E0 intersects R1 in a

node q0, and R`−1 intersects E` in a node q`−1. We label the ramphoid cusps of

E0, E` as ξ0, ξ`, and the tacnodes of Rj as τj,1 and τj,2.

3. Local description of the flips

In this section, we give an étale local description of the open immersions

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc−ε)

from Theorem 2.7 at each critical value αc ∈ {2/3, 7/10, 9/11}.
Roughly speaking, our main result says that, étale locally around any closed point of

Mg,n(αc), these inclusions are induced by a variation of GIT problem. In Section 3.1, we
collect several basic facts concerning local variation of GIT that will be used in subsequent
sections. In Section 3.2, we develop the necessary background material on local quotient
presentations and local VGIT in order to state our main result (Theorem 3.19). In
Section 3.3, we describe explicit coordinates on the formal miniversal deformation space
of an αc-closed curve. In Section 3.4, we use these coordinates to compute the associated
VGIT chambers and thus conclude the proof of Theorem 3.19.

3.1. Preliminary facts about local VGIT. Here, we collect several basic facts con-
cerning variation of GIT for the action of a reductive group on an affine scheme that will
be needed in subsequent sections. In particular, we formulate a version of the Hilbert-
Mumford criterion that will be useful for computing the VGIT chambers associated to
an αc-closed curve. We refer the reader to [Tha96] and [DH98] for the general setup of
variation of GIT.

Recall that if G is a reductive group acting on an affine scheme X = SpecA by σ : G×
X → X, there is a natural correspondence between G-linearizations of the structure sheaf
OX and characters χ : G → Gm = SpecC[t, t−1]. Precisely, a character χ defines a G-
linearization L of the structure sheaf OX as follows. The element χ∗(t) ∈ Γ(G,O∗G)
induces a G-linearization σ∗OX → p∗2OX defined by p∗1(χ∗(t))−1 ∈ Γ(G×X,O∗G×X). We
can now associate to χ the semistable loci Xss

L and Xss
L−1 (cf. [Mum65, Definition 1.7]).

The following definition describes explicitly the change in semistable locus as we move
from χ to χ−1 in the character lattice of G.

Definition 3.1 (VGIT chambers). Let G be a reductive group acting on an affine scheme

X = SpecA. Let χ : G→ Gm be a character and set

An := {f ∈ A | σ∗(f) = χ∗(t)−nf} = Γ(X,L⊗n)G.
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We define the VGIT ideals associated to χ to be:

I+
χ := (f ∈ A | f ∈ An for some n > 0),

I−χ := (f ∈ A | f ∈ An for some n < 0).

The VGIT (+)-chamber and (−)-chamber of X associated to χ are the open subschemes

X+
χ := X \ V(I+

χ ) ↪→ X, X−χ := X \ V(I−χ ) ↪→ X.

Since the open subschemes X+
χ , X−χ are G-invariant, we also have stack-theoretic open

immersions

[X+
χ /G] ↪→ [X/G]←↩ [X−χ /G].

We will refer to these open immersions as the VGIT (+)/(−)-chambers of [X/G] asso-

ciated to χ.

Remark 3.2. For an alternative characterization of X+
χ , note that χ−1 defines an action

of G on X × A1 via g · (x, s) = (g · x, χ(g)−1 · s). Then x ∈ X+
χ if and only if the orbit

closure G · (x, 1) does not intersect the zero section X × {0}.
It follows from the above definitions and [Mum65, Theorem 1.10] that the natural

inclusions of VGIT (+)/(−)-chambers induce projective morphisms of GIT quotients:

Proposition 3.3. Let L be the G-linearization of the structure sheaf on X corresponding

to a character χ. Then there are natural identifications of X+
χ and X−χ with the semistable

loci Xss
L and Xss

L−1, respectively. There is a commutative diagram

X+
χ

��

� � // X

��

X−χ?
_oo

��
X+
χ //G := Proj

⊕
d≥0Ad

// SpecA0 Proj
⊕

d≥0A−d =: X−χ //Goo

where X → SpecA0, X+
χ → X+

χ //G and X−χ → X−χ //G are GIT quotients. The restric-

tion of L to X+
χ (resp., L−1 to X−χ ) descends to line bundle O(1) on X+

χ //G (resp., O(1)

on X−χ //G) relatively ample over SpecA0. In particular, for every point x ∈ X+
χ ∪X−χ ,

the character of Gx corresponding to L|BGx is trivial.

�

Definition 3.4. Recall that given a character χ : G → Gm and a one-parameter sub-

group ρ : Gm → G, the composition χ ◦ ρ : Gm → Gm is naturally identified with the

integer n such that (χ ◦ ρ)∗t = tn. We define the pairing of χ and ρ as 〈χ, ρ〉 = n.

Proposition 3.5 (Affine Hilbert-Mumford criterion). Suppose G is a reductive group

over SpecC acting on an affine scheme X = SpecA of finite type over SpecC. Let

χ : G → Gm be a character. Let x ∈ X(C). Then x /∈ X+
χ (resp., x /∈ X−χ ) if and only

if there exists a one-parameter subgroup ρ : Gm → G with 〈χ, ρ〉 > 0 (resp., 〈χ, ρ〉 < 0)

such that limt→0 ρ(t) · x exists.
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Proof. Consider the action of G on X ×A1 induced by χ−1 as in Remark 3.2. Then x /∈
X+
χ if and only if G · (x, 1)∩ (X ×{0}) 6= ∅. By the Hilbert-Mumford criterion [Mum65,

Theorem 2.1], this is equivalent to the existence of a one-parameter subgroup ρ : Gm → G

such limt→0 ρ(t) · (x, 1) ∈ X × {0}. We are done by observing that limt→0 ρ(t) · (x, 1) =

limt→0(ρ(t) · x, t〈χ,ρ〉) ∈ X × {0} if and only if limt→0 ρ(t) · x exists and 〈χ, ρ〉 > 0. �

The following are three immediate corollaries of Proposition 3.5:

Corollary 3.6. Let Gi be reductive groups acting on affine schemes Xi of finite type

over SpecC and χi : Gi → Gm be characters for i = 1, . . . , n. Consider the diagonal

action of G =
∏
iGi on X =

∏
iXi and the character χ =

∏
i χi : G→ Gm. Then

X \X+
χ =

n⋃
i=1

X1 × · · · × (Xi \ (Xi)
+
χi)× · · · ×Xn,

X \X−χ =
n⋃
i=1

X1 × · · · × (Xi \ (Xi)
−
χi)× · · · ×Xn.

Corollary 3.7. Let G be a reductive group over SpecC acting on an affine X = SpecA

of finite type over SpecC. Let χ : G→ Gm be a character. Let Z ⊆ X be a G-invariant

closed subscheme. Then Z+
χ = X+

χ ∩ Z and Z−χ = X−χ ∩ Z.

Corollary 3.8. Let G be a reductive group with character χ : G→ Gm. Suppose G acts

on an affine scheme X = SpecA of finite type over SpecC. Let G◦ be the connected

component of the identity and χ◦ = χ|G◦. Then the VGIT chambers X+
χ , X

−
χ for the

action of G on X are equal to the VGIT chambers X+
χ◦ , X

−
χ◦ for action of G◦ on X.

Proposition 3.9. Let G be a reductive group acting on an affine variety X of finite

type over SpecC. Let χ : G → Gm be a non-trivial character. Let ρ : Gm → G be a

one-parameter subgroup and x ∈ X−χ (C) such that x0 = limt→0 ρ(t) · x ∈ XG is fixed by

G. Then 〈χ, ρ〉 > 0.

Proof. As x ∈ X−χ , we have 〈χ, ρ〉 ≥ 0 by Proposition 3.5. Suppose 〈χ, ρ〉 = 0. Consid-

ering the action of G on X × A1 induced by χ as in Remark 3.2, we obtain

lim
t→0

ρ(t) · (x, 1) = (x0, 1) ∈ XG × A1.

But XG is contained in the unstable locus X \X−χ since χ is a nontrivial linearization.

It follows that G · (x, 1) ∩ (XG × {0}) 6= ∅ which contradicts x ∈ X−χ . �

Lemma 3.10. Let G be a reductive group with character χ : G→ Gm and h : SpecA =

X → Y = SpecB be a G-invariant morphism of affine schemes finite type over SpecC.

Assume that A = B ⊗BG AG. Then h−1(Y +
χ ) = X+

χ and h−1(Y −χ ) = X−χ .

Proof. We use Proposition 3.5. If x /∈ X+
χ , then there exists ρ : Gm → G with 〈χ, ρ〉 > 0

such that x0 = limt→0 ρ(t) · x exists. It follows that h(x0) = limt→0 ρ(t) · h(x) exists,
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and so h(x) /∈ Y +
χ . We conclude that h−1(Y +

χ ) ⊆ X+
χ . Conversely, suppose h(x) /∈ Y +

χ .

Then there exists ρ : Gm → G with 〈χ, ρ〉 > 0 such that limt→0 ρ(t) · h(x) exists. Since

limt→0 ρ(t) · h(x) exists and since both SpecA → SpecAG and SpecB → SpecBG are

GIT quotients, there is a commutative diagram

SpecC[t]

((

""

&&
SpecA

h //

��

SpecB

��
SpecAG // SpecBG

Since the square is Cartesian, the map Gm = SpecC[t, t−1] → SpecA given by t 7→
ρ(t) · x extends to SpecC[t] → SpecA. It follows that x /∈ X+

χ . We conclude that

X+
χ ⊆ h−1(Y +

χ ). �

Lemma 3.11. Let G be a reductive group acting on a smooth affine variety W = SpecB

over SpecC. Let w ∈ W be a fixed point of G. Let χ : G → Gm be a character. There

is a Zariski-open affine neighborhood W ′ ⊆ W containing w and a G-invariant étale

morphism h : W ′ → T = SpecC[TW,w], where TW,w is the tangent space at w, such that

h−1(T+
χ ) = W ′+χ h−1(T−χ ) = W ′−χ .

Proof. The maximal ideal m ⊆ B of w ∈ W is G-invariant. Since G is reductive, there

exists a splitting m/m2 ↪→ m of the surjection m → m/m2 of G-representations. The

inclusion m/m2 ↪→ m ⊆ B induces a morphism on algebras Sym∗m/m2 → B which

is G-equivariant which in turns gives a G-equivariant morphism h : SpecB → T étale

at w ∈ W . By applying Luna’s Fundamental Lemma (see [Lun73]), there exists a G-

invariant open affine W ′ = SpecB′ ⊆ SpecB containing w such that the diagram

SpecB′ //

��

SpecC[TW,w]

��
SpecB′G // SpecC[TW,w]G

is Cartesian with SpecB′G → SpecC[TW,w]G étale. From Lemma 3.10, the induced map

h|W ′ : W ′ → T satisfies h|−1
W ′(T

+
χ ) = W ′+χ and h|−1

W ′(T
−
χ ) = W ′−χ . �

3.2. Local quotient presentations.

Definition 3.12. Let X be an algebraic stack of finite type over SpecC, and let x ∈ X (C)

be a closed point. We say that f : W → X is a local quotient presentation around x if

(1) The stabilizer Gx of x is reductive.

(2) W = [SpecA/Gx], where A is a finite type C-algebra.
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(3) f is étale and affine.

(4) There exists a point w ∈ W(C) such that f(w) = x and f induces an isomorphism

Gw ' Gx.

We sometimes write f : (W, w)→ (X , x) as a local quotient presentation to indicate the

chosen preimage of x. We say that X admits local quotient presentations if there exist

local quotient presentations around all closed points x ∈ X (C).

The following result shows that Mg,n(α) admits local quotient presentations:

Proposition 3.13 ([AK14, §2.1]). Let k be an algebraically closed field. Let X be a

quotient stack [U/G] where U is a normal separated scheme of finite type over k and G

is an algebraic group over k. If x ∈ X (k) is a point with linearly reductive stabilizer,

then there exists a local quotient presentation f : W → X around x.

Corollary 3.14. For each α > 2/3−ε, Mg,n(α) admits local quotient presentations.

Proof of Corollary 3.14. By definition of α-stability, each Mg,n(α) can be realized as

[X/G], where X is a non-singular locally closed subvariety of the Hilbert scheme of some

PN and G = PGL(N+1). By Proposition 2.6, stabilizers of α-stable curves are reductive.

Thus we can apply Proposition 3.13. �

Next, we show how to use the data of a line bundle L on a stack X to define VGIT
chambers associated to every local quotient presentation of X . In this situation, note
that if x ∈ X (C) is any point, then there is a natural action of the automorphism group
Gx on the fiber L|BGx that induces a character χL : Gx → Gm.

Definition 3.15 (VGIT chambers of a local quotient presentation). Let X be an alge-

braic stack of finite type over SpecC and let L be a line bundle on X . Let x ∈ X be a

closed point. If f : W = [SpecA/Gx] → X is a local quotient presentation around x,

we define the chambers of W associated to L to be the VGIT (+)/(−)-chambers

W+
L ↪→W ←↩W−L

of W associated to the character χL : Gx → Gm (see Definition 3.1).

Definition 3.16. Suppose X is an algebraic stack of finite type over SpecC that admits

local quotient presentations and L is a line bundle on X . We say that open substacks

X+ and X− of X arise from local VGIT with respect to L at a point x ∈ X if there exists

a local quotient presentation f : W = [SpecA/Gx]→ X around x such that f∗L is the

line bundle corresponding to the linearization of OSpecA by χL and such that there is a

Cartesian diagram:

W+
L

��

� � // W

f

��

W−L?
_oo

��
X+ � � // X X−? _oo

(3.1)
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The following key technical result allows to check that two given open substacks X+

and X− arise from local VGIT with respect to a given line bundle L on X by working
formally locally.

Proposition 3.17. Let X be a smooth algebraic stack of finite type over SpecC that

admits local quotient presentations. Let L be a line bundle on X . Let X+ and X−

be open substacks of X . Let x ∈ X be a closed point and let χ : Gx → Gm be the

character induced from the action of Gx on the fiber of L over x. Let T1(x) be the

first-order deformation space of x, let A = C[T1(x)], and let Â = C[[T1(x)]] be the

completion of A at the origin. The affine space T = SpecA inherits an action of Gx.

Let IZ+ , IZ− ⊆ Â be the ideals defined by the reduced closed substacks Z+ = X \X+ and

Z− = X \ X−. Let I+, I− ⊆ A be the VGIT ideals associated to χ and corresponding to

the Gx-invariant closed subschemes T \ T+
χ and T \ T−χ . If IZ+ = I+Â and IZ− = I−Â,

then X+ ↪→ X ←↩ X− arise from local VGIT with respect to L at x.

Proof. Let f : W = [W/Gx] → X be an étale local quotient presentation around x

where W = SpecB, with w ∈ W a chosen preimage of x ∈ X . By Lemma 3.11,

after shrinking W, we may assume that there is an induced Gx-invariant morphism

h : W → T = SpecC[T1(x)] such that h−1(T+
χ ) = W+

χ and h−1(T−χ ) = W−χ . This

provides a diagram

Spf Â // W = [SpecB/Gx]

��

h

))
X Y = [SpecA/Gx]

In particular, I+B and I−B are the VGIT ideals in B corresponding to (+)/(−) VGIT

chambers. Since I+Â = IZ+ and I−Â = IZ− , it follows that the ideals defining Z+,Z−

and W \W+
χ ,W \W−χ must agree in a Zariski-open neighborhood U ⊆ SpecB of w. By

shrinking further, we may also assume that the pullback of L to U is trivial. By [AFS15a,

Lemma 2.8], we may assume that U is affine scheme such that π−1(π(U)) = U where

π : SpecB → SpecBGx . If we set U = [U/Gx], then the composition U ↪→ W → X
is a local quotient presentation. By applying Lemma 3.11, we obtain U+ = W+ ∩ U
and U− = W− ∩ U so that in U the ideals defining Z+,Z− and U \ U+,U \ U− agree.

Moreover, the pullback of L to U is clearly identified with the linearization of OU by χ.

Therefore, U → X has the desired properties. �

We now explain how Proposition 3.17 is used in our situation. On the stackMg,n(α),
there is a natural line bundle to use in conjunction with the VGIT formalism, namely
δ − ψ. Since this line bundle is defined over Mg,n(α) for each α, there is an induced
character χδ−ψ : Aut(C, {pi}ni=1)→ Gm for any α-stable curve (C, {pi}ni=1).
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Definition 3.18 (I+, I−). If (C, {pi}ni=1) is an αc-closed curve, the affine space

T = SpecC[T1(C, {pi}ni=1)]

inherits an action of Aut(C, {pi}ni=1), and we define I+ and I− to be the VGIT ideals in

C[T1(C, {pi}ni=1)] associated to the character χδ−ψ (see Definition 3.1).

The main result of this section simply says that the VGIT chambers associated to
δ − ψ locally cut out the inclusions Mg,n(αc+ε) ↪→Mg,n(αc)←↩Mg,n(αc−ε).

Theorem 3.19. Let αc ∈ {2/3, 7/10, 9/11}. Then the open substacks

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc − ε)

arise from local VGIT with respect to δ−ψ at every closed point (C, {pi}ni=1) ∈Mg,n(αc).

The remainder of Section 3 is devoted to the proof of Theorem 3.19. We use the
following notation: If (C, {pi}ni=1) is an αc-closed curve, we set A = C[T1(C, {pi}ni=1)]

and D̂ef(C, {pi}ni=1) := Spf Â = Spf C[[T1(C, {pi}ni=1)]]. We let IZ+ , IZ− ⊆ Â be the

ideals defined by the reduced closed substacks Z+ := Mg,n(αc) \ Mg,n(αc + ε) and

Z− :=Mg,n(αc) \Mg,n(αc − ε).
In Section 3.3, we construct, for any αc-closed curve (C, {pi}ni=1), coordinates for

D̂ef(C, {pi}ni=1) and describe the ideals IZ+ and IZ− . In Section 3.4, we use this co-
ordinate description to compute the VGIT ideals I+ and I− from Definition 3.18. In

Proposition 3.29, we prove that IZ+ = I+Â and IZ− = I−Â, so that Theorem 3.19
follows from Proposition 3.17.

3.3. Deformation theory of αc-closed curves. Our goal in this section is to describe
coordinates on the formal deformation space of an αc-closed curve (C, {pi}ni=1) in which
the ideals IZ+ and IZ− can be described explicitly, and which simultaneously diagonalize
the natural action of Aut(C, {pi}ni=1). We begin by describing the action of Aut(E) on
the space of first-order deformations T1(E) of a single αc-atom E (Lemma 3.20) and a
single rosary of length 3 (Lemma 3.21). Then we describe the action of Aut(C, {pi}ni=1)
on the first-order deformation space T1(C, {pi}ni=1) for each combinatorial type of an αc-
closed curve (C, {pi}ni=1) from Definition 2.33 (Proposition 3.22). Finally, we pass from
coordinates on the first-order deformation space to coordinates on the formal deformation

space D̂ef(C, {pi}ni=1) (Proposition 3.25).
Throughout this section, we let T1(C, {pi}ni=1) denote the first-order deformation space

of (C, {pi}ni=1) and T1(ÔC,ξ) the first-order deformation space of a singularity ξ ∈ C.
Finally, we let Aut(C, {pi}ni=1)◦ denote the connected component of the identity of the
automorphism group of (C, {pi}ni=1). We sometimes write T1(C) (resp., Aut(C)) for
T1(C, {pi}ni=1) (resp., Aut(C, {pi}ni=1)) if no confusion is likely.

3.3.1. Action on the first-order deformation space for an αc-atom and rosary. Suppose
(E, q) (resp., (E, q1, q2)) is an αc-atom (see Definition 2.21) with the singular point ξ ∈ E.
By (2.2), we may fix an isomorphism Aut(E) ' Gm = SpecC[t, t−1] and coordinates on

ÔE,ξ and ÔE,q (resp., ÔE,q1 and ÔE,q2) so that the action of Aut(E) is given as follows:
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• For αc = 9/11: ÔE,ξ ' C[[x, y]]/(y2 − x3), ÔE,q ' C[[n]], and Gm acts by

x 7→ t−2x, y 7→ t−3y, n 7→ tn.

• For αc = 7/10: ÔE,ξ ' C[[x, y]]/(y2 − x4), ÔE,q1 ' C[[n1]], ÔE,q2 ' C[[n2]], and
Gm acts by

x 7→ t−1x, y 7→ t−2y, n1 7→ tn1, n2 7→ tn2.

• For αc = 2/3: ÔE,ξ ' C[[x, y]]/(y2 − x5), ÔE,q ' C[[n]] and Gm, acts by

x 7→ t−2x, y 7→ t−5y, n 7→ tn.

We have an exact sequence of Aut(E)-representations

0→ Cr1(E)
α−−→ T1(E)

β−−→ T1(ÔE,ξ)→ 0

where T1(ÔE,ξ) denotes the space of first-order deformations of the singularity ξ ∈ E,

and Cr1(E) denotes the space of first-order deformations that induce trivial deformations

of ÔE,ξ. In fact, since the pointed normalization of E has no non-trivial deformations,

we may identity Cr1(E) with the space of crimping deformations, i.e., deformations that
fix the pointed normalization and the analytic isomorphism type of the singularity. Note
that in the cases αc = 9/11 and αc = 7/10, we have Cr1(E) = 0, i.e., there is a unique
way to impose a cusp on a rational curve (resp., a tacnode on a pair of rational curves).

Lemma 3.20. Let E be an αc-atom. Fix Aut(E) ' Gm as above.

•αc = 9/11: T1(E) ' T1(ÔE,ξ) and there are coordinates s0, s1 on T1(ÔE,ξ) with weights

−6,−4.

•αc = 7/10: T1(E) ' T1(ÔE,ξ) and there are coordinates s0, s1, s2 on T1(ÔE,ξ) with

weights −4,−3,−2.

•αc = 2/3: T1(E) ' Cr1(E) ⊕ T1(ÔE,ξ) and there are coordinates c on Cr1(E) and

s0, s1, s2, s3 on T1(ÔE,ξ) with weights 1 and −10,−8,−6,−4, respectively.

Proof. We prove the case αc = 2/3 and leave the other cases to the reader. By de-

formation theory of hypersurface singularities, we have T1(ÔE,ξ) ' C4 with first-order

deformations given by

SpecC[x, y, ε]/(y2 − x5 − s∗3εx3 − s∗2εx2 − s∗1εx− s∗0ε, ε2)↔ (s∗0, s
∗
1, s
∗
2, s
∗
3).

Here, Gm acts by s∗k 7→ t10−2ks∗k. Thus, Gm acts on T1(ÔE,ξ)∨ by sk 7→ t2k−10sk.

From [vdW10, Example 1.111], we have

Cr1(E) ' C, SpecC[(s+ c∗εs2)2, (s+ c∗εs2)5, ε]/(ε)2 7→ c∗,

and Gm acts by c∗ → t−1c∗. Thus, Gm acts on Cr1(E)∨ by c 7→ tc. �

Now let (R, r1, r2) =
∐3
i=1(Ri, q2i−1, q2i) be a rosary of length 3 (see Definition 2.27).

Denote the tacnodes of R as τ1 := q2 = q3 and τ2 := q4 = q5. We fix an isomorphism

Aut(R, r1, r2) ' Gm = SpecC[t, t−1] such that Gm acts on ÔR,τi = C[[xi, yi]]/(y
2
i − x4

i )

via x1 7→ t−1x1, y1 7→ t−2y1 and x2 7→ tx2, y2 7→ t2y2, and acts on ÔR,ri = C[[ni]] via
n1 7→ tn1 and n2 7→ t−1n2.
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Lemma 3.21. Let (R, r1, r2) be a rosary of length 3. Fix Aut(R, r1, r2) ' Gm as above.

Then T1(R, r1, r2) = T1(ÔR,τ1) ⊕ T1(ÔR,τ2) and there are coordinates on T1(ÔR,τ1)

(resp., T1(ÔR,τ2)) with weights −2,−3,−4 (resp., 2, 3, 4).

Proof. This is established similarly to Lemma 3.20. �

The above two lemmas immediately imply a description for the action of Aut(C, {pi}ni=1)◦

on T1(C, {pi}ni=1) for any αc-closed curve.

Proposition 3.22 (Diagonalized Coordinates on T1(C, {pi}ni=1)). Let (C, {pi}ni=1) be

an αc-closed curve. Depending on the combinatorial type of (C, {pi}ni=1) from Definition

2.33, the following statements hold:

•αc = 9/11 of Type A: There are decompositions

Aut(C)◦ =

r∏
i=1

Aut(Ei)

T1(C) = T1(K)⊕

[
r⊕
i=1

T1(Ei)

]
⊕

[
r⊕
i=1

T1(ÔC,qi)

]
For 1 ≤ i ≤ r, let ti be the coordinate on Aut(Ei) ' Gm. There are coordinates

“singularity” si = (si,0, si,1) on T1(ÔEi,ξi) for 1 ≤ i ≤ r
“node” ni on T1(ÔC,qi) for 1 ≤ i ≤ r

such that Aut(C)◦ acts trivially on T1(K) and on the coordinates si, ni by

si,0 7→ t−6
i si,0 si,1 7→ t−4

i si,1 ni 7→ tini.

•αc = 9/11 of Type B: There are decompositions

Aut(C)◦ = Aut(E1)×Aut(E2)

T1(C) = T1(E1)⊕ T1(E2)⊕ T1(ÔC,q)

For 1 ≤ i ≤ 2, let ti be the coordinate on Aut(Ei) ' Gm. There are coordinates

si = (si,0, si,1) on T1(Ei) and a coordinate n on T1(ÔC,q) such that the action of Aut(C)◦

on T1(C) is given by

si,0 7→ t−6
i si,0 si,1 7→ t−4

i si,1 n 7→ t1t2n.

•αc = 9/11 of Type C: This case is described in Lemma 3.20.

•αc = 7/10 of Type A: There are decompositions

Aut(C)◦ =
r+s∏
i=1

`i∏
j=1

Aut(Ei,j)

T1(C) = T1(K)⊕
r+s⊕
i=1

 `i⊕
j=1

T1(Ei,j)⊕
`i−1⊕
j=0

T1(ÔC,qi,j )

⊕ r⊕
i=1

T1(ÔC,qi,`i )
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Let ti,j be the coordinate on Aut(Ei,j) ' Gm. There are coordinates

“singularity” si,j =
(
si,j,k

)2
k=0

on T1(Ei,j) 1 ≤ i ≤ r + s, 1 ≤ j ≤ `i
“node” ni,j on T1(ÔC,qi,j ) 1 ≤ i ≤ r + s, 0 ≤ j ≤ `i − 1

“node” ni,`i on T1(ÔC,qi,`i ) 1 ≤ i ≤ r

such that Aut(C)◦ acts trivially on T1(K) and on si,j , ni,j by

si,j,k 7→ tk−4
i,j si,j,k

ni,0 7→ ti,1ni,0 ni,`i 7→ ti,`ini,`i ni,j 7→ ti,jti,j+1ni,j (j 6= 0, `i).

•αc = 7/10 of Type B: There are decompositions

Aut(C, p1, p2)◦ =

g∏
i=1

Aut(Ei)

T1(C, p1, p2) =

g⊕
i=1

T1(Ei)⊕
g−1⊕
i=1

T1(ÔC,qi)

Let ti be the coordinate on Aut(Ei) ' Gm. There are coordinates si = (si,0, si,1, si,2)

on T1(Ei) and coordinates ni on T1(ÔC,qi) such that the action of Aut(C, {pi}ni=1)◦ on

T1(C, {pi}ni=1) is given by

si,k 7→ tk−4
i si,k ni 7→ titi+1ni.

•αc = 7/10 of Type C: There are decompositions

Aut(C)◦ =

g−1∏
i=1

Aut(Ei)

T1(C) =

g−1⊕
i=1

T1(Ei)⊕
g−2⊕
i=0

T1(ÔC,qi)

Let ti be the coordinate on Aut(Ei) ' Gm. There are coordinates si = (si,0, si,1, si,2)

on T1(Ei) and coordinates ni on T1(ÔC,qi) such that the action of Aut(C, {pi}ni=1)◦ on

T1(C, {pi}ni=1) is given by

si,k 7→ tk−4
i si,k ni 7→ titi+1ni,

and where t0 := tg−1.
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•αc = 2/3 of Type A: There exist decompositions

Aut(C, {pi}ni=1)◦ = Aut(K ′)◦ ×
r∏
i=1

Aut(Li)

= Aut(K ′)◦ ×
r∏
i=1

`i−1∏
j=1

Aut(Ri,j)×Aut(Ei)


T1(C, {pi}ni=1) = T1(K ′)⊕

r⊕
i=1

T1(Li)⊕
r⊕
i=1

T1(ÔC,qi,0)

= T1(K ′)⊕
r⊕
i=1

`i−1⊕
j=1

T1(Ri,j)⊕
`i−1⊕
j=0

T1(ÔC,qi,j )⊕ T1(Ei)


where Aut(K ′)◦ acts trivially on

⊕r
i=1 T1(Li)⊕

⊕r
i=1 T1(ÔC,qi,0) and

∏r
i=1 Aut(Li) acts

trivially on T1(K ′). For 1 ≤ i ≤ r, 1 ≤ j ≤ `i − 1, let ti,j denote the coordinate on

Aut(Ri,j) ' Gm, and let ti,`i denote the coordinate on Aut(Ei) ' Gm. Then there exist

coordinates

“rosary” ri,j = (ri,j,k)
2
k=0, r′i,j = (r′i,j,k)

2
k=0 on T1(Ri,j) for 1 ≤ i ≤ r, 1 ≤ j < `i

“singularity” si = (si,k)
3
k=0 on T1(ÔC,ξi) for 1 ≤ i ≤ r

“crimping” ci on Cr1(Ei) for 1 ≤ i ≤ r
“node” ni,j on T1(ÔC,qi,j ) for 1 ≤ i ≤ r, 0 ≤ j < `i

such that the action of
∏r
i=1 Aut(Li) on

⊕r
i=1 T1(Li) is given by

ri,j,k 7→ tk−4
i,j ri,j,k r′i,j,k 7→ t4−ki,j r′i,j,k si,k 7→ t2k−10

i,`i
si,k

ci 7→ ti,`ici ni,0 7→ ti,1ni,0 ni,j 7→ t−1
i,j ti,j+1ni,j (0 < j < `i).

Note that we need not specify the action of Aut(K ′)◦ on T1(K ′) as this will be irrelevant

for the calculation of the VGIT chambers associated to (C, {pi}ni=1).

•αc = 2/3 of Type B: There exist decompositions

Aut(C, {pi}ni=1)◦ =

`−1∏
i=1

Aut(Ri)×Aut(E`)

T1(C, {pi}ni=1) =
`−1⊕
i=1

[
T1(Ri)⊕ T1(ÔC,qi)

]
⊕ T1(E`)

For 1 ≤ i ≤ `− 1, let ti be the coordinate on Aut(Ri) ' Gm, and let t` be the coordinate

on Aut(E`) ' Gm. Then there are coordinates

“rosary” ri = (ri,k)
2
k=0, r′i = (r′i,k)

2
k=0 on T1(Ri) for 1 ≤ i ≤ `− 1

“singularity” s = (sk)
3
k=0 on T1(ÔC,ξ)

“crimping” c on Cr1(E`)

“node” ni on T1(ÔC,qi) for 1 ≤ i ≤ `− 1
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such that the action of Aut(C)◦ on T1(C) is given by

ri,k 7→ tk−4
i ri,k r′i,k 7→ t4−ki r′i,k sk 7→ t2k−10

` sk

c 7→ t`c ni 7→ t−1
i ti+1ni (1 ≤ i ≤ `− 1).

•αc = 2/3 of Type C: There exist decompositions

Aut(C)◦ = Aut(E0)×Aut(E`)×
`−1∏
i=1

Aut(Ri)

T1(C) = T1(E0)⊕ T1(E`)⊕
`−1⊕
i=1

T1(Ri)⊕
`−1⊕
i=0

T1(ÔC,qi)

Let t0, t` be coordinates on Aut(E0) ' Gm and Aut(E`) ' Gm, and for 1 ≤ i ≤ `− 1, let

ti be the coordinate on Aut(Ri) ' Gm. Then there are coordinates

“rosary” ri = (ri,k)
2
k=0, r′i = (r′i,k)

2
k=0 on T1(Ri) for 1 ≤ i ≤ `− 1

“singularity” si = (si,k)
3
k=0 on T1(ÔC,ξi) for i = 0, `

“crimping” ci on Cr1(Ei) for i = 0, `

“node” ni on T1(ÔC,qi) for 0 ≤ i ≤ `− 1

such that the action of Aut(C)◦ on T1(C) is given by

ri,k 7→ tk−4
i ri,k r′i,k 7→ t4−ki r′i,k si,k 7→ t2k−10

i si,k

ci 7→ tici n0 7→ t0t1n0 ni 7→ t−1
i ti+1ni (0 < i < `) n` 7→ t`−1t`n0

Proof. This follows easily from Lemmas 3.20 and 3.21. �

It is evident that the coordinates of Proposition 3.22 on T1(C, {pi}ni=1) diagonalize the
natural action of Aut(C, {pi}ni=1)◦. However, we need slightly more. We need coordinates
that diagonalize the natural action of Aut(C, {pi}ni=1)◦ and that cut out the natural

geometrically-defined loci on D̂ef(C, {pi}ni=1) = Spf C[[T1(C, {pi}ni=1)]]. For example,
when αc = 2/3, the {si} coordinates should cut out the locus of formal deformations
preserving the singularities and the {ci, ni} coordinates should cut out the locus of formal
deformations preserving a Weierstrass tail. This is almost a purely formal statement (see
Lemma 3.24 below); however there is one non-trivial geometric input. We must show
that the crimping coordinate which defines the locus of ramphoid cuspidal deformations
with trivial crimping can be extended to a global coordinate which vanishes on the locus
of Weierstrass tails. This is essentially a first-order statement which we prove below in
Lemma 3.23.

The 2
3 -atom E defines a point in Z+ ∩ Z− ⊆ M2,1(2/3) (we keep the notation of

Z+,Z− from the end of §3.2). If we denote this point by 0, we have natural inclusions
of Aut(E)-representations

i : T1
Z+,0 ↪→ T1

M2,1(2/3),0
= T1(E) and j : T1

Z−,0 ↪→ T1
M2,1(2/3),0

= T1(E).

On the other hand, recall that we have the exact sequence of Aut(E)-representations

(3.2) 0→ Cr1(E)
α−−→ T1(E)

β−−→ T1(ÔE,ξ)→ 0
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where T1(ÔE,ξ) denotes the space of first-order deformations of the singularity ξ ∈ E,

and Cr1(E) denotes the space of first-order crimping deformations. The key point is that
the tangent spaces of these global stacks are naturally identified as deformations of the
singularity and the crimping respectively.

Lemma 3.23. With notation as above, there exist isomorphisms of Aut(E)-representations

T1
Z−,0 ' T1(ÔE,ξ)

T1
Z+,0 ' Cr1(E)

inducing a splitting of (3.2) with i = α and j = β−1.

Proof. It suffices to show that the composition

α ◦ i : TZ−,0 → TM2,1(2/3),0 = T1(E)→ T1(ÔE,ξ)

is an isomorphism, and that the composition

α ◦ j : TZ+,0 → TM2,1(2/3),0 = T1(E)→ T1(ÔE,ξ)

is zero. The latter follows from the former by transversality of TZ−,0 and TZ+,0. To see

that α ◦ i is an isomorphism, observe that Z− ' [A4/Gm] with weights −4,−6, −8,−10,

where the universal family is given by

(y2 − x5 − a3εx
3 − a2εx

2 − a1εx− a0ε, ε
2) : a3, . . . , a0 ∈ C,

where these are viewed as double covers of P1. On the other hand, there is a natural

isomorphism

T1(ÔE,ξ) ={SpecC[[x, y, ε]]/(y2 − x5 − a3εx
3 − a2εx

2 − a1εx− a0ε, ε
2) : a3, . . . , a0 ∈ C}.

Evidently, α ◦ i is the identity map in the given coordinates. �

Lemma 3.24. Let V be a finite-dimensional representation of a torus G, let X =

Spf C[[V ]], and let m ⊆ C[[V ]] be the maximal ideal. Suppose we are a given a collection

of G-invariant formal smooth closed subschemes Zi := Spf C[[V ]]/Ii, (i = 1, . . . , r) which

intersect transversely at 0, and a basis x1, . . . , xn for V such that:

(1) x1, . . . , xn diagonalize the action of G.

(2) Ii/mIi is spanned by a subset of x1, . . . , xn.

Then there exist coordinates X ' Spf C[[x′1, . . . , x
′
k]] such that

(1) x′1, . . . , x
′
n diagonalize the action of G.

(2) x′1, . . . , x
′
n reduce modulo m to x1, . . . , xn.

(3) Ii is generated by a subset of x′1, . . . , x
′
n.

Proof. Let xi,1, . . . , xi,di be a diagonal basis for Ii/mIi as a G-representation. Consider

the surjection

Ii → Ii/mIi
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and choose an equivariant section, i.e., choose x′i,1, . . . , x
′
i,di

such that each spans a one-

dimensional sub-representation of G. By Nakayama’s Lemma, these elements generate

Ii. Repeating this procedure for each Zi, we obtain x′i,j for i = 1, . . . , r and j = 1, . . . , di.

Since the Zi’s intersect transversely, these coordinates induce linearly independent ele-

ments of V . Thus they may be completed to a diagonal basis, and this gives the necessary

coordinate change. �

Proposition 3.25 (Explicit Description of IZ+ , IZ−). Let (C, {pi}ni=1) be an αc-closed

curve. There exist coordinates ni, si, ci (resp., ni,j , si,j) on D̂ef(C, {pi}ni=1) such that the

action of Aut(C, {pi}ni=1)◦ on D̂ef(C, {pi}ni=1) = Spf Â is given as in Proposition 3.22,

and such that the ideals IZ+, IZ− are given as follows:

•αc = 9/11, Type A: IZ+ =
⋂r
i=1(si), IZ− =

⋂r
i=1(ni).

•αc = 9/11, Type B: IZ+ = (s1) ∩ (s2), IZ− = (n).

•αc = 9/11, Type C: IZ+ = (s), IZ− = (0).

•αc = 7/10, Type A: IZ+ =
⋂
i,j(si,j) , IZ− =

⋂
i,µ,ν∈S Ji,µ,ν where

S := {i, µ, ν : 1 ≤ i ≤ r + s, 1 ≤ µ ≤
⌈
`i
2

⌉
, 0 ≤ ν ≤ `i − 2µ+ 1}

Ji,µ,ν := (ni,ν , si,ν+2, . . . , si,ν+2µ−2, ni,ν+2µ−1), for i = 1, . . . , r

Ji,µ,ν := (ni,ν , si,ν+2, . . . , si,ν+2µ−2), for i = r + 1, . . . , r + s.

•αc = 7/10, Type B: IZ+ =
⋂
i(si) , IZ− =

⋂
µ,ν∈S Jµ,ν where

S := {µ, ν : 1 ≤ µ ≤
⌈g

2

⌉
, 0 ≤ ν ≤ g − 2µ+ 1}

Jµ,ν := (nν , sν+2, . . . , sν+2µ−2, nν+2µ−1),

and n0 := 0 and ng := 0.

•αc = 7/10, Type C: IZ+ =
⋂
i(si) , IZ− =

⋂
µ,ν∈S Jµ,ν where

S := {µ, ν : 1 ≤ µ ≤
⌈
g − 1

2

⌉
, 0 ≤ ν ≤ g − 2}

Jµ,ν := (nν , sν+2, . . . , sν+2µ−2, nν+2µ−1),

and the subscripts are taken modulo g − 1.

•αc = 2/3, Type A: IZ+ =
⋂r
i=1(si),

IZ− =

r⋂
i=1

`i−1⋂
j=0

(ni,j , r
′
i,j+1, r

′
i,j+2, . . . , r

′
i,`i−1, ci).

•αc = 2/3, Type B: IZ+ = (s),

IZ− =

`−1⋂
i=1

(ni, r
′
i+1, r

′
i+2, . . . , r

′
`−1, c) ∩ (r′1, r

′
2, . . . , r

′
`−1, c).
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•αc = 2/3, Type C: IZ+ = (s0) ∩ (s`),

IZ− =
`−1⋂
i=0

(ni, ri, ri−1, . . . , r1, c0) ∩
`−1⋂
i=0

(ni, r
′
i+1, r

′
i+2, . . . , r

′
`−1, c`).

Proof. We prove the statement when (C, {pi}ni=1) is a 2
3 -closed curve of combinatorial type

A; the other cases are similar and left to the reader. Let D̂ef(C, {pi}ni=1) = Spf Â →
Mg,n(2/3) be a miniversal deformation space of (C, {pi}ni=1). For i = 1, . . . , r, we define

• Z+
i = Spf Â/IZ+

i
is the locus of deformations preserving the ith ramphoid cusp

ξi.

• Z−i = Spf Â/IZ−i
is the locus of deformations preserving the ith Weierstrass tail.

Since Z+
i (resp., Z−i ) are smooth, G-invariant, formal closed subschemes of Spf Â, the

conormal space of Z+
i (resp., Z−i ) is canonically identified with IZ+

i
/m

Â
IZ+

i
(resp.,

IZ−i
/m

Â
IZ−i

). Thus, in the notation of Proposition 3.22, we have IZ+
i
/m

Â
IZ+

i
' T1(ÔEi,ξi)∨.

Moreover, if `i = 1, we have

IZ−i
/m

Â
IZ−i
' Cr1(Ei)

∨ ⊕ T1(ÔEi,qi)∨

using Lemma 3.23 to identify Cr1(Ei)
∨ as the conormal space of the locus of deformations

of Ei for which the attaching point remains Weierstrass.

If `i > 1 (i.e., Ei is not a nodally attached Weierstrass tail), we define

• Ti,j = Spf Â/ITi,j as the locus of deformations preserving the tacnode τi,j,2, for

j = 1, . . . , `i − 2.

• Wi = Spf Â/IWi as the closure of the locus of deformations preserving the tac-

node τi,`i−1,2 such that the tacnodally attached genus 2 curve is attached at a

Weierstrass point.

• Ni,j = Spf Â/INi,j as the locus of deformations preserving the node qi,j , for

j = 0, . . . , `i − 1.

We observe that for each i with `i > 1, Wi is a smooth, G-invariant formal subscheme,

and there is an identification

IWi/mÂ
IWi ' Cr1(Ei)

∨ ⊕ T1(ÔC,τi,`i−1,2
)∨.

If we choose coordinates ci ∈ Cr1(Ei)
∨ and si,0, si,1, si,2, si,3 ∈ T1(ÔC,τi,`i−1,2

)∨ cutting

out Wi and a coordinate ni,`i−1 cutting out Ni,`i−1, then it is easy to check that Z−i is

necessarily cut out by ci and ni,`i−1.

Formally locally around (C, {pi}ni=1), Z+ and Z− decompose as

Z+ ×Mg,n(2/3) Spf Â = Z+
1 ∪ · · · ∪ Z

+
r ,

Z− ×Mg,n(2/3) Spf Â =
r⋃
i=1

(
Z−i ∪

`i−2⋃
j=0

(
Wi ∩

`i−2⋂
k=j+1

Ti,k ∩Ni,j

))
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For each i = 1, . . . , r, we consider the cotangent space of Z+
i and either the cotangent

space of Z−i if `i = 1 or the set of cotangents spaces of Ti,j ,Wi, Ni,j if `i > 1. Since this

collection of subspaces of T1(C, {pi}ni=1), as i ranges from 1 to r, is linearly independent,

we may apply Lemma 3.24 to this collection of formal closed subschemes to obtain

coordinates with the required properties. �

3.4. Local VGIT chambers for an αc-closed curve. In this section, we explicitly
compute the VGIT ideals I+, I− ⊆ C[T 1(C, {pi}ni=1)] (Definition 3.18) for any αc-closed
curve. The main result (Proposition 3.29) states that the VGIT ideals agree formally
locally with the ideals IZ+ , IZ− . By Proposition 3.17, this suffices to establish Theorem
3.19. In order to carry out the computation of I+ and I−, we must do two things: First,
we must explicitly identify the character χδ−ψ : Aut(C, {pi}ni=1)→ Gm for any αc-closed
curve. Second, we must compute the ideals of positive and negative semi-invariants with
respect to this character.

Definition 3.26. Let E1, . . . , Er be the αc-atoms of (C, {pi}ni=1), and let ti ∈ Aut(Ei)

be the coordinate specified in Proposition 3.22. Let

χ? : Aut(C, {pi}ni=1)◦ → Gm = SpecC[t, t−1]

be the character defined by t 7→ t1t2 · · · tr. Note that χ? is trivial on automorphisms

fixing the αc-atoms.

The following proposition shows that χδ−ψ is simply a positive multiple of χ?. Since
it will be important in [AFS15b], we also prove now that the character of KMg,n(αc)

+

αcδ + (1− αc)ψ is trivial for all αc-closed curves.

Proposition 3.27. Let αc ∈ {9/11, 7/10, 2/3} be a critical value and let (C, {pi}ni=1) be

an αc-closed curve. Then there exists a positive integer N such that χδ−ψ|Aut(C,{pi}ni=1)◦ =

χN? for every αc-closed curve (C, {pi}ni=1). Specifically,

N =


11 if αc = 9/11

10 if αc = 7/10

39 if αc = 2/3

In particular, I±χδ−ψ = I±χ?.

Proof. We prove the case when αc = 2/3 for an αc-closed curve (C, {pi}ni=1) of Type A.

Let C = K ′ ∪L1 ∪ · · · ∪Lr be the decomposition of C as in Definition 2.33, and suppose

that the rank of Aut(K ′) is d. Corollary 2.30 implies that there exist length 3 rosaries

R′1, . . . , R
′
d such that Aut(K ′)◦ '

∏d
i=1 Aut(R′i). Thus, we have

Aut(C)◦ = Aut(K ′)◦ ×
r∏
i=1

Aut(Li)

=
d∏
i=1

Aut(R′i)×
r∏
i=1

`i−1∏
j=1

Aut(Ri,j)×Aut(Ei)

 .



46 ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK

Let ρ′i : Gm → Aut(C) (resp. ρi,j , ϕi) be the one-parameter subgroup corresponding to

Aut(R′i) ⊂ Aut(C) (resp. Aut(Ri,j),Aut(Ei) ⊂ Aut(C)). By [AFS14, Sections 3.1.2–

3.1.3], we have

〈χδ−ψ, ρ′i〉 = 0, 〈χδ−ψ, ρi,j〉 = 0, 〈χδ−ψ, ϕi〉 = 39.

On the other hand, the definition of χ? obviously implies

〈χ?, ρ′i〉 = 0, 〈χ?, ρi,j〉 = 0, 〈χ?, ϕi〉 = 1.

It follows that χδ−ψ = χ39
? as desired. �

Proposition 3.28. For any αc-closed curve (C, {pi}ni=1), the action of Aut(C, {pi}ni=1)◦

on the fiber of KMg,n(αc)
+ αcδ + (1− αc)ψ is trivial.

Proof. We prove the case when αc = 2/3 for an αc-closed curve (C, {pi}ni=1) of Type

A. Let ρ′i, ρi,j , ϕi be the one-parameter subgroups of Aut(C, {pi}ni=1) as in the proof of

Proposition 3.27. By [AFS14, Sections 3.1.2–3.1.3], we have

〈χλ, ρ′i〉 = 0 〈χλ, ρi,j〉 = 0 〈χλ, ϕi〉 = 4

〈χδ−ψ, ρ′i〉 = 0 〈χδ−ψ, ρi,j〉 = 0 〈χδ−ψ, ϕi〉 = 39.

Using the identity

(3.3) KMg,n(αc)
+ αcδ + (1− αc)ψ = 13λ+ (αc − 2)(δ − ψ)

one easily computes

〈χK+αcδ+(1−αc)ψ, ρ
′
i〉 = 〈χK+αcδ+(1−αc)ψ, ρi,j〉 = 〈χK+αcδ+(1−αc)ψ, ϕi〉 = 0,

and the claim follows. �

Proposition 3.27 and Corollary 3.8 imply that we can compute the VGIT ideals I−

and I+ as the ideals of semi-invariants associated to χ?. In the following proposition, we
compute these explicitly, and show that they are identical to the ideals IZ+ and IZ− , as
described in Proposition 3.25.

Proposition 3.29 (Description of VGIT ideals). Let (C, {pi}ni=1) be an αc-closed curve

for a critical value αc ∈ {2/3, 7/10, 9/11}. Then I+Â = IZ+ and I−Â = IZ−.

We establish the proposition first in the case of an αc-atom, then in the case of an
αc-link, and finally for each of the distinct combinatorial types of αc-closed curves.

3.4.1. The case of an αc-atom.

Lemma 3.30. Let E be an αc-atom. Using the notation of Lemma 3.20 for the action

of Aut(E) on T1(E), we have

•αc = 9/11: I+ = (s0, s1), I− = (0).

•αc = 7/10: I+ = (s0, s1, s2), I− = (0).

•αc = 2/3: I+ = (s0, s1, s2, s3), I− = (c).
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Proof. This is a direct computation from the definitions. The I+ (resp., I−) ideal is

generated by all semi-invariants of negative (resp., positive) weight. �

3.4.2. The case of a 7
10 -link. We handle the special case when C has one nodally attached

7
10 -link, i.e., C is a 7

10 -closed curve of type A with r = 1 and s = 0. Using Proposition
3.22, we have

Aut(C)◦ = Aut(L1) T1(C) = T1(K)⊕ T1(L1)

with coordinates t1, . . . , t` on Aut(L1) and coordinates sj = (sj,0, sj,1, sj,2) (j = 1, . . . , `),
nj (j = 0, . . . , `) on T1(L1) so that the action of Aut(C, {pi}ni=1)◦ on T1(L1) is given by

sj,k 7→ tk−4
j sj,k, n0 7→ t1n0, n` 7→ t`n`, nj 7→ tjtj+1nj for j 6= 0, ` .

Lemma 3.31. With the above notation, the vanishing loci of I+ and I− are

V (I+) =
⋃̀
j=1

V (sj) V (I−) =
⋃
µ≥1

`−2µ+1⋃
ν=0

Vµ,ν

where Vµ,ν = V (nν , sν+2, . . . , sν+2µ−2, nν+2µ−1).

Remark. For instance, V1,ν = V (nν , nν+1) and V2,ν = V (nν , sν+2, nν+3).

Proof. We will use the Hilbert-Mumford criterion of Proposition 3.5. For the V (I+)

case, suppose x ∈ V (sj) for some j. Set λ = (λi) : Gm → G`
m '

∏`
i=1 Aut(Ei) where

λi = 1 for i 6= j and λj = id. Then 〈χ?, λ〉 = 1 and limt→0 λ(t) · x exists so x ∈ V (I+).

Conversely, let λ = (λi) be a one-parameter subgroup with 〈χ?, λ〉 =
∑

i λi > 0 such

that limt→0 λ(t) ·x exists. Then for some j, we have λj > 0 which implies that sj(x) = 0.

For the V (I−) case, the inclusion ⊇ is easy: suppose that x ∈ Vµ,ν for µ ≥ 1 and

ν = 0, . . . , `− 2µ+ 1. Set

λ =
(

0, . . . , 0︸ ︷︷ ︸
ν

,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
2µ−1

, 0, . . . , 0︸ ︷︷ ︸
`−2µ−ν+1

)
Then 〈χ?, λ〉 =

∑
i λi = −1 and limt→0 λ(t) · x exists so x ∈ V (I−). For the ⊆ inclusion,

we will use induction on `. If ` = 1, then V (I−) = V (n0, n1). For ` > 1, suppose

x ∈ V (I−) and λ = (λi) : Gm → G`
m is a one-parameter subgroup with

∑`
i=1 λi < 0

such that limt→0 λ(t)·x exists. If λ` ≥ 0, then
∑`−1

i=1 λ` < 0 so by the induction hypothesis

x ∈ Vµ,ν for some µ ≥ 1 and ν = 0, . . . , `− 2µ. If λ` < 0, then we immediately conclude

that n`(x) = 0. If λ`−1 + λ` < 0, then n`−1(x) = 0 so x ∈ V1,`−1. If λ`−1 + λ` ≥ 0,

then λ`−1 ≥ 0 so s`−1(x) = 0. Furthermore,
∑`−2

i=1 λi < 0 so by applying the induction

hypothesis and restricting to the locus V (n`−2, s`−1, n`−1, s`, n`), we can conclude either:

(1) x ∈ Vµ,ν for µ ≥ 1 and ν = 0, . . . , `− 2µ− 1, or (2) x ∈ V (n`−µ−4, s`−µ−2, . . . , s`−3)

for some µ ≥ 1. In case (2), since s`−1(x) = n`(x) = 0, we have x ∈ Vµ+1,`−µ−4. �

Remark. The chamber V (I+) is the closed locus in the deformation space consisting of

curves with a tacnode while V (I−) consists of curves containing an elliptic chain.
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3.4.3. The case of a 2
3 -link. We now handle the special case when C has one nodally

attached 2
3 -link of length `, i.e., C is a 2

3 -closed curve of combinatorial type A with r = 1.
Using Proposition 3.22, we have

Aut(C)◦ = Aut(K ′)×Aut(L1) T1(C) = T1(K ′)⊕ T1(L1)

with coordinates t1, . . . , t` on Aut(L1) and coordinates rj = (rj,0, rj,1, rj,2), r′j = (r′j,0, r
′
j,1, r

′
j,2),

nj (j = 0, . . . , ` − 1), s = (s0, s1, s2, s3), c on T1(L1), so that the action of Aut(L1) on
T1(L1) is given by

rj,k 7→ tk−4
j rj,k, r′j,k 7→ t4−kj r′j,k, sk 7→ t2k−10

` sk
c 7→ t`c n0 7→ t1n0, nj 7→ t−1

j tj+1nj (0 < j < `).

The character χ? is given by

Aut(C)◦ ' G`
m → Gm, (t1, . . . , t`) 7→ t`.

Lemma 3.32. With the above notation, the vanishing loci of I+ and I− are

V (I+) = V (s) V (I−) =
`−1⋃
j=0

V (nj , r
′
j+1, r

′
j+2, . . . , r

′
`−1, c)

Remark. For instance, if ` = 2, V (I−) = V (n1, c) ∪ V (n0, r
′
1, c).

Proof. The first equality is obvious. We use the Hilbert-Mumford criterion to verify the

second. Suppose x ∈ V (nj , r
′
j+1, . . . , r

′
`−1, c) for some j = 0, . . . , `− 1. If we set

λ =
(

0, . . . , 0︸ ︷︷ ︸
j

,−1,−1, . . . ,−1︸ ︷︷ ︸
`−j

)
then 〈χ?, λ〉 = −1 < 0 and limt→0 λ(t) · x exists. Therefore, x ∈ V (I−). Conversely,

suppose x ∈ V (I−) and λ = (λi) : Gm → G`
m is a one-parameter subgroup with 〈χ?, λ〉 =

λ` < 0 such that limt→0 λ(t) · x exists. Clearly, we may assume that λ` = −1. First,

it is clear that c(x) = 0. If n`−1(x) = 0, then x ∈ V (n`−1, c). Otherwise, as the limit

exists, λ`−1 ≤ −1 so that r′`−1(x) = 0. If n`−2(x) = 0, then x ∈ V (n`−2, r
′
`−1, c).

Continuing by induction, we see that there must be some j = 0, . . . , ` − 1 with x ∈
V (nj , r

′
j+1, r

′
j+2, . . . , r

′
`−1, c) which establishes the lemma. �

3.4.4. The general case. We are now ready thanks to Lemmas 3.31 and 3.32 as well as
Corollaries 3.6 and 3.7 to establish Proposition 3.29 in full generality.

Proof of Proposition 3.29: Let (C, {pi}ni=1) be an αc-closed curve and consider the action

of Aut(C, {pi}ni=1) on T1(C, {pi}ni=1) described in Proposition 3.22. We split the proof

into the types of αc-closed curves according to Definition 2.33.

•αc = 9/11 of Type A. By using Corollary 3.6, one may assume that r = 1 in which case

the statement is clear.

•αc = 9/11 of Type B. A simple application of Proposition 3.5 shows that V (I+) =

(s1, s2), and V (I−) = (n).
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•αc = 9/11 of Type C. This is Lemma 3.30.

•αc = 7/10 of Type A. By Corollary 3.6, it is enough to consider the case when either

r = 1, s = 0 or r = 0, s = 1. The case of r = 1 and s = 0 is the example worked out in

Lemma 3.31. If r = 1, s = 0, the action of Aut(C, {pi}ni=1)◦ on T1(C, {pi}ni=1) is same as

the action given in Lemma 3.31 restricted to the closed subscheme V (n`) = 0. This case

therefore follows from Corollary 3.7 and Lemma 3.31.

•αc = 7/10 of Type B. The action of Aut(C, {pi}ni=1)◦ on T1(C, {pi}ni=1) is the same

action as in Lemma 3.31 restricted to the closed subscheme V (n0, nr+1) = 0 so this case

follows from Corollary 3.7 and Lemma 3.31.

•αc = 7/10 of Type C. This follows from an argument similar to the proof of Lemma

3.31.

•αc = 2/3 of Type A. By Corollary 3.6, it is enough to consider the case when r = 1

which is the example worked out in Lemma 3.32.

•αc = 2/3 of Type B. The action here is the same action as in Lemma 3.32 restricted to

the closed subscheme V (n0) so this case follows from Corollary 3.7 and Lemma 3.32.

•αc = 2/3 of Type C. This case can be handled by an argument similar to the proof of

Lemma 3.32.

�

Proof of Theorem 3.19. Proposition 3.29 implies that IZ+ = I+Â and IZ− = I−Â. Us-

ing Corollary 3.14, we may now apply Proposition 3.17 to conclude the statement of the

theorem. �
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