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Abstract. For the moduli stacks of α-stable curves defined in [AFSv14], we prove
nefness of natural log canonical divisors generalizing a well-known result of Cornalba
and Harris for Mg,n. We deduce the projectivity of the good moduli spaces of α-stable
curves and identify these moduli spaces with the log canonical models of Mg,n.
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1. Introduction

This is the final part of the trilogy (see also [AFSv14, AFS15]) in which we construct
the second flip in the log minimal model program for Mg,n. In [AFSv14], we construct

the moduli stacksMg,n(α) of α-stable curves (see Definition 2.2). In [AFS15], we prove

that the moduli stacks Mg,n(α) admit proper good moduli spaces. The main result of

this paper is that good moduli spaces of Mg,n(α) are projective and constitute steps in

the log minimal model for Mg,n.

Namely, for α > 2/3−ε, let Mg,n(α) be the good moduli space ofMg,n(α). By [AFS15,

Theorem 1.1], Mg,n(α) is a proper algebraic space. Consider the following log canonical

models of Mg,n:

(1.1) Mg,n(α) := Proj
⊕
m≥0

H0(Mg,n, bm(KMg,n
+ αδ + (1− α)ψ)c).

We prove that the two independently defined objects, Mg,n(α) and Mg,n(α), are in fact
the same:

Theorem 1.1. For α > 2/3−ε, the following statements hold:

(1) The line bundle KMg,n(α) + αδ + (1− α)ψ descends to an ample line bundle on

Mg,n(α).
1
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(2) There is an isomorphism Mg,n(α) 'Mg,n(α).

Corollary 1.2. The algebraic stackMg,n(α) has a projective good moduli space for every

α > 2/3−ε.

The key ingredient in the proof of Theorem 1.1 is a positivity result for certain line
bundles onMg,n(α) generalizing the following well-known result of Cornalba and Harris:

Theorem ([CH88]). The line bundle

KMg,n
+

9

11
δ +

2

11
ψ ∼ 11λ− δ + ψ

is nef on Mg,n for all (g, n), and has degree 0 precisely on the families whose only

non-isotrivial components are A1-attached elliptic tails.

Using [CH88], Cornalba proved that 12λ − δ + ψ is in fact ample on Mg,n and thus

obtained a direct intersection-theoretic proof of the projectivity of Mg,n [Cor93]. In the
introduction to [Cor93], the author says that “... it is hard to see how [these techniques]
could be extended to other situations.” In what follows, we do precisely that in giving
intersection-theoretic proofs of the projectivity for Mg,n(7/10−ε) and Mg,n(2/3−ε) by
proving the following positivity result:

Theorem 1.3 (Positivity of log canonical divisors).

(a) The line bundle

KMg,n(9/11−ε) +
7

10
δ +

3

10
ψ ∼ 10λ− δ + ψ

is nef onMg,n(9/11−ε), and, if (g, n) 6= (2, 0), has degree 0 precisely on the fam-

ilies whose only non-isotrivial components are A1/A1-attached elliptic bridges. It

is trivial if (g, n) = (2, 0).

(b) The line bundle

KMg,n(7/10−ε) +
2

3
δ +

1

3
ψ ∼ 39

4
λ− δ + ψ

is nef on Mg,n(7/10− ε), and has degree 0 precisely on the families whose only

non-isotrivial components are A1-attached Weierstrass chains.

Our proof of the above theorem is inspired by [Cor93]. We also refer the reader to
[ACG11, Chapter 14] for an excellent exposition of the Cornalba’s original argument
and a comprehensive treatment of intersection-theoretic approaches to the projectivity
of Mg,n, many of which make appearance in this paper.

Roadmap. Our proof of Theorems 1.1 and 1.3 is organized as follows. We recall the
necessary notions and definitions in Section 2. In Section 3, we develop a theory of si-
multaneous normalization for families of at-worst tacnodal curves. By tracking how the
relevant divisor classes change under normalization, we can reduce Theorem 1.3 to prov-
ing a (more complicated) positivity result for families of generically smooth curves. In
Section 4, we collect several preliminary positivity results, stemming from three sources:
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the Cornalba-Harris inequality, the Hodge Index Theorem, and some ad hoc divisor cal-
culations onM0,n. In Sections 5 and 6, we combine these ingredients to prove parts (a)
and (b) of Theorem 1.3, respectively. Finally, in Section 7, we apply Theorem 1.3 to
obtain Theorem 1.1.

Acknowledgments. We thank Ian Morrison for carefully reading the earlier versions
of this paper and for numerous suggestions that improved the exposition. The results
of this paper were first presented at the AIM Workshop “Log minimal model program
for moduli space” in December 2012. We thank the participants of the workshop, and
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Australian Research Council grant DE140100259. This work was revised when the second
author visited the Max-Planck Institute for Mathematics in Bonn.

2. Preliminaries on line bundles on Mg,n(α)

The following terminology will be in force throughout the paper. We let Ũg(A) denote
the stack of connected curves of arithmetic genus g with only A-singularities, and let

Ũg(A`) ⊂ Ũg(A) be the open substack parameterizing curves with at worst Ak, k ≤ `,

singularities. Since Ũg(A) is smooth, we may freely alternate between line bundles and

divisor classes on Ũg(A). In addition, any relation between divisor classes on Ũg(A) that

holds on the open substack of at-worst nodal curves extends to Ũg, because the locus of
worse-than-nodal curves has codimension 2.

Let π : X → Ũg(A) be the universal family. We define the Hodge class as λ := c1(π∗ωπ)
and the kappa class as κ := π∗(c1(ωπ)2). The divisor parameterizing singular curves in

Ũg(A) is denoted δ. It can be further decomposed as δ = δirr + δred, where δred is the
closed locus of curves with disconnecting nodes. (The fact that δred is closed follows, for
example, from [AFSv14, Corollary 2.11]).

By the preceding remarks, Mumford’s relation κ = 12λ− δ holds on Ũg(A). Note that

the higher Hodge bundles π∗(ω
m
π ) for m ≥ 2 are well-defined on the open locus in Ũg(A)

of curves with nef dualizing sheaf. This open locus is the complement of the closed locus
of curves with rational tails. If we restrict to this locus, the Grothendieck-Riemann-Roch
formula gives

(2.1) c1(π∗(ω
m
π )) = λ+

m2 −m
2

κ.

Now let C → B be a family of curves in Ũg(A). If σ : B → C is any section of the
family, we define ψσ := σ∗ωC/B. We say that σ is smooth if it avoids the relative singular
locus of C/B.

From now on, we work only with families C → B over a smooth and proper curve B.
If σ : B → C is generically smooth and the only singularities of fibers that σ(B) passes
through are nodes, then σ(B) is a Q-Cartier divisor on C, and we define the index of σ
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to be

(2.2) ι(σ) := (ωC/B + σ) · σ.

Notice that the index ι(σ) is non-negative, and if σ is smooth, then ι(σ) = 0. We also
have the following standard result:

Lemma 2.1. Suppose C → B is a generically smooth non-isotrivial family of curves in

Ũg(A).

(1) If g ≥ 1 and σ : B → C is a smooth section, then σ2 < 0.

(2) If g = 0 and σ, σ′, σ′′ : B → C are 3 smooth sections such that σ is disjoint from

σ′ and σ′′, then σ2 < 0.

Let C → B be a one-parameter family of curves in Ũg(A). If p ∈ C is a node of its
fiber, then the local equation of C at p is xy = te, for some e ∈ Z called the index of p
and denoted index(p). A rational tail (resp., a rational bridge) of a fiber is a P1 meeting
the rest of the fiber in exactly one (resp., two) nodes. If E ⊂ Cb is a rational tail and

p = E ∩ (Cb \ E), then the index of E is defined to be index(p). Similarly, if E ⊂ Cb
is a rational bridge and {p, q} = E ∩ (Cb \ E), then the index of E is defined to be
min{index(p), index(q)}. We also denote the index of E by index(E). We say that a
rational bridge E ⊂ Cb is balanced if index(p) = index(q).

We now recall the notion of α-stability introduced in [AFSv14, Section 2]; see [AFSv14,
Definitions 2.1 and 2.2] for the definitions of elliptic tails, bridges, chains, and Weierstrass
tails and chains.

Definition 2.2 (α-stability). For α ∈ (2/3− ε, 1], we say that an n-pointed curve

(C, {pi}ni=1) is α-stable if ωC(Σn
i=1pi) is ample and:

For α ∈ (9/11, 1): C has only A1-singularities.

For α = 9/11: C has only A1, A2-singularities.

For α ∈ (7/10, 9/11): C has only A1, A2-singularities, and does not contain:

• A1-attached elliptic tails.

For α = 7/10: C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails.

For α ∈ (2/3, 7/10): C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails,

• A1/A1-attached elliptic chains.

For α = 2/3: C has only A1, A2, A3, A4-singularities, and does not contain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains.

For α ∈ (2/3−ε, 2/3): C has only A1, A2, A3, A4-singularities, and does not con-

tain:

• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains,

• A1-attached Weierstrass chains.



PROJECTIVITY OF THE MODULI SPACE OF α-STABLE CURVES 5

A family of α-stable curves is a flat and proper family whose geometric fibers are

α-stable. We let Mg,n(α) denote the stack of n-pointed α-stable curves of arithmetic

genus g.

Since Mg,n(α) parameterizes unobstructed curves, it is a smooth algebraic stack and

thus has a canonical divisor KMg,n(α). Because non-nodal curves in Mg,n(α) form a

closed substack of codimension 2, the standard formula (cf. [Log03, Theorem 2.6]) gives

KMg,n(α) = 13λ− 2δ + ψ.

Since λ, δ, and ψ are defined everywhere on Ug,n, we have the following formula

KMg,n(αc±ε) = KMg,n(αc)
|Mg,n(αc±ε)

for all αc ∈ {2/3, 7/10, 9/11}.

3. Degenerations and simultaneous normalization

Our first goal is to develop a theory of simultaneous (partial) normalization along
generic singularities in families of at-worst tacnodal curves. In contrast to the situation
for nodal curves, where normalization along a nodal section can always be performed
because a node is not allowed to degenerate to a worse singularity, we must now deal with
families where a node degenerates to a cusp or a tacnode, where two nodes degenerate
to a tacnode, or where a cusp degenerates to a tacnode.

We begin by describing all possible degenerations of singularities in one-parameter
families of tacnodal curves:

Proposition 3.1. Suppose C → ∆ is a family of at-worst tacnodal curves over ∆, the

spectrum of a DVR. Denote by Cη̄ the geometric generic fiber and by C0 the central fiber.

Then the only possible limits in C0 of the singularities of Cη̄ are the following:

(1) A limit of a tacnode of Cη̄ is necessarily a tacnode of C0. Moreover, a limit of

an outer tacnode is necessarily an outer tacnode.

(2) A limit of a cusp of Cη̄ is either a cusp or a tacnode of C0.

(3) A limit of an inner node of Cη̄ is either a node, a cusp, or a tacnode of C0.

(4) A limit of an outer node of Cη̄ is either an outer node of C0 or an outer tacnode

of C0. Moreover, if an outer tacnode of C0 is a limit of an outer node, it must

be a limit of two outer nodes, necessarily joining the same components.

Proof. By deformation theory of A-singularities, a cusp deforms only to a node, a tacnode

deforms only either to a cusp, or to a node, or to two nodes. Given this, the result follows

directly from [AFSv14, Proposition 2.10]. �

We describe the operation of normalization along the generic singularities for each of
the following degenerations:

(A) Inner nodes degenerate to cusps and tacnodes (see Proposition 3.3).
(B) Outer nodes degenerate to tacnodes (see Proposition 3.4).
(C) Cusps degenerate to tacnodes (see Proposition 3.5).
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We begin with a preliminary result concerning normalization along a collection of

generic nodes. Suppose π : X → B is a family in Ũg(A) with sections {σi}ki=1 such that

σi(b) are distinct nodes of Xb for a generic b ∈ B and such that {σi(B)}ki=1 do not
meet any other generic singularities. (The last condition will be automatically satisfied
when {σi}ki=1 is the collection of all inner or all outer nodes.) Let ν : Y → X be the
normalization of X along ∪ki=1σi(B). Denote by {η+

i , η
−
i } the two preimages of σi (which

exist after a base change). Let R+
i : ν∗OY → Oσi(B) (resp., R−i : ν∗OY → Oσi(B))

be the morphisms of sheaves on X induced by pushing forward the restriction maps
OY → Oη±i (B) and composing with the natural isomorphisms ν∗(Oη±i (B)) ' Oσi(B). We

let Ri := R+
i −R

−
i be the difference map, and set

R := ⊕ki=1Ri : ν∗OY −→ ⊕ki=1Oσi(B).

In this notation, we have the following result.

Lemma 3.2. There is an exact sequence

(3.1) 0→ OX
ν#−→ ν∗OY

R−→ ⊕ki=1Oσi(B) → K → 0,

where K is supported on the finitely many points of X at which the generic nodes

{σi(B)}ki=1 degenerate to worse singularities. Consequently,

λX/B = λY/B + length(π∗K).

Proof. Away from finitely many points on X where the generic nodes degenerate, we

have im (ν#) = ker(R) and R is surjective. Consider now a point p ∈ X where a generic

nodes coalesce to an A2a−1-singularity. A local chart of X around p can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− s1(t))2 · · · (x− sa(t))2f(x, t)

)
,

where x = si(t) are the equations of generic nodes. By assumption on the generic nodes,

f(x, t) is a square-free polynomial. Hence

Y = SpecC[[x, u, t]]/
(
u2 − f(x, t)

)
and the normalization map is given by

y 7→ u

a∏
i=1

(x− si(t)).

Without loss of generality, the equation of η±i is u = ±vi(t), where vi(t)
2 = f(si(t), t).

It follows that Ri : C[[x, u, t]]/(u2 − f(x, t))→ C[[t]] is given by

Ri
(
g(x, u, t)

)
= g(si(t), vi(t), t)− g(si(t),−vi(t), t).

Write C[[x, u, t]]/(u2−f(x, t)) = C[[x, t]]+uC[[x, t]]. Clearly, C[[x, t]] ⊂ ker(R)∩im (ν#).

Note that ug(x, t) ∈ ker(R) if and only if Ri
(
ug(x, t)

)
= 2vi(t)g(si(t), t) = 0 for every

i if and only if g(x, t) ∈ (x − si(t)) for every i. Since the generic nodes are distinct,

we conclude that ug(x, t) ∈ ker(R) if and only if
∏a
i=1(x − si(t)) | g(x, t) if and only if

ug(x, t) ∈ yC[[x, t]] ⊂ im (ν#). The exactness of (3.1) follows.
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Pushing forward (3.1) toB and noting that c1((π◦ν)∗OY) = c1(π∗OX) = c1(π∗Osi(B)) =

0, we obtain

c1(R1(π ◦ ν)∗OY) = c1(R1π∗OX ) + c1(π∗K).

The formula relating Hodge classes now follows by relative Serre duality. �

Proposition 3.3 (Type A degeneration). Suppose X/B is a family in Ũg(A3) with

sections {σi}ki=1 such that σi(b) are distinct inner nodes of Xb for a generic b ∈ B,

degenerating to cusps and tacnodes over a finite set of points of B. Denote by Y the

normalization of X along ∪ki=1σi(B) and by {η+
i , η

−
i } the two preimages of σi. Then

{η±i } are sections of Y/B satisfying:

(1) If σi(b) is a cusp of Xb, then η+
i (b) = η−i (b) is a smooth point of Yb.

(2) If σi(b) is a tacnode of Xb and σj(b) 6= σi(b) for all j 6= i, then η+
i (b) = η−i (b) is

a node of Yb and η+
i + η−i is Cartier at b.

(3) If σi(b) = σj(b) is a tacnode of Xb for some i 6= j, then (up to ±) η+
i (b) = η+

j (b)

and η−i (b) = η−j (b) are smooth and distinct points of Yb.
Set ηi := η+

i + η−i and ψηi := ωY/B · ηi = ψη+i
+ ψη−i

. Define

ψinner :=

k∑
i=1

ψηi , δtacn :=
∑
i 6=j

(
ηi · ηj

)
, and δinner =

k∑
i=1

(η+
i · η

−
i ).

Then we have the following formulae:

λX/B = λY/B +
1

2
δtacn + δinner +

k∑
i=1

ι(η+
i ),

δX/B = δY/B − ψinner + 4δtacn + 10δinner + 10
k∑
i=1

ι(η+
i ).

A pair of sections {η+
i , η

−
i } arising from the normalization of a generic inner node will

be called inner nodal pair and η±i will be called inner nodal transforms.

Proof. The formula for the Hodge class follows from Lemma 3.2, whose notation we keep,

once we analyze the torsion sheaf K on X . Consider the following loci in X :

(a) Cu is the locus of cusps in X/B which are limits of generic inner nodes.

(b) Tn1 is the locus of tacnodes in X/B which are limits of a single generic inner

node.

(c) Tn2 is the locus of tacnodes in X/B which are limits of two generic inner nodes.

(a) A local chart of X around a point p ∈ Cu can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− t2m)2(x+ 2t2m)

)
,

where x = t2m is the equation of the generic node σ degenerating to the cusp p. Then

Y = SpecC[[x, u, t]]/
(
u2− x− 2t2m

)
and the normalization map is y 7→ u(x− t2m). The

preimages η+ and η− of the generic node σ have equations u =
√

3tm and u = −
√

3tm.
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Note that Y is smooth and the intersection multiplicity of η+ and η− at the preimage of

p is m. It follows that the contribution of p to δinner is m.

The elements of C[[x, u, t]]/
(
u2 − x − 2t2m

)
that do not lie in ker(R) are of the form

ug(x, t) and we have R
(
ug(x, t)

)
= 2
√

3tmg(t2m, t). It follows that im (R) = (tm) ⊂
C[[t]]. Hence Kp = C[[t]]/im (R) has length m.

(b) A local chart of X around a point p ∈ Tn1 can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− tm)2(x2 + t2c)

)
,

where x = tm is the equation of the generic node σ degenerating to the tacnode p. Then

Y = SpecC[[x, u, t]]/(u2 − x2 − t2c)

is a normal surface with A2c−1-singularity at the preimage of p, and the normalization

map is given by

y 7→ u(x− tm).

The preimage of σ is the bi-section given by the equation u2 = t2m+t2c, which splits into

two sections given by the equations u = ±v(t), where the valuation of v(t) is equal to

min{m, c}. The map R : C[[x, u, t]]/(u2−x2− t2c)→ C[[t]] sends an element of the form

ug(x, t) to 2v(t)g(tm, t) and everything else to 0. We conclude that Kp = C[[t]]/im (R)

has length min{m, c}.
It remains to show that the contribution of p to

(
η+ · η−+ ι(η+)

)
is min{m, c}. There

are two cases to consider. First, suppose c ≤ m. Then the equations of η+ and η− are

u = αtc and u = −αtc where α 6= 0 is a unit in C[[t]]. The minimal resolution h : Ỹ → Y
has the exceptional divisor

E1 ∪ · · · ∪ E2c−1,

which is a chain of (−2)-curves. The strict transforms η̃+ and η̃− meet the central

(−2)-curve Ec at two distinct points. Clearly, h∗ωY/B = ωỸ/B and a straightforward

computation shows that

h∗(η+ + η−) = η̃+ + η̃− +

c−1∑
i=1

i(Ei + E2c−i) + cEc.

It follows that the contribution of p to
(
η+ · η− + ι(η+)

)
= (ωX/B + η+ + η−) · η+ is c.

Suppose now that c > m. Then the equations of η+ and η− are u = αtm and

u = −αtm, respectively, where α 6= 0 is a unit in C[[t]]. The exceptional divisor of the

minimal resolution h : Ỹ → Y is still a chain of (−2)-curves of length 2c − 1. However,

η̃+ and η̃− now meet Em and E2c−m, respectively. It follows that the contribution of p

to
(
η+ · η− + ι(η+)

)
is m.

(c) A local chart of X around a point p ∈ Tn2 can be taken to be

SpecC[[x, y, t]]/
(
y2 − (x− tm)2(x+ tm)2

)
,

where x = tm and x = −tm are the equations of the generic nodes {σ1, σ2} coalescing to

the tacnode p. Then

Y = SpecC[[x, u, t]]/(u2 − 1)
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is a union of two smooth sheets, and the normalization map is given by

y 7→ u(x− tm)(x+ tm).

The preimages η+
1 and η−1 of the generic node σ1 have equations {u = 1, x = tm} and

{u = −1, x = tm}. The preimages η+
2 and η−2 of the generic node σ2 have equations

{u = 1, x = −tm} and {u = −1, x = −tm}. In particular, η±j are smooth sections, with

η+
1 meeting η+

2 , and η−1 meeting η−2 , each with intersection multiplicity m. It follows

that the contribution of p to δtacn is 2m.

The elements of C[[x, u, t]]/(u2 − 1) that do not lie in ker(R) are of the form ug(x, t)

and we have R(ug(x, t)) = (2g(tm, t), 2g(−tm, t)) ∈ C[[t]]⊕ C[[t]]. It follows that

im (R) = 〈(1, 1), (t, t), . . . , (tm−1, tm−1)〉+ (tm)× (tm) ⊂ C[[t]]× C[[t]].

Hence Kp = (C[[t]]⊕ C[[t]])/im (R) has length m.

It remains to prove the formula for the boundary classes. To do this, note that

ν∗ωX/B = ωY/B
(∑k

i=1(η+
i + η−i )

)
. Therefore,

κX/B = κY/B

+ 2
∑

1≤i<j≤k

(
(η+
i + η−i ) · (η+

j + η−j )
)

+ 2ωY/B ·
k∑
i=1

(η+
i + η−i ) +

k∑
i=1

(η+
i + η−i )2

= κY/B + 2δtacn

+ ωY/B ·
k∑
i=1

(η+
i + η−i ) +

k∑
i=1

(
ωY/B · η+

i + (η+
i )2 + ωY/B · η−i + (η−i )2

)
+ 2

k∑
i=1

(
η+
i · η

−
i

)
= κY/B + 2δtacn + ψinner + 2

k∑
i=1

ι(η+
i ) + 2δinner.

Using Mumford’s relation κ = 12λ−δ and the already established relation between λX/B
and λY/B, we obtain the desired relation between δX/B and δY/B. �

Proposition 3.4 (Type B degeneration). Suppose X/B is a family in Ũg(A3) with

sections {σi}ki=1 such that σi(b) are outer nodes of Xb for a generic b ∈ B, degenerating

to outer tacnodes over a finite set of points of B. Denote by Y the normalization of X
along ∪ki=1σi(B) and by {ζ+

i , ζ
−
i } the two preimages of σi. Then {ζ±i }ki=1 are smooth

sections of Y such that ζ+
i and ζ−i lie on different irreducible components of Y. Setting

δtacn :=
∑
i 6=j

(ζ+
i + ζ−i ) · (ζ+

j + ζ−j ),

we have the following formulae:

λX/B = λY/B +
1

2
δtacn,

δX/B = δY/B −
k∑
i=1

(ψζ+i
+ ψζ−i

) + 4δtacn.
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The sections {ζ+
i , ζ

−
i }ki=1 will be called outer nodal transforms.

Proof. By Proposition 3.1, outer nodes can degenerate only to outer tacnodes. Moreover,

an outer tacnode which is a limit of one outer node is a limit of two outer nodes. The

statement now follows by repeating verbatim the proof of Proposition 3.3 (Part (c)), and

using Lemma 3.2. �

Proposition 3.5 (Type C degeneration). Suppose X/B is a family in Ũg with sections

{σi}ki=1 such that σi(b) is a cusp of Xb for a generic b ∈ B, degenerating to a tacnode

over a finite set of points in B. Denote by Y the normalization of X along ∪ki=1σi(B)

and by ξi the preimage of σi. Then ξi is a section of Y/B such that ξi(b) is a node of Yb
whenever σi(b) is a tacnode of Xb and ξi(b) is a smooth point of Yb otherwise. Moreover,

2ξi is Cartier and we have the following formulae:

λX/B = λY/B −
k∑
i=1

ψξi + 2
k∑
i=1

ι(ξi),

δX/B = δY/B − 12
k∑
i=1

ψξi + 20
k∑
i=1

ι(ξi).

The sections ξi will be called cuspidal transforms.

Proof. The proof of this proposition is easier than the previous two results because

a generic cusp cannot collide with another generic singularity. In particular, we can

consider the case of a single generic cusp σ. Let ν : Y → X be the normalization along

σ. Suppose σ(b) is a tacnode. Then the local equation of X around σ(b) is

y2 = (x− a(t))3(x+ 3a(t)),

where x = a(t) is the equation of the generic cusp. It follows that Y has local equation

u2 = (x − a(t))(x + 3a(t)) and ν is given by y 7→ u(x − a(t)). The preimage of σ is a

section ξ : B → Y given by x − a(t) = u = 0. Note that ξ(b) = {x = u = t = 0} is a

node of Yb, and consequently ξ is not Cartier at ξ(b).

Clearly, ν∗ωX/B = ωY/B(2ξ) and by duality theory for singular curves

π∗ωX/B = (π ◦ ν)∗(ωY/B(2ξ)).

Therefore,

κX/B = (ωY/B + 2ξ)2 = (ωY/B)2 + 4(ξ2 + ξ · ωY/B) = κY/B + 4ι(ξ),

and by Grothendieck-Riemann-Roch formula

λX/B = c1

(
(π ◦ ν)∗(ωY/B(2ξ))

)
= λY/B − ψξ + 2ι(ξ).

The claim follows. �
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4. Assorted positivity results

4.1. Cornalba-Harris inequality. We generalize a well-known Cornalba-Harris result
on the positivity of divisor classes for generically smooth families of Deligne-Mumford
curves to the case of tacnodal curves.

Proposition 4.1 (Cornalba-Harris inequality). Let g ≥ 2. Suppose f : C → B is a

generically smooth family in Ũg(A3), over a smooth and proper curve B, with ωC/B
relatively nef. Then (

8 +
4

g

)
λC/B − δC/B ≥ 0.

Moreover, if the general fiber of C/B is non-hyperelliptic and C/B is non-isotrivial, then

the inequality is strict.

Remark. When the total space C is smooth, this result was proved in [Xia87] and [Sto08,

Theorem 2.1], with no restrictions on fiber singularities.

Proof. As in [Sto08, Theorem 2.1], if the general fiber of C/B is non-hyperelliptic, the

result is obtained by the original argument of Cornalba and Harris [CH88], which we

now recall.

Suppose Cb for some b ∈ B is a non-hyperelliptic curve of genus g ≥ 3. After a

finite base change, we can assume that λ ∈ Pic(B) is g-divisible. Then the line bundle

L := ωC/B ⊗ f∗(−λ/g) on C satisfies the following conditions:

(1) det(f∗(L)) ' OB.

(2) f∗(Lm) is a vector bundle of rank (2m− 1)(g − 1) for all m ≥ 2.

(3) Symm f∗(L)→ f∗(Lm) is generically surjective for all m ≥ 1.

For m ≥ 2 and general b ∈ B, the map Symm H0(Cb, ωCb) → H0(Cb, ω
m
Cb

) defines the

mth Hilbert point of Cb. Since the canonical embedding of Cb has a stable mth Hilbert

point for some m � 0 by [Mor09, Lemma 14], the proof of [CH88, Theorem 1.1] gives

c1(f∗(Lm)) ≥ 0. Using (2.1), we obtain

(4.1)

(
8 +

4

g
− 2(g − 1)

gm
+

2

gm(m− 1)

)
λ− δ = c1(f∗(Lm)) ≥ 0.

To conclude we note that δ ≥ 0, and if δ = 0, then λ > 0 for any non-isotrivial family by

the existence of the Torelli morphism Mg → Ag. We conclude that (8 + 4/g)λ− δ > 0.

Suppose now that C → B is a family of at-worst tacnodal curves with a relatively

nef ωC/B and a smooth hyperelliptic generic fiber. To prove the requisite inequality, we

construct C/B explicitly as a double cover of a family of (2g + 2)-pointed curves, and

prove a corresponding inequality on families of rational pointed curves.

Suppose that (Y/B, {σi}2g+2
i=1 ) is a family of (2g + 2)-pointed at-worst nodal rational

curves where σi are smooth sections and no more than 4 sections meet at a point. We say

that an irreducible component E in the fiber Yb of Y/B is an odd bridge if the following

conditions hold:

(1) E meets the rest of the fiber Yb \ E in two nodes of equal index,
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(2) E ·
∑2g+2

i=1 σi = 2,

(3) the degree of
∑2g+2

i=1 σi on each of the connected components of Yb \ E is odd.

Suppose h : Y → Z is a blow-down of some collection of odd bridges. The image of∑2g+2
i=1 σi in Z will be denoted by Σ. Note that while the individual images of σi’s are

not Cartier on Z along the image of blown-down odd bridges, the total class of Σ is

Cartier on Z. We say that a node p ∈ Zb (resp., p ∈ Yb) is an odd node if the degree

of Σ (resp.,
∑2g+2

i=1 σi) on each of the connected component of the normalization of Zb
(resp., Yb) at p is odd. We denote by δodd the Cartier divisor on B associated to all odd

nodes of Z/B (resp., Y/B).

The hyperelliptic involution on the generic fiber of f : C → B extends to all of C and

realizes C/B as a double cover of a family (Z/B,Σ) described above in such a way that

C → Z ramifies over Σ. Let δodd be the divisor of odd nodes of Z/B. We have the

following standard formulae:

λC/B =
1

8

(
Σ2 + 2ωZ/B · Σ− δodd

)
Z/B ,

δC/B =

(
Σ2 + ωZ/B · Σ + 2ω2

Z/B −
3

2
δodd

)
Z/B

.

Consider h : Y → Z. Then h∗(Σ) =
∑2g+2

i=1 σi + E, where E is a collection of odd

bridges, and h∗ωZ/B = ωY/B. Set ψY/B := ωY/B ·
∑2g+2

i=1 σi, δinner :=
∑

i 6=j(σi · σj), and

e := −1
2E

2. Then

λC/B =

(
1

8
(ψY/B + 2δinner − δodd) +

1

2
e

)
Y/B

,

δC/B =

(
2δinner + 2δeven +

1

2
δodd + 5e

)
Y/B

.

We obtain(
8 +

4

g

)
λC/B−δC/B =

(
2g + 1

2g
ψ +

1

g
δinner +

(
2

g
− 1

)
e− 2δeven −

(
3

2
+

1

2g

)
δodd

)
Y/B

.

Multiplying by 2g, we need to show that on Y/B we have

(2g + 1)ψ + 2δinner − 4gδeven − (3g + 1)δodd − (2g − 4)e ≥ 0.

Noting that

(2g + 1)ψ + 2δinner =

g+1∑
i=2

i(2g + 2− i)δi,

and using the inequality 2e ≤ δodd, we obtain the desired claim. �

Hodge Index Theorem Inequalities. We apply a method of Harris [Har84] to obtain
inequalities between the ψ-classes, indices of cuspidal and inner nodal transforms, and
the kappa class. In the following lemmas, we use the following variant of Hodge Index
Theorem for singular surfaces.
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Lemma 4.2. Let S be a proper integral algebraic space of dimension 2. Suppose H is a

Q-Cartier divisor on S such that H2 > 0. Then the intersection pairing on any subspace

of NS(S) containing H has signature (1, `).

Proof. Let π : S̃ → S be the minimal desingularization of the normalization of S. Then S̃

is a smooth projective surface. Note that π∗ : NS(S)→ NS(S̃) is an injection preserving

the intersection pairing. The statement now follows from the Hodge Index Theorem for

smooth projective surfaces. �

Lemma 4.3. Suppose X/B is a family of Gorenstein curves of arithmetic genus g ≥ 2

with a section ξ. Assume X is irreducible. Let ι(ξ) = (ξ + ωX/B) · ξ be the index of ξ.

Then

(4.2) ψξ ≥
(g − 1)

g
ι(ξ) +

κ

4g(g − 1)
.

Proof. Apply the Hodge Index Theorem to the three classes 〈F, ξ, ωX/B〉, where F is the

fiber class. Since ξ + kF has positive self-intersection for k � 0, the determinant of the

following intersection pairing matrix is non-negative: 0 1 2g − 2

1 −ψξ + ι(ξ) ψξ
2g − 2 ψξ κ

 .

The claim follows by expanding the determinant. �

Lemma 4.4. Suppose X/B is a family of Gorenstein curves of arithmetic genus g ≥ 2

with a pair of sections η+, η−. Assume X is irreducible. Then

(4.3) ψη+ + ψη− ≥
2(g − 1)

g + 1

(
(η+ · η−) + ι(η+)

)
+

κ

g2 − 1
.

Proof. Consider the three divisor classes 〈F, η = η+ + η−, ωX/B〉, where F is the fiber

class. Since η + kF has positive self-intersection for k � 0, the Hodge Index Theorem

implies that the determinant of the following intersection pairing matrix is non-negative: 0 2 2g − 2

2 −ψη+ − ψη− + 2(η+ · η−) + ι(η+) + ι(η−) ψη+ + ψη−

2g − 2 ψη+ + ψη− κ

 .

The claim follows by expanding the determinant. �

Lemma 4.5. Suppose X/B is a family in Ũ2(A3) with a smooth section τ . Assume X
is irreducible. Then

(4.4) 8ψτ ≥ κ.

Moreover, if δred = 0, then the equality is satisfied if and only if (X/B, τ) is a family of

Weierstrass tails in M2,1(7/10− ε).
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Proof. The inequality follows directly from Lemma 4.3 by taking g = 2. Moreover, the

proof of Lemma 4.3 shows that equality holds if and only if the intersection pairing on

〈F, τ, ωX/B〉 is degenerate. Assuming δred = 0, there is a global hyperelliptic involution

h : X → X . Hence ωX/B ≡ τ + h(τ) + xF , for some x ∈ Z. Observe that ωX/B · τ =

ωX/B ·h(τ) and F · τ = F ·h(τ). Since no combination of ω and F is in the kernel of the

intersection pairing, we conclude that

τ2 = τ · h(τ).

However, the intersection number on the left is negative by Lemma 2.1 and the intersec-

tion number on the right is non-negative whenever τ 6= h(τ). We conclude that equality

holds if only if h(τ) = τ , that is τ is a Weierstrass section. �

We will need special variants of Lemmas 4.3 and 4.4 for the case of relative genus 1
and 0.

Lemma 4.6. Let X/B be a family of Gorenstein curves of arithmetic genus 1 with a

pair of sections η+, η−, and suppose that η+ and η− are disjoint from N smooth pairwise

disjoint section of X/B. Assume X is irreducible. Then

(η+ · η−) + ι(η+) ≤ N + 2

2N
(ψη+ + ψη−) +

1

2N2
δred.

Proof. Let Σ be the sum of N pairwise disjoint smooth sections of X/B disjoint from

{η+, η−}. Then (ωX/B + 2Σ)2 = ω2
X/B = κ. Apply the Hodge Index Theorem to

〈F, η+ + η−, ωX/B + 2Σ〉, where F is the fiber class. The determinant of the matrix 0 2 2N

−ψη+ − ψη− + 2(η+ · η−) + ι(η+) + ι(η−) ψη+ + ψη−

2N ψη+ + ψη− κ


is non-negative. Therefore

−4κ+ 8N(ψη+ + ψη−) + 4N2(ψη+ + ψη−) ≥ 8N2
(
(η+ · η−) + ι(η+)

)
,

which gives the desired inequality using κ = −δred. �

Lemma 4.7. Let X/B be a family of Gorenstein curves of arithmetic genus 1 with a

section ξ, and suppose that ξ is disjoint from N smooth pairwise disjoint sections of X .

Assume X is irreducible. Then

ι(ξ) ≤ N + 1

N
ψξ +

1

4N2
δred.

Furthermore, suppose N = 1, with τ being a smooth section disjoint from ξ, and δred = 0.

Then equality holds if and only if 2ξ ∼ 2τ .
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Proof. Let Σ be the collection of smooth sections of X/B disjoint from ξ. By the Hodge

Index Theorem applied to 〈F, ξ, ωX/B + 2Σ〉, the determinant of the matrix 0 1 2N

1 −ψξ + ι(ξ) ψξ
2N ψξ κ


is non-negative. Therefore

ι(ξ) ≤ ψξ +
1

N
ψξ −

1

4N2
κ.

This gives the desired inequality using κ = −δred.

To prove the last assertion observe that because δred = 0 all fibers of X/B are irre-

ducible curves of genus 1. In particular, ωX/B = λF and it follows from the existence

of the group law on the set of sections of X/B that there exists a section τ ′ such that

2ξ − τ = τ ′. Since τ ∩ ξ = ∅, we have τ ′ ∩ ξ = ∅. If equality holds, then the intersec-

tion pairing matrix on the classes F, ξ, τ is degenerate. Hence some linear combination

(xξ + yτ + zF ) intersects F, ξ, τ trivially. Clearly, y 6= 0. Intersecting with τ , we obtain

y(τ · τ) + z = 0; and intersecting with τ ′, we obtain y(τ · τ ′) + z = 0. Hence τ2 = τ · τ ′.
This leads to a contradiction if τ 6= τ ′. �

4.2. An inequality between divisor classes on M0,N . The proof of Theorem 1.3

will require the following ad hoc effectivity result on M0,N .

Lemma 4.8. Suppose {η+
i , η

−
i }ai=1 are sections of a family of N -pointed stable rational

curves. Let ψinner :=
∑a

i=1

(
ψη+i

+ ψη−i

)
and δinner :=

∑a
i=1 δ{η+i ,η

−
i }

. If a ≥ 2, then for

any generically smooth one-parameter family in M0,N , we have

ψinner ≥ 4δinner+4
a∑
i=1

∑
β/∈{η+i ,η

−
i }ai=1

δ{η+i ,η
−
i ,β}

+2
a− 2

a− 1

∑
i 6=j

δ{η±i , η
±
j }

+
5a− 9

a− 1

a∑
i=1

∑
j 6=i

δ{η+i ,η
−
i ,η
±
j }
.

Proof. For any two distinct ψ-classes onM0,N , we have the following standard relation:

(4.5) ψσ + ψτ =
∑

S: σ∈S, τ /∈S

δS .

We apply (4.5) to the right-hand side of

(a− 1)ψinner =
∑

1≤i<j≤a
(ψη±i

+ ψη±j
)− (a− 1)

a∑
i=1

(ψη+i
+ ψη−i

).

This gives us a formula of the following form:

(a− 1)ψinner =
∑

cSδS .

We now estimate the coefficients of the boundary divisors appearing on the right-hand

side. Suppose there are x pairs {η+
i , η

−
i } such that η+

i ∈ S and η−i /∈ S, or vice versa,

and that S contains y pairs {η+
i , η

−
i }. Set z = a− x− y. Then

cS = ((x+ 2y)(x+ 2z)− x)− (a− 1)x = x(y + z) + 4yz.
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We have that

(1) cS ≥ 0 for every S.

(2) If S = {η+
i , η

−
i } or S = {η+

i , η
−
i , β}, where β /∈ {η+

i , η
−
i }ai=1, then x = 0 and

y = 1, and so cS = 4(a− 1).

(3) If S = {η±i , η
±
j } for i 6= j, then x = 2 and y = 0, and so cS = 2(a− 2).

(4) If S = {η+
i , η

−
i , η

±
j } for j 6= i, then x = 1 and y = 1, and so cS = 5a− 9.

The claim follows. �

5. Warm-up: Proof of Theorem 1.3(a)

Notice that 10λ−δ+ψ = 0 onM2,0(9/11−ε) by the standard relation 10λ = δirr+2δred

that holds for all families in U2.
We now prove that 10λ− δ+ψ is nef onMg,n(9/11− ε) and has degree 0 precisely on

families whose only non-isotrivial components are A1/A1-attached elliptic bridges, for
all (g, n) 6= (2, 0). Let (C/B, {σi}ni=1) be a (9/11 − ε)-stable family. The proof proceeds
by normalizing C along generic singularities to arrive at a family of generically smooth
curves, where the Cornalba-Harris inequality holds, or at a family of low genus curves,
where the requisite inequality is established by ad-hoc methods. Keeping in mind that
generic outer nodes and generic cusps of C/B do not degenerate, but generic inner nodes
of C/B can degenerate to cusps, we begin by normalizing generic outer nodes, then
normalize generic cusps, and finally normalize generic inner nodes.

5.1. Reduction 1: Normalization along generic outer nodes. Let X be the nor-
malization of C along generic outer nodes, marked by nodal transforms. By [AFSv14,
Lemma 2.17], every connected component of X/B is a family of generically irreducible
(9/11− ε)-stable curves. By Proposition 3.4, we have

(10λ− δ + ψ)C/B = (10λ− δ + ψ)X/B.

We have reduced to proving 10λ − δ + ψ ≥ 0 for a family with generically irreducible
fibers.

5.2. Reduction 2: Normalization along generic cusps. Suppose (X/B, {σi}ni=1)
is a family of (9/11 − ε)-stable curves with generically irreducible fibers. Let Y be the
normalization of X along generic cusps. Denote by {ξi}ci=1 the cuspidal transforms on
Y. Set ψcusp :=

∑c
i=1 ψξi and ψY/B := ψX/B + ψcusp. Then by Proposition 3.5, we have

(10λ− δ + ψ)X/B = (10λ− δ + ψ)Y/B + ψcusp.

We have reduced to proving 10λ− δ+ψ+ψcusp ≥ 0 for a family (Y/B, {σi}ni=1, {ξi}ci=1),
where

(1) The fibers are at-worst cuspidal and the generic fiber is irreducible and at-worst
nodal.

(2) {σi}ni=1, {ξi}ci=1 are smooth sections and ωY/B(
∑n

i=1 σi +
∑c

i=1 ξi) is relatively

ample.1

1 A priori, only ωY/B(
∑n
i=1 σi + 2

∑c
i=1 ξi) is relatively ample. However, a rational tail cannot meet

just a single cuspidal transform because the original family X/B cannot have cuspidal elliptic tails.
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5.3. Reduction 3: Normalization along generic inner nodes. Consider the family
(Y/B, {σi}ni=1, {ξi}ci=1) as in 5.2. Let a be the number of generic inner nodes of Y/B.
We let Z → Y be the normalization and denote by η+

i and η−i the inner nodal transforms

of the ith generic node. We obtain a family(
Z/B, {σi}ni=1, {η±i }

a
i=1, {ξi}ci=1

)
,

where

(1) The fibers are at-worst cuspidal curves and the generic fiber is smooth.
(2) The sections {σi}ni=1, {η

±
i }ai=1, {ξi}ci=1 are all smooth and pairwise disjoint, except

that η+
i can intersect η−i for each i.

(3) ωZ/B
(∑n

i=1 σi +
∑a

i=1(η+
i + η−i ) +

∑c
i=1 ξi

)
is relatively ample.

By Proposition 3.3, we have that

(10λ− δ + ψ + ψcusp)Y/B = (10λ− δ + ψ + ψcusp)Z/B,

where ψcusp =
∑c

i=1 ψξi and ψZ/B = ψY/B +
∑a

i=1(ψη+i
+ ψη−i

).

We let N = n+ 2a+ c be the total number of sections of Z/B, including cuspidal and
inner nodal transforms. Our proof that (10λ− δ+ψ+ψcusp)Z/B ≥ 0 will depend on the
relative genus h of Z/B.

5.3.1. Suppose h ≥ 2. Passing to the relative minimal model of Z/B only decreases the
degree of (10λ − δ + ψ + ψcusp). Hence we will assume that ωZ/B is relatively nef. We
still have N smooth and distinct sections (which can now intersect pairwise). With ωZ/B
relatively nef, we can apply the Cornalba-Harris inequality. If h ≥ 3, then 10 > 8 + 4/h
and so 10λ− δ > 0 by Proposition 4.1. If h = 2, then Proposition 4.1 gives 10λ− δ ≥ 0.
Lemma 2.1 gives ψ + ψcusp > 0 since we must have N ≥ 1 (if N = 0, then C/B was a

family in M2,0(9/11− ε)).

5.3.2. Suppose h = 1. Using relations on the stack on N -pointed Gorenstein genus 1
curves inherited from standard relations in Pic(M1,N ) given by [AC98, Theorem 2.2],
we have λ = δirr/12, and ψ = Nδirr/12 +

∑
S |S|δ0,S ≥ Nδirr/12 + 2δred. If N ≥ 3, we

obtain

10λ+ ψ − δ ≥ 10δirr/12 +Nδirr/12 + 2δred − (δirr + δred) > 0.

If N = 2, we obtain 10λ − δ + ψ ≥ δred ≥ 0 and ψcusp ≥ 0. We conclude that 10λ −
δ + ψ + ψcusp ≥ 0 with the equality holding if only if ψcusp = δred = 0. This is possible
if and only if all fibers are irreducible and there are no cuspidal transforms (by Lemma
2.1), which implies that X/B = Y/B is a family of A1/A1-attached elliptic bridges.

5.3.3. Suppose h = 0. Then all fibers of Z/B are in fact at-worst nodal. Because λ = 0,
we can write (10λ−δ+ψ+ψcusp)Z/B = ψ−δ+ψcusp. Blow-up the points of intersection

of η+
i and η−i for each i. We obtain a family

(
W/B, {σi}ni=1, {η

±
i }ai=1, {ξi}ci=1

)
in M0,N .

Setting δinner :=
∑a

i=1 δ{η+i ,η
−
i }

, we have

(ψ − δ + ψcusp)Z/B = (ψ − δ − δinner + ψcusp)W/B .

If a = 0, then δinner = 0 and we are done because ψ − δ > 0 for any family of Deligne-
Mumford stable rational curves, for example by [KM13, Lemma 3.6]. If a ≥ 2, then by
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Lemma 4.8,
∑a

i=1(ψη+i
+ψη−i

) ≥ 4δinner. In addition, 3ψ ≥ 4δ by a similar argument. It

follows that ψ > δ + δinner and so we are done.
Finally, if a = 1, then

(
Y/B, {σi}ni=1, {ξi}bi=1

)
obtained in 5.2 is a family of arithmetic

genus 1 (generically nodal) curves and the proof in the case of h = 1 above goes through
without any modifications to show that (10λ− δ + ψ + ψcusp)Y/B ≥ 0 with the equality
if and only if X/B = Y/B is a (generically nodal) elliptic bridge.

6. Proof of Theorem 1.3(b)

In the remaining part of the paper, we prove Theorem 1.3(b). Let (C/B, {σi}ni=1) be
a (7/10−ε)-stable generically non-isotrivial family of curves. We begin by dealing with
the case when C/B has a generic rosary, or a generic A1/A3 or A3/A3-attached elliptic
bridge. In both cases, generic tacnodes come into play and we will repeatedly use the
following result that explains what happens under normalization of a generic tacnode:

Proposition 6.1. Suppose X/B is a family in Ũg with a section τ such that τ(b) is a

tacnode of Xb for all b ∈ B. Denote by Y the normalization of X along τ and by τ+ and

τ− the preimages of τ . Then τ± are smooth sections satisfying ψτ+ = ψτ− and we have

the following formulae:

λX/B = λY/B −
1

2
(ψτ+ + ψτ−),

δX/B = δY/B − 6(ψτ+ + ψτ−).

Proof. This is [Smy11, Proposition 3.4] (although it is stated there only in the case of

g = 1). �

6.1. Reduction 1: The case of generic rosaries. Let C be the geometric generic
fiber of C/B and consider a maximal length rosary R = R1 ∪ · · · ∪R` of C (see [AFSv14,
Definition 2.27]). Since C/B is non-isotrivial, the rosary cannot be closed. Let T :=

C \R. The point T ∩R1 (resp., T ∩R`) is either an outer node or an outer tacnode, so
its limit in every fiber is the same singularity by [AFSv14, Proposition 2.10]. Similarly,
the limits of the tacnodes Ri ∩Ri+1, for i = 1, . . . , `− 1, remain tacnodes in every fiber.
We then have that C = T ∪R1 ∪ · · · ∪R`, where the geometric generic fiber of Ri and T
is Ri and T respectively. Let χ1 (resp., χ2) be the nodal or tacnodal section along which
T and R1 (resp., R`) meet. Let τi, for i = 1, . . . , ` − 1, be the tacnodal section along
which Ri and Ri+1 meet. In the rest of the proof we use the fact that self-intersections
of 2 disjoint smooth sections on a P1-bundle over B are equal of opposite signs. Together
with Proposition 6.1, this gives

(ψχ1)R1/B = −(ψτ1)R1/B = −(ψτ1)R2/B = (ψτ2)R2/B = · · ·

= (−1)`−1(ψτ`−1
)R`/B = (−1)`(ψχ2)R`/B.

In what follows, we set ψT /B =
∑n

i=1 ψσi + ψχ1 + ψχ2 = ψC/B + ψχ1 + ψχ2 .
Case 1: R is A1/A1-attached rosary. By [AFSv14, Remark 2.28], ` must be odd. By

Proposition 6.1, we obtain(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

.
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Since (T , {σi}ni=1, χ1, χ2) is (7/10−ε)-stable and R/B is isotrivial, we reduce to prov-
ing Theorem 1.3(b) for (T , {σi}ni=1, χ1, χ2), which has one less generic rosary than
(C/B, {σi}ni=1).

Case 2: R is A1/A3-attached rosary. Suppose χ1 is a nodal section and χ2 is a
tacnodal section. By the maximality assumption on R, the irreducible component of
T meeting R` is not a 2-pointed smooth rational curve. It follows by Lemma 2.1 that
(ψχ2)T ≥ 0. By Proposition 6.1, we have(

39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

+ (ψχ1)R1/B +
5

4
(ψχ2)R`/B +

9

4

`−1∑
i=1

(ψτi)Ri .

If ` is odd, then
∑`−1

i=1 (ψτi)Ri = 0 and ψχ1 = −ψχ2 . We thus obtain:(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

+
1

4
(ψχ2)T /B ≥

(
39

4
λ− δ + ψ

)
T /B

.

Noting that ψχ2 = 0 only if R/B is isotrivial, we reduce to proving Theorem 1.3(b) for
(T , {σi}ni=1, χ1, χ2).

If ` is even, then ψχ1 = ψχ2 and
∑`−1

i=1(ψτi)Ri + ψχ2 = 0, so that(
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

.

Furthermore, we observe that R/B is isotrivial and we reduce to proving Theorem 1.3(b)
for (T , {σi}ni=1, χ1, χ2).

Case 3: R is A3/A3-attached rosary. By the maximality assumption on R, neither
T ∩R1 nor T ∩R2 lies on a 2-pointed rational component of T . It follows by Lemma 2.1
that (ψχ1)T , (ψχ2)T ≥ 0. However, ψχ1 = (−1)`ψχ2 . Therefore, either ψχ1 = ψχ2 = 0, in
which case R/B is an isotrivial family, or ` is even and ψχ1 = ψχ2 > 0. In either case,
Proposition 6.1 gives(

39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T /B

+
1

4
(ψχ2)R/B ≥

(
39

4
λ− δ + ψ

)
T /B

,

and the inequality is strict if R is not isotrivial. Thus we reduce to proving Theorem
1.3(b) for (T , {σi}ni=1, χ1, χ2).

6.2. Reduction 2: The case of generic A1/A3 or A3/A3-attached elliptic bridges.
Suppose the geometric generic fiber of C/B can be written as C = T1 ∪ E ∪ T2, where
E is an A1/A3-attached elliptic bridge. Let q1 = T1 ∩ E be a node and q2 = T2 ∩ E
be a tacnode. By [AFSv14, Definition 2.10], the limit of q1 (resp., q2) remains a node
(resp., a tacnode) in every fiber. Thus we can write C = (T1, τ0) ∪ (E , τ1, τ2) ∪ (T2, τ3),
where τ0 ∼ τ1 are glued nodally and τ2 ∼ τ3 are glued tacnodally. Since A1/A1-attached
elliptic bridges are disallowed, fibers of E have no separating nodes and so (E , τ1, τ2) is a
family of elliptic bridges. By [AFSv14, Lemma 2.17], (T1, τ0) is (7/10 − ε)-stable. Also,
(T2, τ3) is (7/10− ε)-stable because τ3 cannot lie on an A1-attached elliptic tail in T2.
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Set C′ = (T1, τ0) ∪ (T2, τ3), where we glue by τ0 ∼ τ3 nodally. Then (C′/B, {σi}ni=1) is
a (7/10− ε)-stable family by [AFSv14, Lemma 2.18]. By Proposition 6.1, we have(

39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ

)
T1/B

+

(
39

4
λ− δ + ψτ1 +

5

4
ψτ2

)
E/B

+

(
39

4
λ− δ + ψ

)
T2/B

=

(
39

4
λ− δ + ψ

)
T1/B

+

(
39

4
λ− δ + ψ

)
T2/B

=

(
39

4
λ− δ + ψ

)
C′/B

,

where we have used relations (ψτ1)E/B = (ψτ2)E/B = λE/B and δE/B = 12λE/B, both of
which hold because (δred)E/B = 0.

Note that (E/B, τ1, τ2) is trivial if and only if ψτ2 = ψτ3 = 0. Thus we have reduced
to proving the requisite inequalities for the family C′/B with one less generic A1/A3-
attached elliptic bridge. Moreover, the equality for C′/B holds if and only if the equality
for C/B holds and C′/B is obtained by replacing a generic node of C′ by a family of
elliptic bridges A1/A3-attached along the nodal transforms.

Similarly, if the generic fiber of C/B has an A3/A3-attached elliptic bridge, then we
can remove the bridge and recrimp the two remaining components of C along a generic
tacnode. The calculation similar to the above shows that the degree of

(
39
4 λ− δ + ψ

)
does not change under this operation.

Replacing an attaching node of a Weierstrass chain of length ` by an A1/A3-attached
elliptic bridge in a way that preserves (7/10 − ε)-stability gives a Weierstrass chain of
length `+1. Similarly, replacing a tacnode in a Weierstrass chain of length ` by an A3/A3-
attached elliptic bridge gives a Weierstrass chain of length ` + 1. In what follows, we
will prove that for a non-isotrivial (7/10−ε)-stable family (C/B, {σi}ni=1) with no generic
A1/A3 or A3/A3-attached elliptic bridges, we have

(
39
4 λ− δ + ψ

)
C/B ≥ 0 and equality

holds if and only if C/B is a family of Weierstrass tails. This implies that for every
non-isotrivial (7/10−ε)-stable family (C/B, {σi}ni=1), we have

(
39
4 λ− δ + ψ

)
C/B ≥ 0 and

equality holds if and only if C/B is a family of Weierstrass chains.

6.3. Reduction 3: Normalization along generic tacnodes. Consider now a family
(C/B, {σi}ni=1) of (7/10−ε)-stable curves with no generic rosaries and no generic A1/A3 or
A3/A3-attached elliptic bridges. Let X be the normalization of C along generic tacnodes.
Denote by {τ±i }di=1 the preimages of the generic tacnodes, and call them tacnodal trans-

forms. Set ψtacn :=
∑d

i=1(ψτ+i
+ ψτ−i

) and ψX/B := ψC/B + ψtacn. Applying Proposition

6.1 we have (
39

4
λ− δ + ψ

)
C/B

=

(
39

4
λ− δ + ψ +

1

8
ψtacn

)
X/B

.

If we now treat each tacnodal transform τ±i as a marked section, then every connected
component of X is a generically (7/10 − ε)-stable family (there are no generic A1/A3

or A3/A3-attached elliptic bridges). Blowing-down all rational tails meeting a single
tacnodal transform and no other marked sections does not change

(
39
4 λ− δ + ψ

)
X/B but

makes (X/B, {σi}ni=1, {τ
±
i }di=1) into a (7/10− ε)-stable family. We still have ψtacn ≥ 0 by

Lemma 2.1, with strict inequality if d ≥ 1. Thus, we have reduced to proving Theorem
1.3(b) for a (7/10− ε)-stable family with no generic tacnodes.
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6.4. Reduction 4: Normalization along generic outer nodes. Consider a (7/10−ε)-
stable family (X/B, {σi}ni=1) with no generic tacnodes. Let Y be the normalization of
X along the generic outer nodes and let {ζ+

i , ζ
−
i }bi=1 be the transforms of the generic

outer nodes. Set δtacn :=
∑

i 6=j(ζ
±
i · ζ

±
j ) and ψY/B := ψX/B +

∑b
i=1(ψζ+i

+ ψζ−i
). Then

by Proposition 3.4, we have(
39

4
λ− δ + ψ

)
X/B

=

(
39

4
λ− δ + ψ +

7

8
δtacn

)
Y/B

.

6.5. Reduction 5: Normalization along generic cusps. Let Y be as in 6.4 and let
Z be the normalization of (a connected component of) Y along generic cusps and let
{ξi}ci=1 be the cuspidal transforms on Z. Then the family (Z/B, {σi}ni=1, {ζi}bi=1, {ξi}ci=1)
satisfies the following properties:

(1) The generic fiber is irreducible and at-worst nodal.
(2) The sections {σi}ni=1 are smooth, pairwise non-intersecting and disjoint from
{ζi}bi=1.

(3) The sections {ζi}bi=1 are smooth and at most two of them can meet at any given
point of Z.

(4) The sections {ξi}ci=1 are pairwise non-intersecting and disjoint from {ζi}bi=1 and
{σi}ni=1.

Set c(B) := 2
∑c

i=1 ι(ξi), where ι(ξi) is the index of the cuspidal transform ξi, and
ψcusp :=

∑c
i=1 ψξi . Then we have by Proposition 3.5(

39

4
λ− δ + ψ +

7

8
δtacn

)
Y/B

=

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B

.(6.1)

Our goal for the rest of the section is to prove that the expression on the right-hand
side of (6.1) is non-negative and equals 0 if and only if the only non-isotrivial components
of the family X/B from 6.4 are A1-attached Weierstrass tails.

Let h be the geometric genus of the generic fiber of Z and let a be the number of
generic inner nodes of Z. Our further analysis breaks down according to the following
possibilities:

(A) h ≥ 3; see §6.5.1.
(B) h = 2, or (h, a) = (1, 1), or (h, a) = (0, 2); see §6.5.2.
(C) h = 1 and a 6= 1, or (h, a) = (0, 1); see §6.5.3.
(D) h = 0 and a ≥ 3, or (h, a) = (0, 0); see §6.5.4.

6.5.1. Case A: Relative geometric genus h ≥ 3. Suppose Z/B is a family as in 6.5. Let
W be the normalization of Z along the generic inner nodes. Let {η+

i , η
−
i }ai=1 be the

inner nodal transforms on W. Then (W/B, {σi}ni=1, {η
±
i }ai=1, {ζi}bi=1, {ξi}ci=1) satisfies

the following properties:

(1) The generic fiber is a smooth curve of genus h ≥ 3.
(2) Sections {σi}ni=1 are smooth, non-intersecting, and disjoint from {η±i }ai=1, {ζi}bi=1,

and {ξi}ci=1.
(3) Inner nodal transforms {η±i }ai=1 are disjoint from {ζi}bi=1 and {ξi}ci=1. Their

properties are described by Proposition 3.3.
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(4) Outer nodal transforms {ζi}bi=1 are disjoint from {ξi}ci=1. Their properties are
described by Proposition 3.4.

(5) Cuspidal transforms {ξi}ci=1 have properties described by Proposition 3.5.

We let ψW/B := ψZ/B +
∑a

i=1(ψη+i
+ψη−i

) and (δtacn)W/B := (δtacn)Z/B +
∑

i 6=j(η
±
i ·η

±
j ).

We set δinner :=
∑a

i=1(η+
i · η

−
i ) and n(B) :=

∑a
i=1 ι(η

+
i ), where ι(η+

i ) is the index of the

inner nodal transform η+
i . Then by Proposition 3.3:

(6.2)

(
39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B

=

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp +

7

8
δtacn

)
W/B

.

Passing to the relative minimal model of W/B does not increase the degree of the
divisor on the right-hand side of (6.2). Hence we will assume that ωW/B is relatively nef.
Then by Proposition 4.1, we have (8 + 4/h)λ− δ ≥ 0. Since h ≥ 3 and δ ≥ 0, we obtain
39
4 λ− δ > 0 (when δ = 0, we have λ > 0 by the existence of the Torelli morphism). We

proceed to estimate the remaining terms of (6.2). Clearly, δtacn ≥ 0. Since h ≥ 3 and
κ = 12λ− δ > 0, the inequalities of Lemmas 4.3 and 4.4 give

ψcusp =
c∑
i=1

ψξi ≥
(h− 1)

h

c∑
i=1

ι(ξi) + c
κ

4h(h− 1)
=
h− 1

2h
c(B) + c

κ

4h(h− 1)
>

1

3
c(B),

a∑
i=1

(ψη+i
+ ψη−i

) ≥ 2(h− 1)

h+ 1

a∑
i=1

((η+
i · η

−
i ) + ι(η+

i )) + a
κ

h2 − 1
> δinner + n(B).

Summarizing, we conclude that the right hand side of (6.2) is strictly positive.

6.5.2. Case B: Relative genus 2. Suppose Z/B is a family as in 6.5 with relative geo-
metric genus h = 2. Let W be the normalization of Z along the generic inner nodes. As
in 6.5.1, we reduce to proving that

(6.3)

(
39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp +

7

8
δtacn

)
W/B

≥ 0,

under the assumption that ωW/B is relatively nef.
For any familyW/B of arithmetic genus 2 curves with a relatively nef ωW/B, we have

(6.4) 10λ = δirr + 2δred,

This relation implies that δ ≤ 10λ for any generically irreducible family and, conse-
quently, κ = 12λ − δ ≥ 2λ, with the equality achieved only if δred = 0, i.e., if there are
no fibers where two genus 1 components meet at a node. It follows that 39

4 λ−δ ≥ −λ/4,
with the equality only if δred = 0.

By Lemma 4.4, we have
a∑
i=1

(ψη+i
+ ψη−i

) ≥ 2

3
(δinner + n(B)) + a

κ

3
.

By Lemma 4.3, we have

ψcusp ≥
1

4
c(B) + c

κ

8
.
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Putting these inequalities together and using κ ≥ 2λ, we obtain

9

4
ψcusp +

a∑
i=1

(ψη+i
+ ψη−i

) ≥ 1

4
δinner +

1

4
n(B) +

1

4
c(B) +

(
2a

3
+

9c

16

)
λ.

If a + c ≥ 1, we obtain a strict inequality in (6.3) at once. Suppose a = c = 0. So far,
we have that (

39

4
λ− δ + ψ

)
W/B

≥
n∑
i=1

ψσi +

b∑
i=1

ψζi −
1

4
λ.

We now invoke Lemma 4.5 that gives

n∑
i=1

ψσi +
b∑
i=1

ψζi ≥
(n+ b)

8
κ ≥ (n+ b)

4
λ.

Since n + b ≥ 1 (otherwise, W/B is an unpointed family of genus 2 curves, which

is impossible), we conclude that
∑n

i=1 ψσi +
∑b

i=1 ψζi − λ/4 ≥ 0 and that equality is
achieved if and only if n+b = 1, δred = 0, and equality is achieved in Lemma 4.5. This is
precisely the situation when Y/B = W/B is a family of A1-attached Weierstrass genus
2 tails.

Finally, if (h, a) = (1, 1) or (h, a) = (0, 2), we proceed exactly as above but without
normalizing the inner nodes: For a family (Z/B, {σi}ni=1, {ζi}bi=1, {ξi}ci=1) as in 6.5, where
the relative arithmetic genus of Z/B is 2, we need to prove(

39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B
≥ 0.

Applying (6.4) to estimate δ, Lemma 4.3 to estimate ψcusp, and Lemma 4.5 to estimate∑n
i=1 ψσi +

∑b
i=1 ψζi (all of which apply even if the total space Z is not normal), we

obtain

39

4
λ−δ+ψ+

5

4
ψcusp−

1

4
c(B)+

7

8
δtacn ≥ −

1

4
λ+

4n+ 4b+ 9c

16
λ+

5

16
c(B)+

7

8
δtacn ≥ 0.

Moreover, equality is achieved if and only if δred = 0, c = 0, and n + b = 1, which is
precisely the situation when Y/B = Z/B is a family of A1-attached (generically nodal)
Weierstrass genus 2 tails.

6.5.3. Case C: Relative genus 1. Suppose Z/B is a family as in 6.5 of relative genus 1
and with a generic inner nodes, where a 6= 1. We consider the case a ≥ 2 first. Let W
be the family obtained from Z by the following operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {η+
i , η

−
i }ai=1.

(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors.
(3) Blow-up points of η±i ∩ η

±
j for all i 6= j.

(4) Blow-up points of ζi ∩ ζj for all i 6= j.

As a result, the sections ofW/B do not intersect pairwise with the only possible exception
that η+

i is allowed to meet η−i . A node of Z through which ξi passes is replaced in W
by a balanced rational bridge meeting the strict transform of ξi, which we continue to
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denote by ξi. We say that such a bridge is a cuspidal bridge associated to ξi. Moreover,
if we let c(ξi) be the sum of the indices of all bridges associated to ξi, then

2ι(ξi)Z/B = c(ξi)W/B.

Suppose {η+
i , η

−
i } is an inner nodal pair of Z/B. Then a node of Z through which

η+
i and η−i both pass is replaced in W by a balanced rational bridge meeting the strict

transforms of η+
i and η−i , which we continue to denote by η+

i and η−i . We say that such

a bridge is an inner nodal bridge associated to {η+
i , η

−
i }. Moreover, if we let n(ηi) be the

sum of the indices of all bridges associated to {η+
i , η

−
i }, then

((η+
i · η

−
i ) + ι(η+

i ))Z/B = ((η+
i · η

−
i ) + n(ηi))W/B.

On W/B, we define

δinner :=
a∑
i=1

(η+
i · η

−
i ), δtacn :=

∑
i 6=j

δ0,{η±i ,η
±
j }

+
∑
i 6=j

δ0,{ζi,ζj},

and let n(B) (resp., c(B)) be the sum of the indices of all inner nodal (resp., cuspidal)
bridges. We reduce to proving that(

39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp −

1

8
δtacn

)
W/B

≥ 0.

We will make use of the standard relations for pointed families of genus 1 curves and
Lemmas 4.6 and 4.7. Let N = n+ 2a+ b+ c be the total number of marked sections of
W/B. Clearly, N ≥ 2. We consider first the case when N ≥ 3. Then by Lemma 4.6, we
have

δinner + n(B) ≤ N

2(N − 2)

a∑
i=1

(ψη+i
+ ψη−i

) +
a

2(N − 2)2
δred.

Applying Lemma 4.7, we obtain

c(B) ≤ 2N

N − 1
ψcusp +

c

4(N − 1)2
δred.

Using the above two inequalities and rewriting δ = 12λ+ δred, we see that

(6.5)
39

4
λ− δ + ψ − 1

4
(δinner + n(B) + c(B)) +

5

4
ψcusp −

1

8
δtacn

≥ −9

4
λ+

(
5

4
− N

2(N − 1)

)
ψcusp + ψ − N

8(N − 2)

a∑
i=1

(ψη+i
+ ψη−i

)

−
(

1 +
a

8(N − 2)2
+

c

16(N − 1)2

)
δred −

1

8
δtacn.

We rewrite each ψ-class on the right-hand side of (6.5) using the standard relation on
families of arithmetic genus 1 curves:

ψσ = λ+
∑
σ∈S

δ0,S .
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The coefficient of λ in the resulting expression for the right-hand side of (6.5) is

(6.6) − 9

4
+ c

(
5

4
− N

2(N − 1)

)
+N − aN

4(N − 2)
.

Using N ≥ 2a + c and the assumption N ≥ 3, it is easy to check that (6.6) is always
positive.

A similarly straightforward but tedious calculation shows that each boundary divisor
δ0,S appears in the resulting expression for the right-hand side of (6.5) with a positive
coefficient. Thus we have shown that the right-hand side of (6.5) is positive for every
non-isotrivial family with N ≥ 3.

We consider now the case of N = 2. Since C/B in 6.3 has no generic elliptic bridges
(nodally or tacnodally attached), we must have c = 1 and n + b = 1. Let ξ be the
corresponding cuspidal transform and τ be either a marked smooth section (if n = 1) or
an outer nodal transform (if b = 1). We trivially have δinner = n(B) = δtacn = δred = 0.
Using δirr = 12λ and the inequality c(B) ≤ 4ψcusp from Lemma 4.7, we obtain:

39

4
λ− δ + ψ − 1

4
δinner −

1

4
n(B)− 1

4
c(B) +

5

4
ψcusp −

1

8
δtacn

=
39

4
λ− δ + ψ − 1

4
c(B) +

5

4
ψcusp ≥

39

4
λ− 12λ+ ψ +

1

4
ψcusp

=
39

4
λ− 12λ+ 2λ+

1

4
λ = 0.

Moreover, equality holds only if equality holds in Lemma 4.7. This happens if and only
if 2ξ ∼ 2τ and implies that Y/B in 6.4 is a generically cuspidal family of A1-attached
Weierstrass genus 2 tails. We are done with the analysis in the case g = 1 and a 6= 1.

If (g, a) = (0, 1), we proceed exactly as above, but without normalizing the inner node.

6.5.4. Case D: Relative geometric genus 0. Suppose Z/B is a family as in 6.5 of relative
geometric genus 0 and with a generic inner nodes, where either a ≥ 3 or a = 0. We
consider the case a ≥ 3 first. Let W be the family obtained from Z by the following
operations:

(1) Normalize Z along all generic inner nodes to obtain inner nodal pairs {η+
i , η

−
i }ai=1.

(2) Blow-up all cuspidal and inner nodal transforms to make them Cartier divisors.
This operation introduces cuspidal or nodal bridges as in 6.5.3.

(3) Blow-up points of η±i ∩ η
±
j for all 1 ≤ i < j ≤ a.

(4) Blow-up points of ζi ∩ ζj for all 1 ≤ i < j ≤ b.
(5) Blow-up points of η+

i ∩ η
−
i for all 1 ≤ i ≤ a.

(6) Blow-down all rational tails marked by a single section (such tails are necessarily
adjacent either to cuspidal or inner nodal bridges).
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As a result, W/B is a family in M0,N , where N = n+ 2a+ b+ c and a ≥ 3. On W/B,
we define

δinner :=
a∑
i=1

δ{η+i ,η
−
i }
, δtacn :=

∑
i 6=j

δ{η±i ,η
±
j }

+
∑
i 6=j

δ{ζi,ζj},

δNB3 :=

a∑
i=1

∑
β 6=η+i ,η

−
i

δ{η+i ,η
−
i ,β}

, δCB2 :=

c∑
i=1

∑
β 6=ξi

δ{ξi,β},

and let n(B) (resp., c(B)) be the sum of the indices of all inner nodal (resp., cuspidal)
bridges. Then(

39

4
λ− δ + ψ +

5

4
ψcusp −

1

4
c(B) +

7

8
δtacn

)
Z/B

=

(
ψ +

5

4
ψcusp − δ −

5

4
δinner −

1

4
(n(B) + c(B) + δNB3 + δCB2 )− 1

8
δtacn

)
W/B

.

We are going to prove that a (strict!) inequality

ψ +
5

4
ψcusp − δ −

5

4
δinner −

1

4
(n(B) + c(B) + δNB3 + δCB2 )− 1

8
δtacn > 0

always holds onW/B. In doing so, we will use the following standard relation onM0,N :

(6.7) ψ =
∑
r≥2

r(N − r)
N − 1

δr.

First we deal with the case of a family with 3 inner nodal pairs and no other marked
sections, i.e., a = 3 and N = 6. The desired inequality in this case simplifies to

ψ − δ − 5

4
δinner −

1

4
(n(B) + δNB3 )− 1

8
(δ2 − δinner) > 0.

We have an obvious inequality 2n(B) ≤ δ2. Thus we reduce to proving

(6.8) ψ >
5

4
δ2 +

9

8
δinner + δ3 +

1

4
δNB3 .

For a ≥ 3, Lemma 4.8 gives

ψ ≥ 4δinner + δtacn + 3δNB3 = 3δinner + δ2 + 3δNB3 .

Combining this with the standard relation 5ψ = 8δ2 + 9δ3 gives

8ψ ≥ 9δinner + 11δ2 + 9δ3 + 9δNB3 .

This clearly implies (6.8) as desired.
Next, we consider the case of N ≥ 7. In this case, every inner nodal or cuspidal bridge

is adjacent to a node from
∑

r≥3 δr. As a result, we have n(B) + c(B) ≤ 2
∑

r≥3 δr.

Furthermore, 1
4δ
CB
2 + 1

8δtacn+ 1
4δinner ≤

1
4δ2 (because a node from δ2 can contribute only

to one of the δinner, δtacn, or δCB2 ). Hence we reduce to proving

(6.9) ψ +
5

4
ψcusp −

5

4
δ2 − δinner −

3

2

∑
r≥3

δr −
1

4
δNB3 > 0
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We combine the inequality of Lemma 4.8 with the standard relation (6.7), and the
obvious ψ ≥ ψinner to obtain

3

ψ −∑
r≥2

r(N − r)
N − 1

δr

+
(
ψinner − 4δinner − 3δNB3

)
+
(
ψ − ψinner

)
≥ 0.

This gives the estimate

4ψ ≥ 4δinner +
6(N − 2)

N − 1
δ2 +

9(N − 3)

N − 1

∑
r≥3

δr + 3δNB3 .

Using N ≥ 7 and ψcusp ≥ 0, we finally get

ψ +
5

4
ψcusp ≥ δinner +

5

4
δ2 +

3

2

∑
r≥3

δr +
3

4
δNB3 .

Moreover, the equality could be achieved only if N = 7 and ψ − ψinner = 0 which is
impossible because ψ = ψinner implies that all sections are inner nodal transforms and
so N must be even. Hence we have established (6.9) as desired.

At last, we consider the case of a = 0. Because the family W/B is non-isotrivial, we
must have N ≥ 4. In addition, if N = 4, then there exists a unique family of 4-pointed
Deligne-Mumford stable rational curves. The requisite inequality is easily verified for
this family by hand. If N ≥ 5, then using the inequality 2c(B) ≤ δ, we reduce to proving

ψ +
5

4
ψcusp −

9

8
δ − 1

4
δCB2 − 1

8
δtacn > 0.

The standard relation (6.7) gives

ψ ≥ 3

2

∑
r≥2

δr >
11

8
δ2 +

9

8

∑
r≥3

δr >
9

8
δ +

1

4
δ2.

Finally, the inequality δ2 ≥ δCB2 + δtacn gives the desired result.
This completes the proof of Theorem 1.3 (b).

7. Projectivity from positivity

Throughout this section, we make use of the following standard abuse of notation:
Whenever L is a line bundle on Mg,n(α) that descends to the good moduli space, we

denote the corresponding line bundle on Mg,n(α) also by L. In this situation, pullback

defines a natural isomorphism H0
(
Mg,n(α),L

)
' H0

(
Mg,n(α),L

)
.

Proposition 7.1. Let α > 2/3− ε. Suppose that KMg,n(α) + βδ + (1− β)ψ descends to

Mg,n(α) for some β ≤ α. Then we have

Proj R
(
Mg,n(α),KMg,n(α) + βδ + (1− β)ψ

)
'Mg,n(β).

Proof. Consider the rational map fα : Mg,n 99K Mg,n(α). If α > 9/11, then fα is

an isomorphism. If 7/10 < α ≤ 9/11, then fα|Mg,n\δ1,0 is an isomorphism onto the

complement of the codimension 2 locus of cuspidal curves in Mg,n(α). If α ≤ 7/10, then

fα|Mg,n\(δ1,0 ∪ δ1,1) is an isomorphism onto the complement of the codimension 2 locus of
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cuspidal and tacnodal curves in Mg,n(α). (If n = 0, then δ1,1 = ∅). It follows that we

have a discrepancy equation

(7.1) f∗α
(
KMg,n(α) + βδ + (1− β)ψ

)
' KMg,n

+ βδ + (1− β)ψ + c0δ1,0 + c1δ1,1,

where c0 = 0 if α > 9/11 and c1 = 0 if α > 7/10.

Let T1 ⊂Mg,n be a non-trivial family of elliptic tails and T2 ⊂Mg,n \ δ1,0 be a non-

trivial family of 1-pointed elliptic tails. Then fα is regular along T1, and for α ≤ 9/11

contracts T1 to a point. Similarly, fα is regular along T2, and for α ≤ 7/10 contracts T2

to a point. By intersecting both sides of (7.1) with T1 and T2, we obtain c0 = 11β−9 ≤ 0

if α ≤ 9/11, and c1 = 10β − 7 ≤ 0 if α ≤ 7/10. It follows that

Proj R
(
Mg,n(α),KMg,n(α) + βδ + (1− β)ψ

)
' Proj R

(
Mg,n,KMg,n

+ βδ + (1− β)ψ
)
.

�

Proposition 7.2. Fix αc ∈ {α1 = 9/11, α2 = 7/10, α3 = 2/3} and take α0 = 1. Suppose

that for all 0 < ε� 1,

KMg,n(αc−1−ε) + (αc−1 − ε)δ + (1− αc−1 + ε)ψ

descends to an ample line bundle on Mg,n(αc−1 − ε). In addition, suppose that

KMg,n(αc−1−ε) + αcδ + (1− αc)ψ

is nef on Mg,n(αc−1 − ε) and all curves on which it has degree 0 are contracted by

Mg,n(αc−1 − ε)→ Mg,n(αc). Then KMg,n(α) + αδ + (1− α)ψ descends to an ample line

bundle on Mg,n(α) for all α ∈ [αc, αc−1).

Proof. By [AFSv14, Proposition 3.28], for any αc-closed curve (C, {pi}ni=1), the action

of Aut(C, {pi}ni=1)◦ on the fiber of KMg,n(αc)
+ αcδ + (1 − αc)ψ is trivial. It follows

that KMg,n(αc)
+ αcδ + (1 − αc)ψ descends to Mg,n(αc). Consider the open immersion

of stacks Mg,n(αc−1 − ε) ↪→Mg,n(αc) and the induced map on the good moduli spaces

j : Mg,n(αc−1 − ε)→Mg,n(αc). We have that

j∗
(
KMg,n(αc)

+ αcδ + (1− αc)ψ
)

= KMg,n(αc−1−ε) + αcδ + (1− αc)ψ.

It follows by assumption that KMg,n(αc−1−ε) + αcδ + (1− αc)ψ descends to a nef line

bundle on the projective variety Mg,n(αc−1−ε). First, we show that KMg,n(αc−1−ε)+αcδ+

(1−αc)ψ is semiample on Mg,n(αc−1− ε). To bootstrap from nefness to semiampleness,

we first consider the case n = 0 and g ≥ 3. By Proposition 7.1, the section ring of

KMg(αc−1−ε) + αcδ on Mg(αc−1 − ε) is identified with the section ring of KMg
+ αcδ on

Mg. The latter line bundle is big, by standard bounds on the effective cone of Mg, and

finitely generated by [BCHM10, Corollary 1.2.1]. We conclude that KMg(αc−1−ε) +αcδ is

big, nef, and finitely generated, and so is semiample by [Laz04, Theorem 2.3.15]. When

n ≥ 1, simply note that KMg+hn(αc−1−ε)+αcδ pulls back to KMg,n(αc−1−ε)+αcδ+(1−αc)ψ
under the morphism Mg,n(αc−1 − ε) → Mg+nh(αc−1 − ε) defined by attaching a fixed

general curve of genus h ≥ 3 to every marked point.
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We have established that

j∗
(
KMg,n(αc)

+ αcδ + (1− αc)ψ
)

= KMg,n(αc−1−ε) + αcδ + (1− αc)ψ

is semiample on Mg,n(αc−1−ε). By assumption, it has degree 0 only on curves contracted

by Mg,n(αc−1−ε)→Mg,n(αc). We conclude that KMg,n(αc)
+αcδ+(1−αc)ψ is semiample

and is positive on all curves in Mg,n(αc). Therefore, KMg,n(αc)
+αcδ+(1−αc)ψ is ample

on Mg,n(αc).

The statement for α ∈ (αc, αc−1) follows by interpolation. �

Proposition 7.3. Fix αc ∈ {9/11, 7/10, 2/3}. Suppose that KMg,n(αc)
+ αcδ + (1− αc)ψ

descends to an ample line bundle on Mg,n(αc). Then for all 0 < ε� 1,

KMg,n(αc−ε) + (αc − ε)δc + (1− αc + ε)ψ

descends to an ample line bundle on Mg,n(αc − ε).

Proof. Consider the proper morphism π : Mg,n(αc− ε) → Mg,n(αc) given by [AFS15,

Theorem 4.25]. Our assumption implies that KMg,n(αc−ε) +αcδ+ (1−αc)ψ descends to

a line bundle on Mg,n(αc−ε) which is a pullback of an ample line bundle on Mg,n(αc)

via π. To establish the proposition, it suffices to show that a positive multiple of ψ − δ
on Mg,n(αc−ε) descends to a π-ample line bundle on Mg,n(αc−ε).

For every (αc−ε)-stable curve (C, {pi}ni=1), the induced character of Aut(C, {pi}ni=1)◦

on δ − ψ is trivial by [AFS15, Proposition 3.27]. It follows by [Alp13, Theorem 10.3]

that a positive multiple of δ − ψ descends to a line bundle N on Mg,n(αc−ε).
To show that N∨ is relatively ample over Mg,n(αc), consider the commutative cube

W

��

f

yy

W−χ?
_oo

��

xx
Mg,n(αc)

φαc

��

Mg,n(αc−ε)

φαc−ε

��

? _oo

W//G

yy

W−χ //G

xx

oo

Mg,n(αc) Mg,n(αc−ε)
πoo

(7.2)

where W = [SpecA/G] → W//G = SpecAG and W−χδ−ψ → W−χδ−ψ//G = Proj
⊕

d≥0Ad
are the good moduli spaces as in [AFS15, Proposition 3.6]. Since the vertical arrows are

good moduli spaces, by Proposition [AFS15, Proposition 4.6] and [AFS15, Lemmas 3.18

and 4.7], after shrinkingW by a saturated open substack such that f sends closed points

to closed points and is stabilizer preserving at closed points, we may assume that the

left and right faces are Cartesian. The argument in the proof of [AFS15, Theorem 4.2]

concerning Diagram (7.2) shows that the bottom face is Cartesian.

The restriction ofN∨ toW−χδ−ψ descends to the relative O(1) on W−χδ−ψ//G. Therefore,

the pullback of N∨ on Mg,n(αc−ε) to W−χ //G is O(1) and, in particular, is relatively
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ample over W//G. Since the bottom face is Cartesian, it follows by descent that N∨ is

relatively ample over Mg,n(αc). The proposition follows. �

We proceed to prove Theorem 1.1 using Propositions 7.1, 7.2, 7.3 and Theorem 1.3.

Proof of Theorem 1.1. First, we show that Part (2) follows from Part (1). Indeed, sup-

pose KMg,n(α) + αδ + (1− α)ψ descends to an ample line bundle on Mg,n(α). Then

Mg,n(α) ' Proj R
(
Mg,n(α),KMg,n(α) + αδ + (1− α)ψ

)
'Mg,n(α),

where the second isomorphism is given by Proposition 7.1 below.

The proof of Part (1) proceeds by descending induction on α beginning with the known

case α > 9/11, when Mg,n(α) = Mg,n. Let αc ∈ {α1 = 9/11, α2 = 7/10, α3 = 2/3} and

take α0 = 1. Suppose we know Part (1) for all α ≥ αc−1 − ε. By Theorem 1.3, the line

bundle KMg,n(αc−1−ε) +αcδ+ (1−αc)ψ is nef onMg,n(αc−1− ε) and all curves on which

it has degree 0 are contracted by Mg,n(αc−1 − ε)→ Mg,n(αc). It follows by Proposition

7.2 that the statement of Part (1) holds for all α ≥ αc. Finally, Proposition 7.3 gives

the statement of Part (1) for α ≥ αc − ε. �

References

[AC98] Enrico Arbarello and Maurizio Cornalba, Calculating cohomology groups of moduli spaces of

curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. (1998), no. 88, 97–127
(1999). 17

[ACG11] Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves.
Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011, With a contribution by Joseph
Daniel Harris. 2

[AFS15] Jarod Alper, Maksym Fedorchuk, and David Ishii Smyth, Existence of good moduli spaces

with applications to the log minimal program for Mg,n, 2015. 1, 29
[AFSv14] Jarod Alper, Maksym Fedorchuk, David Ishii Smyth, and Frederick van der Wyck, Log

minimal model program for the moduli space of stable curves: The second flip, 2014. 1, 3, 4,
5, 16, 18, 19, 20, 28

[Alp13] Jarod Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013),
no. 6, 2349–2402. 29

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of
minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2,
405–468. 28

[CH88] Maurizio Cornalba and Joe Harris, Divisor classes associated to families of stable varieties,

with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988),
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